
The Teaching Dimension of Linear Learners

Ji Liu JI.LIU.UWISC@GMAIL.COM

University of Rochester, Rochester, NY 14627 USA

Xiaojin Zhu JERRYZHU@CS.WISC.EDU
H. Gorune Ohannessian OHANNESSIAN@WISC.EDU

University of Wisconsin-Madison, Madison, WI 53706 USA

Abstract
Teaching dimension is a learning theoretic quan-
tity that specifies the minimum training set size to
teach a target model to a learner. Previous studies
on teaching dimension focused on version-space
learners which maintain all hypotheses consis-
tent with the training data, and cannot be ap-
plied to modern machine learners which select a
specific hypothesis via optimization. This paper
presents the first known teaching dimension for
ridge regression, support vector machines, and
logistic regression. We also exhibit optimal train-
ing sets that match these teaching dimensions.
Our approach generalizes to other linear learners.

1 Introduction
Consider a teacher who knows both a target model and the
learning algorithm used by a machine learner. The teacher
wants to teach the target model to the learner by construct-
ing a training set. The training set does not need to contain
independent and identically distributed items drawn from
some distribution. Furthermore, the teacher can construct
any item in the input space. How many training items are
needed? This is the question addressed by the teaching di-
mension (Goldman & Kearns, 1995; Shinohara & Miyano,
1991). We give the precise definition in section 2, but first
illustrate the intuition with an example.
Consider integers x 2 {1 . . . 10} and threshold classifiers
h
✓

on them, so that h
✓

(x) returns -1 if x < ✓ and 1 if x � ✓.
Now let the hypothesis space H consist of eleven classifiers
H = {h

✓

| ✓ 2 {1 . . . 11}}. Let the learner be a version-
space learner, namely it maintains a version space {h

✓

2
H | h

✓

consistent with the training set}. Equivalently, the
learner is a 0-1 loss empirical risk minimizer (ERM) which
finds all models with zero training error. If we want to teach
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a target model (in this paper we use hypothesis and model
exchangeably), say h

9

, to such a learner, we can construct
a training set that results in a singleton version space {h

9

}.
It is easy to see that the training set D = {(x

1

= 8, y
1

=

�1), (x
2

= 9, y
2

= 1)} is the smallest set for this purpose.
We say that the teaching dimension of h

9

with respect to H
is TD(h

9

) = |D| = 2. Similarly, TD(h
11

) = 1 because
D = {(x

1

= 10, y
1

= �1)} suffices. In fact, TD(h⇤
✓

) = 1

for target model ✓⇤ = 1 or 11, and 2 for ✓⇤ = 2, 3, . . . , 10.
The astute reader may notice that this example does not ap-
ply to continuous spaces. To see this, let us extend x 2 R
and H = {h

✓

| ✓ 2 R}. The learner’s version space un-
der any linearly separable training set would now be rep-
resented by the interval between the two closest oppositely
labeled items. It is impossible for the version-space learner
to pick out a unique target model h

✓

⇤ with a finite training
set. In other words, TD(h

✓

⇤
) = 1 for all target models

✓⇤. This is counterintuitive because ostensibly we can teach
any one of the “modern” machine learning algorithms such
as a support vector machine (SVM) with only two training
items: D = {(x

1

= ✓⇤ � ✏, y
1

= �1), (x
2

= ✓⇤ + ✏, y
2

=

1)} with any ✏ > 0. The issue here is that a version-space
learner is not equipped with the ability to pick the max-
margin (or any other specific) hypothesis from the version
space. In contrast, an SVM is not a version-space learner
in our terminology; we have stronger knowledge from op-
timization on how it picks a specific hypothesis from the
hypothesis space. This paper will utilize such knowledge
to derive teaching dimensions that are distinct from clas-
sic teaching dimension analysis (e.g. Doliwa et al. (2014)).
Specifically, we extend teaching dimension to linear learn-
ers that learn by regularized surrogate-loss empirical risk
minimization:

A
opt

(D) := Argmin

✓

✓

✓2Rd

nX

i=1

`(x>
i

✓✓✓, y
i

) +

�

2

k✓✓✓k2
A

| {z }
=:f(✓

✓

✓)

. (1)

Here, we identify H with Rd, h with ✓✓✓, the surrogate loss
function ` is either smooth or convex in the first argument,
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homogeneous inhomogeneous
ridge SVM logistic ridge SVM logistic

exact parameter 1
⌃
�k✓✓✓⇤k2⌥

l
�k✓✓✓⇤k2

⌧

max

m
2 2

l
�kw⇤k2

2

m†
2

l
�kw⇤k2

2⌧

max

m†

decision boundary - 1 1 - 2 2

Table 1. The teaching dimension of ridge regression, SVM, and logistic regression. (†: up to rounding effect, see section 3.3).

� > 0 is the regularization coefficient, and A is a positive
semidefinite matrix. This covers both homogeneous (e.g.
A = I) and inhomogeneous (e.g. A = [I, 0; 0, I]) learn-
ers. k · k

A

is the Mahalanobis norm: k✓✓✓k
A

:=

p
✓✓✓>A✓✓✓.

We follow the convention in optimization when we use the
capitalized Argmin to emphasize that it returns a set that
achieves the minimum. The teacher can construct a train-
ing set with any items in Rd. The alternative pool-based
teaching setting, where the teacher is given a finite pool
of candidate training items and must select items from that
pool, is not studied in this paper. By linear learners we
mean the input x and the parameter ✓✓✓ interact only via their
inner product x>✓✓✓. Linear learners include SVMs, logistic
regression, and linear regression. Our analysis technique
involves a novel application of the Karush-Kuhn-Tucker
(KKT) conditions.
To our knowledge, this paper gives the first known values of
teaching dimension for ridge regression, SVM, and logistic
regression. We summarize our main results in Table 1. The
table separately lists homogeneous (without a bias term)
and inhomogeneous (with a bias term) versions of the lin-
ear learners. The teaching goal refers to the intention of
the teacher: is teaching considered successful only when
the learner learns the exact target parameter, or when the
learner learns the correct decision boundary (which can be
achieved by any positive scaling of the target parameter).
See section 3 for definition of the target parameters ✓✓✓⇤,w⇤

and the constant ⌧
max

. The target parameters are assumed
to be nonzero. We will also present the corresponding min-
imum teaching set construction in section 3. All proofs in
this paper are provided in Supplemental Material.

2 Classic Teaching Dimension and its
Limitations

Let X denote the input space and Y ✓ R the output space.
A hypothesis is a function h : X ! Y . In this paper we
identify a hypothesis h

✓

✓

✓

with its model parameter ✓✓✓. The
hypothesis space H is a set of hypotheses. By training item
we mean a pair (x, y) 2 X ⇥Y . A training set is a multiset
D = {(x

1

, y
1

) . . . (x
n

, y
n

)} where repeated items are al-
lowed. Importantly, for the purpose of teaching we do not
assume that D be drawn i.i.d. from a distribution. Let D
denote the set of all training sets of all sizes. A learning
algorithm A : D ! 2

H takes in a training set D 2 D and
outputs a subset of the hypothesis space H. That is, A does
not necessarily return a unique hypothesis.
Classic teaching dimension analysis is restricted to the

version-space learner A
vs

:

A
vs

(D) = {h 2 H | h is consistent with D }. (2)
That is, the learner A

vs

keeps track of the version space.
Let the target model be h

✓

✓

✓

⇤ 2 H. Teaching is success-
ful if the teacher identifies a training set D 2 D such that
A

vs

(D) = {h
✓

✓

✓

⇤} the singleton set. Such a D is called a
teaching set of h

✓

✓

✓

⇤ with respect to H. The teaching di-
mension of the hypothesis h

✓

✓

✓

⇤ is the minimum size of the
teaching set:

TD(h
✓

✓

✓

⇤
) =

⇢
min

D2D |D|, for D a teaching set of h
✓

✓

✓

⇤

1, if no teaching set exists
(3)Furthermore, the teaching dimension of the whole hy-

pothesis space H is defined by the hardest hypothesis:
TD(H) = max

h2H TD(h). In this paper we will focus
on the fine-grained teaching dimension of individual hy-
pothesis TD(h).
Classic teaching dimension analysis has several limitations:
the learner is assumed to be a version-space learner A

vs

,
and the hypothesis space is typically finite or countably in-
finite. As the example in section 1 showed, these fail to cap-
ture the teaching dimension of “modern” machine learners
which has Rd as input space and picks a unique hypothesis
via regularized empirical risk minimization (1). Further-
more, the target model can be ambiguous when the learner
is a classifier: should the learner learn the exact target pa-
rameter ✓✓✓⇤, or the target decision boundary? In linear mod-
els any scaled parameter c✓✓✓⇤ with c > 0 produces the same
target decision boundary. These limitations motivate us to
generalize the teaching dimension in the next section.

3 Main Results
To make our teaching dimension’s dependency on the
learning algorithm explicit, henceforth we write teaching
dimension with two arguments as

TD(h⇤,A) (4)
where h⇤ 2 H is the target model, and A : D ! 2

H is
the learning algorithm which given a training set D 2 D
returns a set of hypotheses A(D). We define teaching di-
mension to be the size of the smallest training set D such
that A(D) = {h⇤}, the singleton set containing the target
model. With this notation, the classic teaching dimension
is TD(h⇤,A

vs

) where A
vs

is the version space learning al-
gorithm (2). In this paper we focus on A

opt

in (1) instead,
namely linear learners in Rd. Linear learners include many
popular members such as both homogeneous and inhomo-
geneous versions of linear regression, SVM, and logistic
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regression. In addition, the linear interaction between x

and ✓✓✓ makes the loss function subgradient easy to compute,
though in principle our analysis technique is applicable to
other optimization-based learners, too. In this section our
goal is to teach the exact parameter ✓✓✓⇤, consequently our
teaching dimension of interest is

TD(✓✓✓⇤,A
opt

). (5)

Later in section 4 for classification we will teach the deci-
sion boundary instead.
How to reason about our teaching dimension
TD(✓✓✓⇤,A

opt

)? It is the size of the smallest training
set D with which (1) has a unique solution ✓✓✓⇤. Our
strategy is to first establish a number of lower bounds
LB  TD(✓✓✓⇤,A

opt

) by showing that any training set
with which (1) has a unique solution ✓✓✓⇤ must have at least
LB items. Section 3.1 is devoted to such lower bounds.
The actual teaching dimension is learner dependent. In
sections 3.2 and 3.3 we construct specific teaching sets
for three popular learners: ridge regression, SVM, and
logistic regression. These teaching sets uniquely returns
✓✓✓⇤ via (1). By definition, the size of these teaching sets
is an upper bound on TD(✓✓✓⇤,A

opt

), respectively. If the
lower and upper bounds match, we would have identified
the teaching dimension TD(✓✓✓⇤,A

opt

).
3.1 Lower Bounds on Teaching Dimension

TD(✓✓✓⇤,A
opt

)

In this section we provide three general lower bounds on
the teaching dimension. These lower bounds capture dif-
ferent aspects of a teaching set, and should be used in con-
junction (i.e. taking the maximum) when applicable. We
will instantiate these lower bounds for specific learners in
section 3.2. In the following let X and Y be the feasible
region of all x

i

’s and y
i

’s respectively. We will use the
notation @

1

`(·, ·) in the following way: if `(·, ·) is smooth,
then it denotes a singleton set only containing the gradient
w.r.t. the first argument; if `(·, ·) is convex, then it denotes
the subdifferential w.r.t the first argument.
LB1 comes from a degree-of-freedom perspective. It is
necessary to have this amount of training items for a unique
solution to exist in (1).

Theorem 1. Given any target model ✓✓✓⇤, there is a degree-
of-freedom lower bound on the number of training items to
obtain a unique solution ✓✓✓⇤ from solving (1):

LB1 =

(
d� Rank(A) + 1, if A✓✓✓⇤ 6= 0

d� Rank(A), otherwise.
(6)

LB2 observes that the regularizer acts as a prior. If � is
large, more items are needed to sway the prior toward the
target ✓✓✓⇤.

Theorem 2. Given any target model ✓✓✓⇤, there is a strength-
of-regularization lower bound on the required number of
training items to obtain a unique solution ✓✓✓⇤ from solving
(1):

LB2 =

8
>><

>>:

⇠
�
⇣
sup

↵2R,y2Y,g2�@

1

`(↵k✓✓✓⇤k2

A,y)

↵g
⌘�1

⇡
,

if A has full rank and ✓✓✓⇤ 6= 0

0, otherwise.
(7)

LB1 and LB2 apply to all generalized linear learners.
Due to the popularity of inhomogeneous margin-based lin-
ear learners (which include the standard form of SVM
and logistic regression), we provide a tighter lower bound
LB3 for such learners in Theorem 3. For inhomogeneous
margin-based linear learners the learning algorithm A

opt

solves a special form of (1):

A
opt

(D) = Argmin

w,b

nX

i=1

`(y
i

(x

>
i

w+ b))+
�

2

kwk2
A

. (8)

LB3 will prove to be instrumental in computing the teach-
ing dimension for those learners. Following standard no-
tation, we define ✓✓✓ = [w; b] where w 2 Rd is the weight
vector and b 2 R the bias (offset) term. Note ✓✓✓ 2 Rd+1

now. The d ⇥ d regularization matrix A applies only to
w while b is not regularized. Furthermore, margin-based
linear learners have loss functions defined on the margin
y(x>

w + b). This loss function structure will play a key
role in obtaining LB3.

Theorem 3. Assume matrix A in (8) has full rank and
w

⇤ 6= 0. Given any target model [w⇤
; b⇤], there is an

inhomogeneous-margin lower bound on the required num-
ber of training items to obtain a unique solution [w

⇤
; b⇤]

from solving (8):

LB3 =

2

666
�

 
sup

↵2R,g2�@`(↵kw⇤k2

A)

↵g

!�1

3

777
. (9)

3.2 The Teaching Dimension TD(✓✓✓⇤,A
opt

) of Three
Homogeneous Learners

We now turn to upper bounding teaching dimension by
constructing teaching sets. To prove that we indeed have
a teaching set for a target ✓✓✓⇤, we need to show that ✓✓✓⇤ is a
solution of (1), and the solution is unique. The size of any
such teaching set is an upper bound on the teaching dimen-
sion. The teaching dimension itself is determined if such an
upper bound matches the corresponding lower bound. We
show that this is indeed the case for our constructed teach-
ing sets. For the sake of reference we preview in Table 2 the
instantiated lower bounds that we will use in this section;
their derivation will be shown below.
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homogeneous inhomogeneous
lower bound ridge SVM logistic ridge SVM logistic

LB1 1 1 1 2 2 2
LB2 0

⌃
�k✓✓✓⇤k2⌥

l
�k✓✓✓⇤k2

⌧

max

m
0 0 0

LB3 - - - -
⌃
�kw⇤k2⌥

l
�kw⇤k2

⌧

max

m

Table 2. Lower bounds of teaching dimension TD(✓✓✓⇤,A
opt

) for homogeneous and inhomogeneous versions of ridge regression, SVM,
and logistic regression.

Teaching dimension is learner-dependent. We choose three
learners to study their teaching dimension due to these
learners’ popularity in machine learning: ridge regression,
SVM, and logistic regression. It turns out that homoge-
neous and inhomogeneous versions of these learners re-
quire different analysis. We devote this section to the ho-
mogeneous version where the regularizer matrix A = I the
identity matrix, and the next section to the inhomogeneous
version. It is possible to extend our analysis to other linear
learners of the form (1).
It is easy to see that if the target model ✓✓✓⇤ = 0, we do not
need any training data to uniquely obtain the target model
from (1). In the following, we only consider the nontrivial
case ✓✓✓⇤ 6= 0.
Homogeneous ridge regression solves the following opti-
mization problem:

min

✓

✓

✓2Rd

nX

i=1

1

2

(x

>
i

✓✓✓ � y
i

)

2

+

�

2

k✓✓✓k2. (10)

We only need one training item to uniquely obtain any
nonzero target model ✓✓✓⇤, as the following construction
shows.

Proposition 1. Given any target model ✓✓✓⇤ 6= 0, the fol-
lowing is a teaching set for homogeneous ridge regres-
sion (10):

x

1

= a✓✓✓⇤, y
1

= a�1

(�+ kx
1

k2) (11)

where a can be any nonzero real number.

It is worth to note that the teaching set is inconsistent
with the target model, that is, x>

1

✓✓✓⇤ = ak✓✓✓⇤k2 6= y
1

=

�

a

+ ak✓✓✓⇤k2, unless the regularization is absent � = 0. The
teacher intentionally overshoots the target in order to pre-
cisely counter the learner’s regularizer. This has been ob-
served before for Bayesian learners, too (Zhu, 2013).
We encourage the reader to distinguish two senses of
uniqueness. The teaching set itself is not necessarily
unique. In the construction (11), any a 6= 0 leads to a valid
teaching set. Nonetheless, any one of the teaching sets will
lead to the unique solution ✓✓✓⇤ in (10).

Corollary 1. The teaching dimension TD(✓✓✓⇤,Ahom

ridge

) = 1

for homogeneous ridge regression and target ✓✓✓⇤ 6= 0.

Proof. Substituting A by I in LB1 (6), we obtain the lower
bound d � Rank(I) + 1 = 1 which matches the teaching
set size in (11).

Homogeneous SVM solves the problem:

min

✓

✓

✓2Rd

nX

i=1

max(1� y
i

x

>
i

✓✓✓, 0) +
�

2

k✓✓✓k2. (12)

To teach this learner one training item is in general not
enough: we will show that we need

⌃
�k✓✓✓⇤k2⌥ training

items. In fact, we will construct such a teaching set con-
sisting of identical training items. It is well-known in the
teaching literature that a teaching set does not need to con-
sist of i.i.d. samples from a distribution, and can look un-
usual. It is possible to incorporate additional constraints
into a teaching problem if one wants the training items to
be diverse, but we do not consider that in the present paper.

Proposition 2. Given any target model ✓✓✓⇤ 6= 0, the fol-
lowing is a teaching set for homogeneous SVM (12). There
are n =

⌃
�k✓✓✓⇤k2⌥ identical training items, each taking the

form

x

i

=

�✓✓✓⇤

d�k✓✓✓⇤k2e , y
i

= 1. (13)

Corollary 2. The teaching dimension TD(✓✓✓⇤,Ahom

svm

) =⌃
�k✓✓✓⇤k2⌥ for homogeneous SVM and target ✓✓✓⇤ 6= 0.

Homogeneous logistic regression solves the problem:

min

✓

✓

✓2Rd

nX

i=1

log(1 + exp{�y
i

x

>
i

✓✓✓}) + �

2

k✓✓✓k2 (14)

where log has base e. The situation is similar to homo-
geneous SVM. However, due to the negative log likeli-
hood term we have a coefficient defined by the Lambert
W function (Corless et al., 1996), which we denote by
W

lam

. Recall the defining equation for Lambert W func-
tion is W

lam

(x)eWlam

(x)

= x. We further define

⌧
max

:= max

t

t

1 + et
= W

lam

(1/e) ⇡ 0.2785. (15)

For any value a  ⌧
max

, we define ⌧�1

(a) as the solution
to a =

t

1+e

t . By using the Lambert W function ⌧�1

(a) can
be expressed as ⌧�1

(a) ⌘ a�W
lam

(�aea).
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Proposition 3. Given any target model ✓✓✓⇤ 6= 0, the fol-
lowing is a teaching set for homogeneous logistic regres-
sion (14). There are n =

l
�k✓✓✓⇤k2

⌧

max

m
identical training items,

each taking the form

x

i

= ⌧�1

 
�k✓✓✓⇤k2

⇠
�k✓✓✓⇤k2
⌧
max

⇡�1

!
✓✓✓⇤

k✓✓✓⇤k2 , y
i

= 1.

(16)
Corollary 3. The teaching dimension TD(✓✓✓⇤,Ahom

log

) =l
�k✓✓✓⇤k2

⌧

max

m
for homogeneous logistic regression and target

✓✓✓⇤ 6= 0.

3.3 The Teaching Dimension TD(✓✓✓⇤,A
opt

) of Three
Inhomogeneous Learners

Inhomogeneous learners are defined by ✓✓✓ = [w; b] where
the weight vector w 2 Rd and the scalar offset b 2 R. The
offset b is not regularized. Similar to the previous section,
we need to instantiate the teaching dimension lower bounds
and design the teaching sets. We show that the size of our
teaching set exactly matches the lower bound for inhomo-
geneous ridge regression, and differs from the lower bound
of inhomogeneous SVM and logistic regression by at most
one due to rounding. Therefore, up to rounding we also
establish the teaching dimension for these inhomogeneous
learners.
Inhomogeneous ridge regression solves the problem:

min

w2Rd
,b2R

nX

i=1

1

2

(x

>
i

w + b� y
i

)

2

+

�

2

kwk2 (17)

Proposition 4. Given any target model [w⇤
; b⇤], if w⇤

= 0

(b⇤ can be an arbitrary value), the following is a teaching
set for inhomogeneous ridge regression (17) with n = 1:

x

1

= 0, y
1

= b⇤. (18)
If w⇤ 6= 0, any n = 2 items satisfying the following are a
teaching set for a 6= 0:

x

1

� x

2

= aw⇤, y
1

= x

>
1

w

⇤
+ b⇤ + a�1�,

y
2

= y
1

� akw⇤k2 � 2a�1�.
(19)

Corollary 4. The teaching dimension for inhomoge-
neous ridge regression with target ✓✓✓⇤ = [w

⇤
; b⇤]

is TD(✓✓✓⇤,Ainh

ridge

) = 1 if target w

⇤
= 0, or

TD(✓✓✓⇤,Ainh

ridge

) = 2 if w⇤ 6= 0, regardless of the target
offset b⇤.

Inhomogeneous SVM solves the problem:

min

w2Rd
b2R

nX

i=1

max(1� y
i

(x

>
i

w + b), 0) +
�

2

kwk2. (20)

Proposition 5. Given any target model [w⇤
; b⇤] with w

⇤ 6=
0, the following is a teaching set for inhomogeneous

SVM (20). We need n = 2

l
�kw⇤k2

2

m
training items, half

of which are identical positive items x

i

= x

+

, y
i

=

1, 8i 2 �
1, · · · , n

2

 
and half identical negative items

x

i

= x�, y
i

= �1, 8i 2 �
n

2

+ 1, · · · , n . x

+

and
x� can be designed as any vectors satisfying

x

>
+

w

⇤
= 1� b⇤, x� = x

+

� 2w

⇤kw⇤k�2. (21)

Our construction of the teaching set in (21) requires n =

2

l
�kw⇤k2

2

m
training items. This is an upper bound on the

teaching dimension. Meanwhile, we show below that the
inhomogeneous SVM lower bound is LB3 =

⌃
�kw⇤k2⌥.

There can be a difference of at most one between the lower
and upper bounds, which we call the “rounding effect.” We
suspect that this small gap is a technicality and not intrin-
sic. However, at present we do not have a teaching set
construction that bridges this gap. Therefore, we state the
teaching dimension as an interval in the following corollary
and leave the precise value as an open question for future
research.
Corollary 5. The teaching dimension for inhomogeneous
SVM and target ✓✓✓⇤ = [w

⇤
; b⇤] where w

⇤ 6= 0 is in the

interval
⌃
�kw⇤k2⌥  TD(✓✓✓⇤,Ainh

svm

)  2

l
�kw⇤k2

2

m
.

Inhomogeneous logistic regression solves the problem

min

w2Rd
b2R

nX

i=1

log(1 + exp{�y
i

(x

>
i

w + b)}) + �

2

kwk2. (22)

Proposition 6. To create a teaching set for target model
[w

⇤
; b⇤] with nonzero w

⇤ for inhomogeneous logistic re-

gression (22), we can use n = 2

l
�kw⇤k2

2⌧

max

m
training items

where x

i

= x

+

, y
i

= 1, 8i 2 �
1, · · · , n

2

 
and

x

i

= x�, y
i

= �1, 8i 2 �
n

2

+ 1, · · · , n . x

+

and
x� can be designed as any vectors satisfying

x

>
+

w

⇤
= t� b⇤, x� = x

+

� 2tw⇤kw⇤k�2, (23)

where the constant t is defined by t := ⌧�1

⇣
�kw⇤k2

n

⌘
.

Corollary 6. The teaching dimension for inhomogeneous
logistic regression and target ✓✓✓⇤ = [w

⇤
; b⇤] where w

⇤ 6=
0 is in the interval

l
�kw⇤k2

⌧

max

m
 TD(✓✓✓⇤,Ainh

log

) 
2

l
�kw⇤k2

2⌧

max

m
.

4 Teaching a Decision Boundary Instead of
a Parameter

In section 3 we considered the teaching goal where the
learner is required to learn the exact target parameter ✓✓✓⇤.
But when the learner is a classifier often a weaker teaching
goal is sufficient, namely teaching the learner a target de-
cision boundary. In this section we consider this teaching
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goal. Equivalently, such a goal is defined by the set of pa-
rameters that produce the target decision boundary. Teach-
ing is successful if the learner arrives at any one parameter
within that set.
In the case of inhomogeneous linear learners, the linear de-
cision boundary {x | x>

w

⇤
+ b⇤ = 0} is identified with

the parameter set {t[w⇤
; b⇤] : t > 0}. Here we assume w

⇤

is nonzero. The parameter ✓✓✓⇤ = [w

⇤
; b⇤] is just a represen-

tative member of the set. Homogeneous linear learners are
similar without b⇤. We denote the corresponding “decision
boundary” teaching dimension by TD({t✓✓✓⇤},A

opt

). This
notation extends our earlier definition of TD by allowing
the first argument to be a set, with the understanding that
the teaching goal is for the learned model to be an element
in the set. It immediately follows that

TD({t✓✓✓⇤},A
opt

) = min

t>0

TD(t✓✓✓⇤,A
opt

). (24)

Since it is sufficient to teach the parameter t✓✓✓⇤ for some
t > 0 in order to teach the decision boundary, we can
choose the best t that minimizes TD(t✓✓✓⇤,A

opt

). For SVM
and logistic regression – either homogeneous or inhomo-
geneous – the teaching dimension TD(t✓✓✓⇤,A

opt

) depends
on kt✓✓✓⇤k (see Table 1). We can choose t sufficiently small
to drive down the teaching set size toward its possible
minimum indicated by the LB1 value in Table 2 (which
is nonzero because of the ceiling function). Specifically,
for any fixed parameter ✓✓✓⇤ representing the target decision
boundary:
• (homogeneous SVM): we choose t  1p

�k✓✓✓⇤k so that

TD({t✓✓✓⇤},Ahom

svm

) = 1;
• (homogeneous logistic regression): we choose t p

⌧

maxp
�k✓✓✓⇤k so that TD({t✓✓✓⇤},Ahom

log

) = 1;

• (inhomogeneous SVM): we choose t 
p
2p

�kw⇤k so that

TD({t✓✓✓⇤},Ainh

svm

) = 2 (note LB1=2 in Table 2) ;
• (inhomogeneous logistic regression): we choose t p

2⌧

maxp
�kw⇤k so that TD({t✓✓✓⇤},Ainh

log

) = 2.

The resulting teaching dimension TD({t✓✓✓⇤},A
opt

) is
listed in Table 1 on the row marked by “decision boundary.”
The teaching set construction is the same as in sections 3.2
and 3.3, respectively, but with t✓✓✓⇤.

5 Related Work
Teaching dimension as a learning-theoretic quantity has at-
tracted a long history of research. It was proposed indepen-
dently in Goldman & Kearns (1995); Shinohara & Miyano
(1991). Subsequent theoretical developments can be found
in e.g. Zilles et al. (2011); Balbach & Zeugmann (2009);
Angluin (2004); Angluin & Krikis (1997); Goldman &
Mathias (1996); Mathias (1997); Balbach & Zeugmann
(2006); Balbach (2008); Kobayashi & Shinohara (2009);
Angluin & Krikis (2003); Rivest & Yin (1995); Ben-David

& Eiron (1998); Doliwa et al. (2014). Many of them as-
sume little extra knowledge on the learner other than that
it is consistent with the training data; though Zilles et al.
(2011); Balbach (2008) allow the teacher and the learner
to cooperate. These theoretically elegant teaching defini-
tions diverge from the practice of modern machine learning
where the learner solves an optimization problem to find
a single model that is not necessarily the 0-1 loss ERM.
Teaching such modern learners is our goal.
Teaching dimension is distinct from VC dimension. For
a finite hypothesis space H, Goldman & Kearns (1995)
proved the relation

V C(H)/ log(|H|)  TD(H)  V C(H)+ |H|� 2

V C(H).

These inequalities are somewhat weak, as Goldman and
Kearns had shown both cases where one quantity is much
larger than the other. The distinction between TD and VC
dimension is also present in our setting. For example, by
inspecting the inhomogeneous SVM column in Table 1 we
note that TD does not depend on the dimensionality d of
the feature space Rd. To see why this makes intuitive sense,
note two d-dimensional points are sufficient to specify any
bisecting hyperplane in Rd. On the other hand, recall that
the VC dimension for inhomogeneous hyperplanes in Rd

is d+ 1. Furthermore, there is an interesting connection to
sample compression (Floyd & Warmuth, 1995). Our teach-
ing set can be viewed as the compressed sample, but with
two generalizations: (i) the original “sample” is the whole
input space, (ii) the labels is allowed to diverge from the
target model. Further quantification of these connections
remains an open research question.
The teaching setting we considered is also distinct from
active learning. In teaching the teacher knows the target
model a priori and her goal is to encode the target model as
a training set, knowing that the decoder is special (namely
a specific machine learning algorithm). This communica-
tion perspective highlights the difference to active learning,
which must explore the hypothesis space to find the target
model. Consequently, the teaching dimension can be dra-
matically smaller than the active learning query complexity
for the same learner and hypothesis space. For example,
Zhu (2013) demonstrated that to learn a 1D threshold clas-
sifier within ✏ error, the teaching dimension is a constant
TD=2 regardless of ✏, while active learning would require
O(log

1

✏

) queries which can be arbitrarily larger than TD.
While the present paper focused on the theory of optimal
teaching, there are practical applications, too. One such
application is computer-aided personalized education. The
human student is modeled by a computational cognitive
model, or equivalently the learning algorithm. The edu-
cational goal is encoded in the target model. The opti-
mal teaching set is then well-defined, and represents the
best personalized lesson for the student (Zhu, 2015; 2013;
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Khan et al., 2011). Patil et al. showed that human students
learn statistically significantly better under such optimal
teaching set compared to an i.i.d. training set (Patil et al.,
2014). Because contemporary cognitive models often em-
ploy optimization-based machine learners, our teaching di-
mension study helps to characterize these optimal lessons.
Another application of optimal teaching is in computer se-
curity. In particular, optimal teaching is the mathemat-
ical formalism to study the so-called data poisoning at-
tacks (Barreno et al., 2010; Mei & Zhu, 2015a;b; Alfeld
et al., 2016). Here the “teacher” is an attacker who has a
nefarious target model in mind. The “student” is a learning
agent (such as a spam filter) which accepts data and adapts
itself. The attacker wants to minimally manipulate the in-
put data in order to manipulate the learning agent toward
the attacker’s target model. Teaching dimension quanti-
fies the difficulty of data-poisoning attacks, and enables re-
search on defenses.
Teaching dimension also has applications in interactive ma-
chine learning to quantify the minimum human interaction
necessary (Suh et al., 2016; Cakmak & Thomaz, 2011),
and in formal synthesis to generate computer programs sat-
isfying a specification (Jha & Seshia, 2015).

6 Experiments
We illustrate some of the teaching dimensions by exam-
ples. These numerical experiments complement the theory
to help build intuition and understanding.
6.1 Sometimes SVM can be Taught by One Item
We first demonstrate the interesting fact that homogeneous
SVMs (12) can sometimes be trained with a single train-
ing item. Training here is in the stricter sense of learn-
ing the exact parameter (as opposed to merely the decision
boundary). Specifically, consider a homogeneous SVM in
Rd with regularization weight �

2

. Consider a target param-
eter ✓✓✓⇤ 2 Rd. Table 1 gives the teaching dimension TD =⌃
�k✓✓✓⇤k2⌥. Therefore, when �k✓✓✓⇤k2  1 then TD = 1

and there exists a teaching set of size one. In this case, our
proposed teaching set construction in (13) consists of one
positive training item:

⇣
x

1

=

�✓

✓

✓

⇤

d�k✓✓✓⇤k2e , y1 = 1

⌘
. We now

numerically illustrate one such task.
We consider a high dimensional feature space d = 10000,
the all-one target parameter ✓✓✓⇤ = [1, . . . , 1] in Rd, and a
homogeneous SVM with � = 5 ⇥ 10

�5. Note �k✓✓✓⇤k2 =

0.5 < 1 so TD = 1. Our proposed teaching set is
D

0

= {�x
1

= [5⇥ 10

�5 . . . 5⇥ 10

�5

], y
1

= 1

�}. To ver-
ify this, we train our SVM with training set D

0

by solving
the standard SVM optimization problem: min

✓

✓

✓,⇠

�

2

k✓✓✓k2+⇠
subject to y

1

x

>
1

✓✓✓ � 1 + ⇠ � 0 and ⇠ � 0. This was imple-
mented with CVX (Grant & Boyd, 2014; 2008). The SVM
learned ˆ✓✓✓ = [1.0001, . . . , 1.0001], which is very close to
the target parameter (relative error kˆ✓✓✓�✓✓✓⇤k/k✓✓✓⇤k = 10

�4).

Therefore, we numerically accept D
0

as a singleton train-
ing set for our SVM on target ✓✓✓⇤. In the following we
will call the procedure of training the learner with some
D and comparing the learned model ˆ✓✓✓ with ✓✓✓⇤ “teaching-
set-verification.”
6.2 The Teaching Set may not be Unique
As mentioned after Proposition 1 any teaching set uniquely
specifies the target model, but the teaching set itself may
not be unique. We demonstrate this nonuniqueness with an-
other parameter teaching task. Specifically, the learner is an
inhomogeneous SVM (20) with � = 1. We want to teach
the target parameter w⇤

= [2,�1], b⇤ = 2. Corollary 5 in-
dicates that

⌃
�kw⇤k2⌥ = 2

⌃
�kw⇤k2/2⌥ = TD = 6. We

now exhibit three such teaching sets.
The first teaching set D

1

is constructed using (21) in Propo-
sition 5. We place three positive points at x

+

= [1, 3] and
three negative points at x� = [1/5, 17/5].
The second teaching set D

2

is obtained automatically by
solving a machine teaching optimization problem. Con-
ceptually, we fix n = 6, y

1

= y
2

= y
3

= 1, and
y
4

= y
5

= y
6

= �1 but find x

1

. . .x
6

2 R2 in a bilevel
feasibility problem:

min

x

1

...xn

0 subject to {[w⇤, b⇤]} = (25)

argmin

w,b

nX

i=1

max(1� y
i

(x

>
i

w + b), 0) +
�

2

kwk2.

The constraint says that the SVM solution must be unique
and equal [w⇤, b⇤] (recall argmin returns a set). In practice,
we replace the lower level SVM optimization problem by
its KKT conditions so that we have a single level feasibility
problem:

min

x

1

...xn,µ,↵,⇠
0 subject to (26)

�w⇤
j

�
X

↵
i

y
i

x
i,j

= 0, j = 1 . . . d

�
X

↵
i

y
i

= 0

1� ↵
i

� µ
i

= 0, 8i
y
i

(x>
i

w

⇤
+ b⇤)� 1 + ⇠

i

� 0, 8i
↵
i

(y
i

(x>
i

w

⇤
+ b⇤)� 1 + ⇠

i

) = 0, 8i
µ
i

⇠
i

� 0, 8i
µ
i

,↵
i

, ⇠
i

� 0, 8i
We implement this “teaching-set-finding” problem in
GAMS (using the nonlinear solvers SNOPT and MINOS)
which, unlike CVX, has the necessary optimization tools
for solving this nonconvex program (GAMS, 2013).
The third teaching set D

3

is obtained like D
2

, but we
demonstrate additional controls one may pose over the
teaching points. For simplicity, we assume the teacher
prefers points close to the origin. This is implemented
by replacing the feasibility objective of 0 in (26) with the
squared Frobenius norm on the design matrix:
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dim 1
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
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Figure 1. Different teaching sets D1, D2, D3 teach the same tar-
get SVM parameters w⇤ = [2,�1], b⇤ = 2; A smaller D4

teaches the corresponding decision boundary (the black line).
“⇤k” stands for k overlapping points. Best seen in color.

min

x

1

...xn,µ,↵,⇠

nX

i=1

kx
i

k2. (27)

Indeed, the squared Frobenius norm on D
3

is 6.8, smaller
than that on D

2

(7.3) or D
1

(64.8).
We visualize D

1

, D
2

, D
3

in Figure 1. Recall our goal is to
teach the exact parameters and not just the decision bound-
ary, that is why we need TD = 6 instead of 2 teaching
points. The learned SVM parameters [

ˆ

w,ˆb] have relative
error 2⇥ 10

�5, 5⇥ 10

�8, 7⇥ 10

�8, respectively w.r.t. the
target parameters [w⇤, b⇤]. Therefore, D

1

, D
2

, D
3

all pass
teaching-set-verification, and are different teaching sets for
the same teaching task.
6.3 Decision Boundary Easier than Parameters
We now show that it is easier to teach the decision bound-
ary than the model parameters. We teach the same inho-
mogeneous SVM learner with � = 1 from section 6.2. Our
target decision boundary is represented by the same param-
eters w

⇤
= [2,�1], b⇤ = 2, though recall any positive

scaling of the parameters is equivalent. Indeed, Section 4
suggests that we only need TD = 2 items to teaching the
decision boundary, by reverting back to teaching the pa-
rameters [tw⇤, tb⇤] for any t 

p
2p

�kw⇤k ⇡ 0.63246.

We demonstrate this by letting the GAMS program find this
largest t value while still be able to teach with two items.
Specifically, we fix n = 2, y

1

= 1, y
2

= �1. We replace
the feasibility objective of (26) by

max

t>0,x

1

,x

2

,µ,↵,⇠

t (28)

and replace all occurrence of w⇤ and b⇤ by tw⇤ and tb⇤,
respectively, in the constraints of (26). This teaching-
set-finding problem finds t ⇡ 0.63246 as the theory pre-
dicts. The two-item teaching set D

4

consists of (x

1

=

[�0.17, 0.08], y
1

= 1), (x

2

= [�1.43, 0.72], y
2

=

�1) and is visualized in Figure 1, too. Teaching-set-
verification by training the SVM on D

4

returns ˆ

w =

[1.2648,�0.6324],ˆb = 1.2648, which is numerically the
same as [tw⇤, tb⇤] (relative error 6⇥ 10

�5). Therefore, we
successfully taught the decision boundary with two items.
6.4 TD is Tight up to Rounding Effect

Let L =

⌃
�kw⇤k2⌥ and U = 2

⌃
�kw⇤k2/2⌥. L and U can

differ by at most one, and Corollary 5 says L  TD  U .
We show TD can be either L or U on different teaching
tasks, but not L� 1.
Consider teaching the target parameters w⇤

= [�0.5; 0.8],
b⇤ = 2. Let the learner be an inhomogeneous SVM (20)
with � = 2.247192. We choose this value because it
leads to L 6= U and it will turn out TD = L. Specifi-
cally, for this task L = 3, U = 4. Teaching-set-finding
with GAMS succeeded on n = L with the teaching set
D

5

= {([0,�1.25], 1), ([�30,�22.5],�1), ([6, 0],�1)}.
Teaching-set-verification relative error is 5⇥ 10

�5. It also
succeeded on n = U . But it failed on n = L � 1 = 2.
To show teaching-set-finding fails on a training set size n,
we run n + 1 separate GAMS programs to enumerate all
label configurations: all negative, first item positive, . . .,
all positive. We also employ multiple solvers in GAMS:
SNOPT, MINOS, CONOPT. Failure means all these fail to
find a teaching set. Therefore, we empirically showed that
this task has TD = L.
Now consider a different SVM learner with � = 3.
The target parameters are the same as before. This task
also has L = 3, U = 4. Teaching-set-finding with
GAMS succeeded on n = U with the teaching set
D

6

= {([0,�1.25], 1), ([2, 0], 1), ([�20.1,�16.3],�1),
([9.6, 2.3],�1)}. Teaching-set-verification relative error is
7 ⇥ 10

�9. However, teaching-set-finding failed on n = L
or n = L � 1. Therefore, we empirically showed this task
has TD = U .

7 Conclusion
We have presented a generalization on teaching dimension
to optimization-based learners. To the best of our knowl-
edge, our teaching dimension for ridge regression, SVM,
and logistic regression is new; so are the lower bounds and
our analysis technique in general.
There are many possible extensions to the present work.
For example, one may extend our analysis to nonlinear
learners. This can potentially be achieved by using the ker-
nel trick on the linear learners. As another example, one
may allow “approximate teaching” by relaxing the teach-
ing goal, such that teaching is considered successful if the
learner arrives at a model close enough to the target model.
Taken together, the present paper and its extensions are ex-
pected to enrich our understanding of optimal teaching and
enable novel applications.
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