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A. Proof of Proposition 2
Proof. For Xu ∈ X1,

P (Xu|\Xu) =
P (Xu, X\N(u) ∩X2|X1 ∪XN(u)\Xu)

P (X\N(u) ∩X2|X1 ∪XN(u)\Xu)

Since P (Xu|\Xu) = P (Xu|X1 ∪XN(u)\Xu) by the Markovian property of PMN, we have Xu ⊥⊥ X\N(u) ∩X2|X1 ∪
XN(u)\Xu.

Xv 6∈ XN(u) means Xv ∈ X\N(u) ∩ X2. Using the weak union rule for conditional independence (see e.g., (Koller &
Friedman, 2009), 2.1.4.3), we obtain Xu ⊥⊥ Xv|\{Xu, Xv}.

For Xu ∈ X2, the proof is the same.

B. Proof of Theorem 3
Proof. We define that B(i) is the set of passages contains Xi. Here we only show the proof that Eq. (1) holds for GPR.
Let’s denote φB as short for φB(XB).

P (Xi|X1 ∪XN(i)\Xi)

=

1
Z

∫
X\N(i)∩X2

P (X1)P (X2)
∏
B∈B(G) φB

1
Z

∫
Xi

∫
X\N(i)∩X2

P (X1)P (X2)
∏
B∈B(G) φB

=

(
P (X1)

∏
B∈B(i) φB∫

Xi
P (X1)

∏
B∈B(i) φB

)
·

(∫
X\N(i)∩X2

P (X2)
∏
B∈\B(i) φB∫

X\N(i)∩X2
P (X2)

∏
B∈\B(i) φB

)

=
P (X1)

∏
B∈B(i) φB∫

Xi
P (X1)

∏
B∈B(i) φB

=
P (X1)

∏
B∈B(i) φB∫

Xi
P (X1)

∏
B∈B(i) φB

·
1
ZP (X2)

∏
B∈\B(i) φB

1
ZP (X2)

∏
B∈\B(i) φB

=P (Xi|\Xi),

from which, we obtain the desired equality. Note that we used the fact that XB(i) ∩ (X\N(i) ∩X2) = ∅ from the second
to the third and fourth line.

C. Proof of Theorem 4
Proof. This proof is constructive. Let’s clarify some notations used in this proof. Lower-case bold letter a is a vector-
realization of a set of random variables A. P (aK , c) means the probability of a realization where elements appearing on
positions indexed by subgraph K are allowed to take random values, while other elements are fixed to value c ∈ dom(X).
Note K might be ∅. We denote P1(X) as the equivalency of marginal P (X1).

First we define the following potential function:

φS(XS = xS) =
∏
Z⊆S

∆Z(XZ = xZ)(−1)
|S|−|Z|

,

where S is a subset of G, and

∆Z(xZ) =

{
P (xZ ,c)

P1(xZ ,c)P2(xZ ,c)
, ∃B ∈ B(G), B ⊆ Z,

1 otherwise,
(6)

First we show by construction, the multiplication of all potential functions over all subgraph structures, i.e.,
∏
S⊆G φS will

actually give us the PR.
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Due to the inclusion-exclusion principle (see, e.g.Koller & Friedman (2009), 4.4.2.1), it can be shown that∏
S⊆G

φS(XS = xS) = ∆G(x).

If the graph G contains any passage, then by definition ∆G(x) = P (x)
P1(x)P2(x) , which is exactly the PR. However, if G does

not include any passage, meaning X1 is completely independent of X2, then ∆G(x) = 1 by definition, which is the exact
value that a PR would take in such case.

Second, we show this construction under PMN condition is actually a GPR. Specifically, we show if S is not a passage,
then φS(XS = xS) = 1, i.e. its potential function is nullified.

Obviously, for a “one-sided S”, XS ∩X1 = ∅ or XS ∩X2 = ∅, by definition, φS = 1.

Otherwise, if S are “two-sided” but itself is not a passage, we should be able to find two nodes, indexed by Xu ∈ X1∩XS

and Xv ∈ X2 ∩XS , that are not connected by an edge. We may write the potential function for a subgraph S as

φS(XS = xS) =
∏

W⊆S\{u,v}

(
∆w(xW )∆W∪{u,v}(xW∪{u,v})

∆W∪{u}(xW∪{u})∆W∪{v}(xW∪{v})

)∗
,

where ∗ means we do not care the exact power which can be either -1 or 1, and

∆W (xW )∆W∪{u,v}(xW )

∆W∪{u}(xW∪{u})∆W∪{v}(xW∪{v})
=

PWPW∪{u,v}

PW∪{u}PW∪{v}
·
P2W∪{v}P2WP1W∪{u}P1W

P1WP2WP1W∪{u}P2W∪{v}
, (7)

where we have simplified the notation P (xA, c) as PA. The second factor in (7) is apparently 1. For the first factor in (7),
we may divide both the numerator and denominator by PW · PW . Then it yields P (xu,xv|xW ,c)

P (xu|xW ,c)P (xv|xW ,c) which equals to
one if and only if Xu ⊥⊥ Xv|\{Xu, Xv}. This is guaranteed by PMN condition and Proposition 2.

D. Proof of Theorem 5
Since the PR is a density ratio between the joint density p(x1,x2) and the product of two marginals p(x1)p(x2), and the
objective (5) is derived from the same sparsity inducing KLIEP criteria as it was discussed in Liu et al. (2015; 2016). The
proof of Theorem 5 follows the primal-dual witness procedure (Wainwright, 2009).

First, the Assumptions 1, 2 and 3 we have made in Section 5 is essentially the same as those were imposed in Section
3.2 in Liu et al. (2016) (The Hessian of the negative log-likelihood is the sample Fisher information matrix). Then the
proof follows the steps established in Section 4, Liu et al. (2016). However, the only thing we need to verify is that
maxt ‖∇θt

`(θ∗)‖ is upper-bounded with high probability as n→∞. We formally state this in the following lemma:

Lemma 1. If λn ≥ 24(2−α)
α ·

√
c log(m2+m)/2

n , then

P

(
max
t
‖∇θt

`(θ∗)‖ ≥ αλn
4(2− α)

)
≤ 3 exp (−c′′n) ,

where c and c′′ are some constants.

Proof. For conveniences, let’s denote the approximated PR model exp
(∑

u≤v θ
>
u,vψ(xu,v)

)
/N̂(θ) as ĝ(x;θ). Since

ĝ(x;θ) = N(θ)

N̂(θ)
g(x;θ), and N̂(θ)

N(θ) = 1

(n
2)

∑
j 6=k g(x[j,k];θ) is always bounded by [Cmin, Cmax], we can see ĝ(x;θ) is also

bounded. For simplicity, we write

0 < C ′min ≤ ĝ(x;θ) ≤ C ′max <∞.
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We have

∇θt
`(θ∗) = −

[
1

n

n∑
i=1

f t(x
(i))

]
+

 1(
n
2

) ∑
j≤k

ĝ(x[j,k];θ∗)f t(x
[j,k])

 .
First we show that ‖∇θt

`(θ∗)‖ can be upper-bounded as:

‖∇θt`(θ
∗)‖ ≤

∥∥∥∥∥− 1

n

n∑
i=1

f t(x
(i)) + Ep[f t(x)]

∥∥∥∥∥︸ ︷︷ ︸
an

+

∥∥∥∥∥∥ 1(
n
2

) ∑
j 6=k

ĝ(x[j,k];θ∗)f t(x
[j,k])− 1(

n
2

) ∑
j 6=k

g(x[i,k];θ∗)f t(x
[j,k])

∥∥∥∥∥∥︸ ︷︷ ︸
bn

+

∥∥∥∥∥∥ 1(
n
2

) ∑
j 6=k

g(x[j,k];θ∗)f t(x
[j,k])− Ep1,p2 [g(x;θ∗)f t(x)]

∥∥∥∥∥∥︸ ︷︷ ︸
‖wn‖

,

We now need Hoeffding inequality (Hoeffding, 1963) for bounded-norm vector random variables which has appeared
in previous literatures such as (Steinwart & Christmann, 2008): For a set of bounded zero-mean vector-valued random
variable {yi}ni=1, ‖y‖ ≤ c, we have

P (

∥∥∥∥∥
n∑
i=1

yi

∥∥∥∥∥ ≥ nε) ≤ exp

(
−nε2

2c2

)
,

for all ε ≥ 2c√
n
. Now it is easy to see

P (an ≥ ε) ≤ exp

(
− 2nε2

C ′2ft,max

)
(8)

as long as

ε ≥
C ′ft,max

2
√
n

. (9)

As to bn, it can be upper-bounded by

bn =

∥∥∥∥∥∥ 1(
n
2

) ∑
j 6=k

ĝ(x[j,k];θ∗)f t(x
(i))− 1(

n
2

) ∑
j 6=k

ĝ(x[j,k];θ∗)f t(x
[j,k])

∥∥∥∥∥∥
=

∥∥∥∥∥∥N̂(θ∗)

N(θ∗)

1(
n
2

) ∑
j 6=k

ĝ(x[j,k];θ∗)f t(x
[j,k])− 1(

n
2

) ∑
j 6=k

ĝ(x[j,k];θ∗)f t(x
[j,k])

∥∥∥∥∥∥
≤

∥∥∥∥∥∥ 1(
n
2

) ∑
j 6=k

ĝ(x[j,k];θ∗)f t(x
[j,k])

∥∥∥∥∥∥ ·
∥∥∥∥∥N̂(θ∗)

N(θ∗)
− 1

∥∥∥∥∥
≤ C ′maxC

′
ft,max

∣∣∣∣∣∣ 1(
n
2

) ∑
j 6=k

g(x[j,k];θ∗)− 1

∣∣∣∣∣∣ ,
and due to Hoeffding inequality of the U-statistics (see (Hoeffding, 1963), 5b) we may obtain:

P (bn > ε) < 2 exp

(
− 2nε2

C2
maxC

′2
maxC

′2
ft,max

)
. (10)
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As to wn, we first bound its i-th element wi,n using Hoeffding inequality for U-statistics,

P (|wi,n| ≥ ε) ≤ 2 exp

(
− 2nbε2

C2
maxC

2
ft,max

)
,

thus by using the union bound, we have

P (‖wn‖∞ ≥ ε) ≤ 2b exp

(
− 2nbε2

C2
maxC

2
ft,max

)
,

and since ‖wn‖ ≤
√
b‖wn‖∞, we have

P (‖wn‖ ≥ ε) ≤ P (
√
b‖wn‖∞ ≥ ε) ≤ 2b exp

(
− 2nε2

C2
maxC

2
ft,max

)
. (11)

Therefore, combining (8), (10) and (11):

P (‖∇θt`(θ
∗)‖ ≥ 3ε) ≤ P (an + bn + cn ≥ 3ε) ≤ c′′ exp

(
−nε

2

c′

)
,

where c′ is a constant defined as c′ = max
(

1
2C

2
maxC

2
maxC

′2
ft,max,

1
2C

2
maxC

2
ft,max,

1
2C
′2
ft,max

)
, and c′′ = 2b + 3, given

ε ≥ 2C′ft,max√
n

. Applying the union-bound for all t ∈ S ∪ Sc,

P ( max
t∈S∪Sc

‖∇θt`(θ
∗)‖ ≥ 3ε) ≤ c′′(m2 +m)

2
exp

(
−nε

2

c′

)
,

P

(
max
t∈S∪Sc

‖∇θt
`(θ∗)‖ ≥ αλn

4(2− α)

)
≤ c′′(m2 +m)

2
exp

(
−
(

αλn
12(2− α)

)2
n

c′

)
,

and when λn ≥ 24(2−α)
α

√
c′ log(m2+m)/2

n ,

P

(
max
t∈S∪Sc

‖∇θt`(θ
∗)‖ ≥ αλn

4(2− α)

)
≤ c′′ exp (−c′′′n) ,

where c′′′ is a constant. Assume that log m2+m
2 > 1 and we set λn as

λn ≥
24(2− α)

α

√
(c′ + C2

ft,max) log(m2 +m)/2

n
,

then (9), the condition of using vector Hoeffding-inequality is satisfied.

Given Lemma 1, we may obtain other technical results, such as the estimation error bound, using the same proof as it was
demonstrated in Section 4, Liu et al. (2016).

E. Experimental Settings
We measure the performance of three methods using True Postive Rate (TPR) and True Negative Rate (TNR) that are used
in Zhao et al. (2014). The TPR and TFR are defined as:

TPR =

∑
t′∈S δ(θ̂t′ 6= 0)∑
t′∈S δ(θ

∗
t′ 6= 0)

, TNR =

∑
t′′∈Sc δ(θ̂t′′ = 0)∑
t′′∈Sc δ(θ

∗
t′′ = 0)

,
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Figure 7. The illustration of sequence matching problem formulation.

where δ is the indicator function.

The differential learning method (Zhao et al., 2014) used in Section 6.1 learns the difference between two precision matri-
ces. In our setting, if one can learn the difference between the precision matrices of p(x) and p(x1)p(x2), one can figure
out all edges that go across two groups (x1 and x2).

This method requires sample covariance matrices of p(x) and p(x1)p(x2) respectively. The sample covariance of p(x)
is easy to compute given joint samples. However, to obtain the sample covariance of p(x1)p(x2), we would again need
the U-statistics (Hoeffding, 1963) introduced in line Section 4. We may approximate the u, v-th element of the covariance
matrix of p(x1)p(x2) using the formula: Σu,v = 1

(n
2)

∑
j 6=k x

[j,k]
v x

[j,k]
u , assuming the joint distribution has zero mean.

F. Illustration of Sequence Matching
We plot the illustrations of our sequence matching problem formulation from two sequences in Figure 7.


