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Abstract
A fundamental class of matrix optimization prob-
lems that arise in many areas of science and en-
gineering is that of quadratic optimization with
orthogonality constraints. Such problems can be
solved using line-search methods on the Stiefel
manifold, which are known to converge globally
under mild conditions. To determine the conver-
gence rates of these methods, we give an explicit
estimate of the exponent in a Łojasiewicz in-
equality for the (non-convex) set of critical points
of the aforementioned class of problems. This
not only allows us to establish the linear conver-
gence of a large class of line-search methods but
also answers an important and intriguing prob-
lem in mathematical analysis and numerical op-
timization. A key step in our proof is to establish
a local error bound for the set of critical points,
which may be of independent interest.

1. Introduction
Quadratic optimization problems with orthogonality con-
straints constitute an important class of matrix optimiza-
tion problems that have found applications in many areas of
science and engineering, such as combinatorial optimiza-
tion, data mining, dynamical systems, multivariate statisti-
cal analysis, and signal processing, just to mention a few
(see, e.g., (Bolla et al., 1998; Manton, 2002; Absil et al.,
2008; Journée et al., 2010; Kokiopoulou et al., 2011; Saad,
2011; So, 2011; Yger et al., 2012)). A prototypical form of
such problems is

min
X∈St(m,n)

{
F (X) = tr

(
XTAXB

)}
, (QP-OC)
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where St(m,n) =
{
X ∈ Rm×n | XTX = In

}
(with

m ≥ n and In being the n× n identity matrix) is the com-
pact Stiefel manifold and A ∈ Sm, B ∈ Sn are given
symmetric matrices. The algorithmic aspects of Prob-
lem (QP-OC) have been extensively investigated in the lit-
erature; see, e.g., the references above. One approach is to
exploit the manifold structure of the constraint set St(m,n)
and apply retraction-based line-search methods. Specifi-
cally, the update formulae of these methods take the form

Xk+1 = R (Xk, αkξk) for k = 0, 1, . . . , (1)

where αk > 0 is the step size, ξk is a search direction in the
tangent space to St(m,n) atXk, andR(Xk, ·) is a function
that maps a vector in the tangent space to St(m,n) at Xk

into a point on St(m,n). In particular, the iterates pro-
duced by (1) are all feasible for Problem (QP-OC). Nat-
urally, the choice of step sizes, search directions, and the
retraction will affect the convergence and efficiency of the
resulting method. For the general problem of optimizing a
smooth function over the Stiefel manifold (which includes
Problem (QP-OC) as a special case), various choices have
been proposed over the years, and the convergence proper-
ties of the resulting methods are relatively well understood;
see, e.g., (Abrudan et al., 2008; Absil et al., 2008; Absil &
Malick, 2012; Wen & Yin, 2013; Jiang & Dai, 2015) and
the references therein. However, very little is known about
the convergence rates of these methods, even when they are
applied to the much more structured problem (QP-OC). In
an early work, Smith (Smith, 1994) showed that when used
to optimize a smooth function over a Riemannian mani-
fold, the method of steepest descent (which is a special case
of (1)) will converge linearly to a critical point if the func-
tion is strongly convex on the manifold. However, such a
notion of convexity is much stronger than that on the Eu-
clidean space. In particular, it is known that every smooth
function that is convex on a compact Riemannian mani-
fold (such as the Stiefel manifold) is constant (Bishop &
O’Neill, 1969). Therefore, one cannot hope to obtain lin-
ear convergence results for Problem (QP-OC) using the
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convexity-based approach in (Smith, 1994). Later, Ab-
sil et al. considered Problem (QP-OC) with n = 1 and
B = In = 1 (which corresponds to minimizing the
Rayleigh quotient on the unit sphere in Rm) and showed
that a certain line-search method will converge linearly to
an eigenvector associated with the smallest eigenvalue λ of
A, provided that λ has multiplicity one; see Theorem 4.6.3
of (Absil et al., 2008). However, it is not clear how to ex-
tend this result to cover even the case where n > 1 and/or
the multiplicity of λ is greater than one.

Part of the difficulty in analyzing the convergence rates
of line-search methods of the form (1) is due to the fact
that optimization problems over the Stiefel manifold (such
as Problem (QP-OC)) is non-convex in general. Indeed,
much of the existing analysis machinery relies on con-
vexity in a crucial manner. Recently, two different ap-
proaches have been developed in an attempt to circum-
vent such difficulty. The first proceeds by showing that the
objective function, when restricted to a suitable neighbor-
hood of a (globally) optimal solution, possesses nice prop-
erties, and then using such properties to establish the rate
at which a properly initialized iterative method converges
to the optimal solution. Such an approach has attracted
much attention lately and has been successfully employed
to tackle a wide variety of structured non-convex optimiza-
tion problems; see, e.g., (Sun & Luo, 2015) and the ref-
erences therein. In the context of Problem (QP-OC), this
approach was first pursued by Shamir (Shamir, 2015a) (see
also (Shamir, 2015b)), who considered the case where A
is negative semidefinite and B = In (which corresponds
to the Principal Component Analysis (PCA) problem). He
proposed a stochastic line-search method for solving the
problem and showed that under certain assumptions on the
multiplicities of the eigenvalues of A and on the bound-
edness of A, the method, when properly initialized, will
converge linearly to a matrix whose columns are the bot-
tom n eigenvectors of A with high probability. However,
Shamir’s approach does not apply to Problem (QP-OC) in
its full generality (i.e., when A is not negative semidefinite
and/or B 6= In). Moreover, the assumptions on A are quite
strong, and it is not clear whether they are necessary for
linear convergence or are simply artifacts of the analysis.

The second approach to analyzing the convergence rates of
iterative methods in the non-convex setting is to use a so-
called Łojasiewicz inequality; see, e.g., (Absil et al., 2005;
Merlet & Nguyen, 2013; Schneider & Uschmajew, 2015).
Roughly speaking, a Łojasiewicz inequality holds at a point
if the growth of the objective function around that point
can be bounded by an exponent (called the Łojasiewicz ex-
ponent) of the norm of the objective function gradient. In
particular, a Łojasiewicz inequality can be regarded as a
regularity condition similar to an error bound—the latter
has featured prominently in the convergence rate analysis

of iterative methods; see, e.g., (Luo & Tseng, 1993; Luo,
2000; Wang & Lin, 2014; So & Zhou, 2015; Zhou & So,
2015; Zhou et al., 2015). For the problem of optimizing
a real-analytic function over a compact real-analytic sub-
manifold (such as Problem (QP-OC)), it is well known
that a Łojasiewicz inequality holds at each of the criti-
cal points, with possibly different Łojasiewicz exponents
at different critical points. Moreover, the iterates gener-
ated by a host of retraction-based line-search methods will
converge to a critical point, and the convergence rate can
be inferred directly from the Łojasiewicz exponent at that
particular critical point. (We refer the reader to (Schnei-
der & Uschmajew, 2015) for an account of these results.)
Compared with the first approach, this second, Łojasiewicz
inequality-based approach can potentially provide more in-
sights into the convergence behavior of iterative methods,
as it gives the rate of convergence not just to the optimal
solution but to any critical point. In particular, it opens up
the possibility of determining the convergence rate of an it-
erative method even if it is initialized arbitrarily. However,
powerful as it may seem, the Łojasiewicz inequality-based
approach has a severe limitation: Most existing proofs of
the Łojasiewicz inequality only guarantee the existence of
the Łojasiewicz exponent but do not offer any clue on how
to estimate its value. Without such an estimate, one cannot
even determine whether a given iterative method converges
sublinearly or linearly. To the best of our knowledge, es-
timates of the Łojasiewicz exponent are available only for
non-convex quadratic optimization problems with simple
convex constraints (such as a ball or a polyhedron) (Luo
& Pang, 1994; Luo & Sturm, 2000; Forti et al., 2006) and
general polynomial optimization problems (Li et al., 2015).
However, these two classes of results do not shed any light
on Problem (QP-OC), as the former is concerned with con-
vex constraints, while the latter gives estimates that depend
on the dimensions of the problem and lead to very weak
convergence rate guarantees.

With the above two approaches in mind, our goal in this
paper is to develop a more refined convergence rate anal-
ysis of iterative methods for solving Problem (QP-OC)
by enriching the second approach and to strengthen and
extend the results obtained using the first approach. Our
main contribution is to show that all critical points of Prob-
lem (QP-OC) have the same Łojasiewicz exponent and to
give a sharp estimate of its value. Such a result is signifi-
cant, as it expands the currently very limited repertoire of
optimization problems for which the Łojasiewicz exponent
is known. Moreover, when combined with the convergence
analysis framework in (Schneider & Uschmajew, 2015),
it immediately implies the linear convergence of various
retraction-based line-search methods to a critical point of
Problem (QP-OC). A crucial step in our technical devel-
opment is to establish a local Lipschitzian error bound for
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the non-convex set of critical points of Problem (QP-OC).
Once such an error bound is available, it is rather straight-
forward to obtain a Łojasiewicz inequality with an explic-
itly given exponent. We should point out that the aforemen-
tioned error bound result is considerably more difficult to
establish than those in (Luo & Tseng, 1993; Wang & Lin,
2014; So & Zhou, 2015; Zhou & So, 2015; Zhou et al.,
2015), as neither the objective function nor the constraint
of Problem (QP-OC) is convex. In addition, our linear con-
vergence result does not require any assumptions on A and
B. Thus, it yields a qualitative improvement upon the re-
sults in (Absil et al., 2008; Shamir, 2015a;b). As our final
contribution, we consider Problem (QP-OC) with B = In
(which corresponds to finding the bottom n eigenvectors of
A) and show, for the first time, that if there is a gap between
the n-th and (n+1)-st smallest eigenvalues ofA, then vari-
ous retraction-based line-search methods will converge lin-
early to an optimal solution when properly initialized.

Besides the notations introduced earlier, we shall use On
to denote the set of n × n orthogonal matrices (in partic-
ular, we have On = St(n, n)); Diag(x1, . . . , xn) to de-
note the diagonal matrix with x1, . . . , xn on the diagonal;
BlkDiag(A1, . . . , An) to denote the block diagonal matrix
whose diagonal blocks are A1, . . . , An. Given a matrix
Y ∈ Rm×n and a non-empty closed set X ⊂ Rm×n, we
shall use dist(Y,X ) to denote the distance of Y to X ; i.e.,
dist(Y,X ) = minX∈X ‖X − Y ‖F . Other notations are
standard.

2. Preliminaries
2.1. First-Order Optimality Condition and Descent

Directions

To begin, let us introduce some basic definitions and con-
cepts. We view St(m,n) as an embedded submanifold of
Rm×n with the inherited Riemannian metric 〈·, ·〉 given
by 〈X,Y 〉 = tr

(
XTY

)
. For any X ∈ St(m,n), the

tangent space to St(m,n) at X is given by T (X) ={
Y ∈ Rm×n | XTY + Y TX = 0

}
. The Euclidean gra-

dient of F (X) = tr
(
XTAXB

)
is ∇F (X) = 2AXB.

Its orthogonal projection onto T (X), called the projected
gradient of F (X) and denoted by gradF (X), can be cal-
culated as

gradF (X) =
(
Im −XXT

)
∇F (X)

+
1

2
X
(
XT∇F (X)−∇F (X)TX

)
= 2AXB −XXTAXB −XBXTAX;

see Example 3.6.2 of (Absil et al., 2008). The set of critical
points of Problem (QP-OC) is then defined as

X = {X ∈ St(m,n) | gradF (X) = 0} .

The following proposition gives a characterization of X :

Proposition 1. Let X ∈ St(m,n) be given. Then, the
following are equivalent:

(i) gradF (X) = 0.

(ii) ∇F (X)−X∇F (X)TX = 0.

(iii) For any ρ > 0, Dρ(X) = ∇F (X) −
X
(
2ρ∇F (X)TX + (1− 2ρ)XT∇F (X)

)
= 0.

Proof. The equivalence between (ii) and (iii) is established
in Lemma 2.1 of (Jiang & Dai, 2015). To prove the equiv-
alence between (i) and (ii), observe that

gradF (X) =

(
Im −

1

2
XXT

)
∇F (X)− 1

2
X∇F (X)TX

=

(
Im −

1

2
XXT

)(
∇F (X)−X∇F (X)TX

)
.

Now, it remains to note that Im− (1/2)XXT is invertible.

2.2. Retraction-Based Line-Search Methods

A standard and quite natural idea for finding a critical point
of Problem (QP-OC) is to start at an arbitrary point on
St(m,n) and then iteratively move in a search direction
defined by a tangent vector while staying on St(m,n) until
a critical point is found. Given any X ∈ St(m,n), it can
be shown that−Dρ(X) ∈ T (X) and−Dρ(X) is a descent
direction at X ∈ St(m,n) for any ρ > 0; see Lemma 3.1
of (Jiang & Dai, 2015). Thus, we can pick some ρ > 0 and
use −Dρ(X) as a candidate search direction. After mov-
ing the current iterate in the search direction, however, the
resulting point need not lie on St(m,n). Thus, we need to
bring the point back on St(m,n) to form the next iterate.
This can be achieved using a retraction.

Definition 1. A retraction on St(m,n) is a smooth map
R :

⋃
X∈St(m,n) ({X} × T (X)) → St(m,n) satisfying

(i) R(X,0) = X for any X ∈ St(m,n) and (ii) for any
X ∈ St(m,n),

lim
T (X)3ξ→0

‖R(X, ξ)− (X + ξ)‖F
‖ξ‖F

= 0. (2)

Various retractions on the Stiefel manifold have been stud-
ied in the literature. Below are two examples:

• Polar Decomposition-Based Retraction:

R(X, ξ) = (X + ξ)(In + ξT ξ)−1/2.

• QR-Decomposition-Based Retraction:

R(X, ξ) = qf(X + ξ),
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where qf(A) denotes the Q-factor in the thin QR-
decomposition of A; see Section 5.2.6 of (Golub &
Van Loan, 1996).

Further examples of retractions on the Stiefel manifold can
be found in (Absil & Malick, 2012; Kaneko et al., 2013).

With the above preparations, we are now ready to describe
a generic retraction-based line-search method for solving
Problem (QP-OC); see Algorithm 1.

Algorithm 1 Line-Search Method on St(m,n)

Input: X0 ∈ St(m,n), ρ > 0
1: for k = 0, 1, 2, . . . do
2: calculate the descent direction −Dρ(X

k) at Xk

3: choose a step size αk > 0
4: set Xk+1 = R

(
Xk,−αkDρ(X

k)
)

5: terminate if convergence criterion is met
6: end for

It is known that with suitably chosen step sizes {αk}k≥0
(such as those computed by an Armijo-type rule), the iter-
ates {Xk}k≥0 generated by Algorithm 1 will converge to a
critical point X∗ ∈ X of Problem (QP-OC); see (Schnei-
der & Uschmajew, 2015). However, the rate of conver-
gence is much less understood. A main obstacle is the need
to find a suitable criticality measure that is amenable to
analysis. In view of Proposition 1, a candidate measure
is ‖Dρ(·)‖F for any ρ > 0. Such a choice has several ad-
vantages. First, it is easy to compute. Second, we have
‖Dρ(X)‖F = 0 if and only if X ∈ X . Third, a deep and
far-reaching result of Łojasiewicz implies the existence of
constants δ, η > 0 and θ ∈ (0, 1/2] such that the inequality

|F (X)− F (X∗)|1−θ ≤ η‖Dρ(X)‖F (3)

holds for all X ∈ St(m,n) satisfying ‖X − X∗‖F ≤ δ
(note that in general δ, η, θ depend on X∗); see Section 2.2
of (Schneider & Uschmajew, 2015). In particular, the in-
equality (3), known as the Łojasiewicz inequality for Prob-
lem (QP-OC), suggests that when ‖Dρ(X)‖F is small, the
objective value of X will be close to that of X∗. It is
well known (see, e.g., (Schneider & Uschmajew, 2015))
that the Łojasiewicz inequality (3) implies the sublinear
(resp. linear) convergence of Algorithm 1 if θ ∈ (0, 1/2)
(resp. θ = 1/2). Unfortunately, the value of θ, known as
the Łojasiewicz exponent for Problem (QP-OC), is still not
known. In fact, it remains an important and intriguing open
problem in mathematical analysis and numerical optimiza-
tion to give a good estimate of θ.

3. Main Results
The main contribution of this paper is the following theo-
rem, which answers the above question:

Theorem 1. (Łojasiewicz Inequality for Problem
(QP-OC)) There exist constants δ ∈ (0,

√
2/2) and

η > 0 such that for all X ∈ St(m,n) and X∗ ∈ X with
‖X −X∗‖F ≤ δ,

|F (X)− F (X∗)|1/2 ≤ η ‖Dρ(X)‖F .

Theorem 1 is significant because it not only reveals that
the constants δ, η, θ in (3) can be made uniform over all
critical points X∗ ∈ X but also establishes the fact that the
Łojasiewicz exponent at any critical point is 1/2. To prove
Theorem 1, our strategy is to first establish a related result,
which states that X ∈ St(m,n) is in fact close to X when
‖Dρ(X)‖F is small. Specifically, we have the following
theorem:

Theorem 2. (Local Error Bound for Problem (QP-OC))
There exist constants δ ∈ (0, 1) and η > 0 such that for all
X ∈ St(m,n) with dist(X,X ) ≤ δ,

dist(X,X ) ≤ η‖Dρ(X)‖F .

The error bound in Theorem 2 is reminiscent of those that
have appeared in the recent literature; e.g., (Wang & Lin,
2014; So & Zhou, 2015; Zhou & So, 2015; Zhou et al.,
2015). However, the former is for the non-convex opti-
mization problem (QP-OC), while the latter is for convex
optimization problems. As such, the techniques used to
establish the former are substantially different from those
used to establish the latter.

In the next section, we give the proofs of Theorems 1 and 2.

4. Proofs of the Main Results
4.1. Proof of Theorem 2

Let us begin with the proof of Theorem 2, which can be
divided into four steps.

4.1.1. PRELIMINARY OBSERVATIONS

Let A = UAΣAU
T
A and B = UBΣBU

T
B be spectral de-

compositions of A and B, respectively. It is straightfor-
ward to verify that tr

(
XTAXB

)
= tr

(
X̄TΣAX̄ΣB

)
,

where X̄ = UTAXUB ∈ St(m,n). Thus, we may assume
without loss of generality that A = Diag(a1, . . . , am) ∈
Sm and B = Diag(b1, . . . , bn) ∈ Sn, where a1 ≥
a2 ≥ · · · ≥ am and b1 ≥ b2 ≥ · · · ≥ bn. By Proposi-
tion 1, we can write

X =
{
X ∈ St(m,n) | AXB −XBXTAX = 0

}
. (4)

Now, it can be verified that

Dρ(X) =
(
Im − (1− 2ρ)XXT

) (
∇F (X)−X∇F (X)TX

)
.
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Note that Im − (1 − 2ρ)XXT is invertible for any ρ > 0
and ∥∥∇F (X)−X∇F (X)TX

∥∥
F

≤
∥∥∥(Im − (1− 2ρ)XXT

)−1∥∥∥ · ‖Dρ(X)‖F
≤ max

{
1, (2ρ)−1

}
· ‖Dρ(X)‖F .

In particular, since ∇F (X) = 2AXB, in order to prove
Theorem 2, it suffices to prove the following:

Theorem 2’. There exist constants δ ∈ (0, 1) and η > 0
such that for all X ∈ St(m,n) with dist(X,X ) ≤ δ,

dist(X,X ) ≤ η
∥∥AXB −XBXTAX

∥∥
F
.

4.1.2. CHARACTERIZING THE SET OF CRITICAL
POINTS WHEN B HAS FULL RANK

Consider first the case where B has full rank; i.e., bi 6= 0
for i = 1, . . . , n. Let nA and nB be the number of distinct
eigenvalues of A and B, respectively. Then, there exist
indices s0, s1, . . . , snA

and t0, t1, . . . , tnB
such that 0 =

s0 < s1 < · · · < snA
= m and 0 = t0 < t1 < · · · <

tnB
= n, and

as0+1 = · · · = as1 > as1+1 = · · · = as2

> · · · > asnA−1+1 = · · · = asnA
,

bt0+1 = · · · = bt1 > bt1+1 = · · · = bt2

> · · · > btnB−1+1 = · · · = btnB
.

Let U1, . . . , UnA
and V1, . . . , VnB

be the eigenspaces of A
and B, respectively. Note that dim(Ui) = si − si−1 for
i = 1, . . . , nA and dim(Vj) = tj− tj−1 for j = 1, . . . , nB .
Furthermore, let

H =

{
(h1, . . . , hnA

)

∣∣∣∣∣
nA∑
i=1

hi = n,

hi ∈ {0, 1, . . . , si − si−1} for i = 1, . . . , nA

}
and {ei}mi=1 be the standard basis of Rm. Given any h =
(h1, . . . , hnA

) ∈ H, define

Ei(h) = [esi−1+1 · · · esi−1+hi ] ∈ Rm×hi for i = 1, . . . , nA,

E(h) = [E1(h) · · · EnA
(h)] ∈ Rm×n. (5)

We then have the following characterization of the set X
of critical points of Problem (QP-OC), whose proof can be
found in the supplementary material:

Proposition 2. Every X ∈ X can be expressed as

X = BlkDiag(P1, . . . , PnA
)·E(h)·BlkDiag(Q1, . . . , QnB

)
(6)

for some Pi ∈ Osi−si−1 (i = 1, . . . , nA), Qj ∈ Otj−tj−1

(j = 1, . . . , nB), and h ∈ H.

Remarks. (i) Essentially, Proposition 2 states that every
X ∈ X can be factorized as X = PQ, where P ∈
St(m,n) and Q ∈ On, and the columns of P (resp. Q)
are the eigenvectors of A (resp. B). Indeed, observe that
for i = 1, . . . , nA, the (si−1 + 1)-st to si-th columns of
BlkDiag(P1, . . . , PnA

) form an orthonormal basis of Ui.
Similarly, for j = 1, . . . , nB , the (tj−1 + 1)-st to tj-th
columns of BlkDiag(Q1, . . . , QnB

) form an orthonormal
basis of Vj . To specify which n of the m eigenvectors of
A are chosen to form P , we use the matrix E(h), where
h = (h1, . . . , hnA

) ∈ H and hi is the number of eigenvec-
tors chosen from the eigenspace Ui.

(ii) A result similar to Proposition 2 has appeared in Sec-
tion 4.8.2 of (Absil et al., 2008). However, the proof therein
contains a small gap. Specifically, from the properties that
B is diagonal and commutes with XTAX , it is claimed in
Section 4.8.2 of (Absil et al., 2008) that XTAX is also di-
agonal. However, this is not true unless the diagonal entries
of B are all distinct.

Proposition 2 suggests that we can partition X into disjoint
subsets {Xh}h∈H, where every X ∈ Xh can be expressed
as

X = BlkDiag(P1, . . . , PnA
)·E(h)·BlkDiag(Q1, . . . , QnB

)

for some Pi ∈ Osi−si−1 (i = 1, . . . , nA) and Qj ∈
Otj−tj−1 (j = 1, . . . , nB). Consequently, in order to
prove Theorem 2’, it suffices to bound dist(X,Xh) for any
X ∈ St(m,n) and h ∈ H.

4.1.3. ESTIMATING THE DISTANCE TO THE SET OF
CRITICAL POINTS

Let X ∈ St(m,n) and h = (h1, . . . , hnA
) ∈ H be arbi-

trary. By definition,

dist(X,Xh) = min {‖X − BlkDiag (P1, . . . , PnA
) ·

E(h) · BlkDiag (Q1, . . . , QnB
)‖F |

Pi ∈ Osi−si−1 for i = 1, . . . , nA;

Qj ∈ Otj−tj−1 for j = 1, . . . , nB
}
. (7)

Let
(
P ∗1 , . . . , P

∗
nA
, Q∗1, . . . , Q

∗
nB

)
be an optimal solution

to (7). Upon letting P ∗ = BlkDiag
(
P ∗1 , . . . , P

∗
nA

)
∈

Om, Q∗ = BlkDiag
(
Q∗1, . . . , Q

∗
nB

)
∈ On, and

X̄ = (P ∗)TX(Q∗)T , it is clear that dist2(X,Xh) =∥∥X̄ − E(h)
∥∥2
F

. To bound this quantity, consider the de-
compositions

X̄ =
[
X̄1 · · · X̄nB

]
, E(h) =

[
Ē1(h) · · · ĒnB

(h)
]
,
(8)

where X̄j , Ēj(h) ∈ Rm×(tj−tj−1). We then have the fol-
lowing result, whose proof can be found in the supplemen-
tary material:
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Proposition 3. For j = 1, . . . , nB and k = 1, . . . ,m, de-
note the k-th row of X̄j and Ēj(h) by

[
X̄j

]
k

and
[
Ēj(h)

]
k
,

respectively. Suppose that dist(X,Xh) < 1. Then,

dist2(X,Xh) =

nB∑
j=1

∑
k∈Ij

Θ
(∥∥[X̄j

]
k

∥∥2
2

)
,

where Ij =
{
k ∈ {1, . . . ,m} :

[
Ēj(h)

]
k

= 0
}

.

To establish the desired error bound, we need to link∥∥AXB −XBXTAX
∥∥
F

to the bound on dist2(X,Xh) in
Proposition 3. This is achieved in two steps. First, we prove
the following result:
Proposition 4. Consider the decomposition of X̄ in (8).
Then,

∥∥AXB −XBXTAX
∥∥2
F

= Ω

 nB∑
j=1

∥∥AX̄j − X̄jX̄
T
j AX̄j

∥∥2
F

 .

In view of Proposition 4, we then proceed to prove the fol-
lowing bound:
Proposition 5. There exists a constant δ ∈ (0, 1) such that
for all X ∈ St(m,n) with dist(X,Xh) ≤ δ,
nB∑
j=1

∥∥AX̄j − X̄jX̄
T
j AX̄j

∥∥2
F

=

nB∑
j=1

∑
k∈Ij

Ω
(∥∥[X̄j

]
k

∥∥2
2

)
.

The proofs of Propositions 4 and 5 can be found in the sup-
plementary material. Now, observe that whenever X ∈
St(m,n) and dist(X,X ) ≤ δ, there exists an h ∈ H
such that dist(X,Xh) ≤ δ. Hence, by combining Proposi-
tions 3, 4, and 5, we obtain Theorem 2’.

4.1.4. REMOVING THE FULL RANK ASSUMPTION ON B

Consider now the case where B does not have full
rank. Without loss of generality, we assume that B =
BlkDiag(B̄,0), where B̄ = Diag(b1, . . . , bp) ∈ Sp has
full rank. Then, using (4), it can be shown that

X =
{
X = [X1 X2] ∈ St(m,n) | X1 ∈ Rm×p,

X2 ∈ Rm×(n−p), AX1B̄ −X1B̄X
T
1 AX1 = 0

}
.

It follows that for any X = [X1 X2] ∈ St(m,n) with
X1 ∈ Rm×p and X2 ∈ Rm×(n−p), we have dist(X,X ) =
dist(X1, X̄ ), where

X̄ =
{
X ∈ St(m, p) | AXB̄ −XB̄XTAX = 0

}
.

By our previous result, there exist constants δ ∈ (0, 1) and
η > 0 such that for all X1 ∈ St(m, p) with dist(X1, X̄ ) ≤
δ,

dist(X1, X̄ ) ≤ η
∥∥AX1B̄ −X1B̄X

T
1 AX1

∥∥
F
.

To complete the proof, it remains to observe that∥∥AXB −XBXTAX
∥∥2
F

=
∥∥AX1B̄ −X1B̄X

T
1 AX1

∥∥2
F

+
∥∥X1B̄X

T
1 AX2

∥∥2
F

=
∥∥AX1B̄ −X1B̄X

T
1 AX1

∥∥2
F

+
∥∥XT

2

(
AX1B̄ −X1B̄X

T
1 AX1

)
XT

1

∥∥2
F

= Θ
(∥∥AX1B̄ −X1B̄X

T
1 AX1

∥∥2
F

)
.

4.2. Proof of Theorem 1

Recall that the Łojasiewicz inequality in Theorem 1 is con-
cerned with bounding the change in the objective value
around a critical point, while the local error bound in The-
orem 2 is concerned with bounding the distance to the set
of critical points. Thus, to prove Theorem 1, we need a link
between the former and the latter. The following technical
result furnishes such a link. Its proof can be found in the
supplementary material.
Proposition 6. There exists a constant η > 0 such that for
all X ∈ St(m,n) and X∗ ∈ X ,

|F (X)− F (X∗)| ≤ η‖X −X∗‖2F .

Now, let X ∈ St(m,n) and X∗ ∈ X be such that
‖X − X∗‖F < δ0 = min{δ,

√
2/2}, where δ ∈ (0, 1)

is the constant for which Theorem 2 holds. Furthermore,
let X̄∗ ∈ X be such that dist(X,X ) = ‖X − X̄∗‖F < δ0.
We claim that X∗, X̄∗ ∈ Xh for some h ∈ H. Indeed,
if X∗ ∈ Xh and X̄∗ ∈ Xh′ with distinct h, h′ ∈ H, then
Proposition 2 and the discussion in Section 4.1.4 imply that
‖X∗ − X̄∗‖F ≥

√
2. However, our assumption yields

‖X∗− X̄∗‖F ≤ ‖X−X∗‖F +‖X− X̄∗‖F < 2δ0 ≤
√

2,
which is a contradiction. This establishes the claim.

Since the function F is constant on Xh for any given h ∈
H, we have F (X∗) = F (X̄∗). Hence, by Proposition 6
and Theorem 2, we obtain

|F (X)− F (X∗)| = |F (X)− F (X̄∗)|
≤ η1‖X − X̄∗‖2F
≤ η1η2‖Dρ(X)‖2F

for some constants η1, η2 > 0. This completes the proof of
Theorem 1.

5. Convergence to Critical Points vs. Global
Optima

Based on the discussion in Section 2.2, we see that The-
orem 1 implies the linear convergence of Algorithm 1 to
a critical point of Problem (QP-OC), regardless of how it
is initialized. Thus, our result gives a rather complete pic-
ture of the convergence behavior of retraction-based line-
search methods for solving Problem (QP-OC). Of course,
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we are mostly interested in finding an optimal solution to
Problem (QP-OC). Thus, it is natural to ask whether one
can find a suitable initialization for Algorithm 1 so that it
converges to such a solution. In this section, we consider
Problem (QP-OC) with B = In (which corresponds to
finding the bottom n eigenvectors of A) and show that the
answer to the above question is positive under the follow-
ing assumption:

Assumption 1. The eigenvalues ofA ∈ Sm, given by a1 ≥
a2 ≥ · · · ≥ am, satisfy λ = am−n − am−n+1 > 0.

We remark that the above assumption is similar to the one
used in (Shamir, 2015b). For simplicity of exposition, we
shall fix R to be the polar-decomposition-based retraction
(see Section 2.2) and use−D1/2(X) as the search direction
at X ∈ St(m,n) (i.e., ρ = 1/2) in the sequel. However,
it should be noted that our result can be extended to handle
more general retractions and search directions.

To begin, let A = UAΣAU
T
A be a spectral decomposi-

tion of A and X ∗ be the set of optimal solutions to Prob-
lem (QP-OC). Using Proposition 2 and Assumption 1, we
can express any X∗ ∈ X ∗ as

X∗ = UA · BlkDiag(P̄1, P̄2) ·
[
0 In

]T · Q̄
for some P̄1 ∈ Om−n, P̄2 ∈ On, and Q̄ ∈ On. In par-
ticular, every X∗ ∈ X ∗ to Problem (QP-OC) has the form
X∗ = UA ·

[
0 X∗2

]T
for some X∗2 ∈ Rn×n. This moti-

vates us to consider the potential function g : St(m,n) →
R+, which is defined as

g(X) =
∥∥[UTAX]1

∥∥2
F
,

where UTAX =
[
[UTAX]T1 [UTAX]T2

]T
with [UTAX]1 ∈

R(m−n)×n and [UTAX]2 ∈ Rn×n. It is not hard to verify
that g(X∗) = 0 for any X∗ ∈ X ∗ and g(X) ≥ 1 for any
X ∈ X \ X ∗. Our goal now is to show that if a particular
iterate Xk ∈ St(m,n) satisfies, say, 1/4 ≤ g(Xk) ≤ 3/4,
then with a suitable choice of the step size, the next iter-
ate Xk+1 ∈ St(m,n) will satisfy g(Xk+1) < g(Xk); i.e.,
the potential value will decrease. Thus, if the initial iterate
X0 ∈ St(m,n) satisfies g(X0) ≤ 3/4, then subsequent
iterates will move away from the critical points in X \ X ∗.
This, together with the fact that the iterates generated by
Algorithm 1 is globally convergent to a critical point, al-
lows us to conclude that the iterates will converge to an
optimal solution to Problem (QP-OC).

To achieve the goal, let X ∈ St(m,n) be fixed and set ξ =
−D1/2(X). Furthermore, define the function g̃ : R+ →
R+ by g̃(α) = g(R(X,αξ)); i.e.,

g̃(α) =
∥∥∥[UTA (X + αξ)]1(In + α2ξT ξ)−1/2

∥∥∥2
F
.

Clearly, g̃ is continuously differentiable. The following re-
sult reveals the local behavior of g̃. Its proof can be found
in the supplementary material.
Proposition 7. The following hold:

(i) g̃′(0) ≤ −4λ
(
g(X)− g2(X)

)
.

(ii) For α ∈ (0, (2
√
n‖A‖)−1], where ‖A‖ denotes the

spectral norm of A, |g̃′′(α)| ≤ 8n‖A‖2(5
√
n+ 24).

Proposition 7(i) shows that when 1/4 ≤ g(X) ≤ 3/4, we
have g̃′(0) ≤ −3λ/4. It follows from Proposition 7(ii) and
the Lipschitz continuity of g̃′ over compact intervals that if
α ∈ (0, ᾱ], where

ᾱ = min
{

(2
√
n‖A‖)−1, 3λ(32n‖A‖2(5

√
n+ 24))−1

}
,

then g̃(α) < g̃(0). To summarize, we have the following
theorem:
Theorem 3. (Linear Convergence of Line-Search Meth-
ods to Global Optima) Consider Problem (QP-OC) with
B = In. Under Assumption 1, if Algorithm 1 is initialized
with a point X0 ∈ St(m,n) that satisfies g(X0) ≤ 3/4
and the step sizes {αk}k≥0 satisfy αk ≤ ᾱ for all k ≥ 0,
then the iterates generated by Algorithm 1 will converge to
an optimal solution to Problem (QP-OC). Moreover, the
asymptotic convergence rate is at least linear.

6. Numerical Results
In this section, we report numerical results on both syn-
thetic and real-world datasets to illustrate the convergence
rate of the retraction-based line-search algorithm (Algo-
rithm 1) for solving Problem (QP-OC). As we shall see,
the results are consistent with our theoretical analysis. In
our experiments, we use ξ = −D1/2(X) as the search di-
rection at X ∈ St(m,n). Besides the two retractions men-
tioned in Section 2.2, we also use the Cayley transform-
based retraction, which is given by

R(X,αξ) = (I + αH)−1(I − αH)X,

whereH = X∇F (X)T−∇F (X)XT satisfiesH = −HT

and ξ = HX . We compute the step sizes using the
following Armijo-type rule with parameter β ∈ (0, 1)
(see (Schneider & Uschmajew, 2015)):

αk = max
{
β` | F

(
R(Xk,−β`D1/2(Xk))

)
− F (Xk)

≤ −10−3β`∇F (Xk)TD1/2(Xk), ` ≥ 0
}
. (9)

We stop the algorithm when F (Xk)− F (Xk+1) < 10−8.

6.1. Synthetic Datasets

First, we generate a matrix A ∈ Sm whose elements are
sampled randomly from the uniform distribution. The ini-
tial point X0 ∈ St(m,n) is chosen according to the crite-
rion in Theorem 3. We set β = 0.5 (resp. β = 0.4) in (9)
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for the polar decomposition-based retraction (resp. QR-
decomposition-based and Cayley transform-based retrac-
tions). Figure 1 corresponds to the setting where m =
5000, n = 1, and B = 1, while Figure 2 corresponds to
m = 500, n = 10 and B = I . In both figures, we observe
that the objective value converges linearly to the optimal
value. It is worth noting that the rate at which the objec-
tive value decreases depends on the retraction used. This
is consistent with the results in (Schneider & Uschmajew,
2015), which suggest that the convergence rate of a line-
search method is affected by the rate at which the limit (2)
tends to zero.
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Figure 1. m = 5000, n = 1, A random, B = I1
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Figure 2. m = 500, n = 10, A random, B = I10

Next, we include a diagonal matrix B ∈ Sn whose diago-
nal elements are sampled randomly from the uniform dis-
tribution. Figure 3 corresponds to m = 500 and n = 20.
Again, linear convergence to the optimal value is observed.

6.2. Real-World Dataset

In this section, we conduct a similar numerical study using
the training data of the well-known MNIST dataset. We ex-
tract 5000 observations of the digit ‘0’ to get a 5000× 784
matrix W . We then form A = WTW and B = I2 (i.e.,
m = 784 and n = 2). The first two observations are used
to form our initial point X0 ∈ St(m,n), which will con-
verge to the optimal solution based on the result of Theo-
rem 3. We set β = 0.3 (resp. β = 0.2) in (9) for the polar

0 2 4 6 8 10 12

x 10
4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Iterations

L
o

g
(F

(X
k
)−

F
(X

*)
)

Convergence Performance of Objective Value

 

 

Polar−decomposition

QR−decomposition

Cayley tansform

Figure 3. m = 500, n = 20, A random, B diagonal

decomposition-based retraction (resp. QR-decomposition-
based and Cayley transform-based retractions). Figure 4
shows the convergence performance. As seen from the fig-
ure, the objective value converges linearly to the optimal
value.
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Figure 4. 5000 observations of ‘0’, m = 784, n = 2

7. Conclusion
In this paper, we gave an explicit estimate of the exponent
in a Łojasiewicz inequality for the (non-convex) set of crit-
ical points of Problem (QP-OC). Such an estimate was
obtained by establishing a local error bound for the afore-
mentioned set of critical points. Together with known argu-
ments, our result implies the linear convergence of a large
class of line-search methods on the Stiefel manifold. An in-
teresting future direction would be to extend our techniques
to analyze the convergence rates of iterative methods for
solving structured non-convex optimization problems.
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8. Supplementary Material
8.1. Proof of Proposition 2

Let X ∈ X be arbitrary. Using (4) and the fact that XTX = In, we have XTAXB = BXTAX . Since both XTAX
and B are symmetric, this implies that XTAX and B are simultaneously diagonalizable. In particular, there exist or-
thogonal matrices Qj ∈ Otj−tj−1 and diagonal matrices Σj ∈ Stj−tj−1 , where j = 1, . . . , nB , such that the columns of
BlkDiag(Q1, . . . , QnB

) are the eigenvectors of B, and that

XTAX = BlkDiag
(
QT1 Σ1Q1, . . . , Q

T
nB

ΣnB
QnB

)
. (10)

Now, using (4) again, we have
(
AX −XXTAX

)
B = 0. Since B has full rank and hence invertible, this yields

AX = XXTAX . Upon letting Y = X · BlkDiag
(
QT1 , . . . , Q

T
nB

)
∈ St(m,n) and using (10), we obtain AY =

Y · BlkDiag(Σ1, . . . ,ΣnB
). As Σ1, . . . ,ΣnB

are diagonal, this implies that each of the n columns of Y is an eigenvec-
tor of A. To see that X can be expressed in the form given on the right-hand side of (6), it remains to note that A has
m eigenvectors in total, and that any set of m eigenvectors of A can be expressed as BlkDiag(P1, . . . , PnA

) for some
Pi ∈ Osi−si−1 , where i = 1, . . . , nA.

The converse is rather easy to verify. Hence, the proof is completed.

8.2. Proof of Proposition 3

Using (7) and (8), it can be verified that

dist2(X,Xh) =
∥∥X̄ − E(h)

∥∥2
F

= min
{∥∥X̄ − E(h) · BlkDiag(Q1, . . . , QnB

)
∥∥2
F

∣∣∣ Qj ∈ Otj−tj−1 for j = 1, . . . , nB

}
=

nB∑
j=1

min
{∥∥X̄j − Ēj(h)Qj

∥∥2
F

∣∣∣ Qj ∈ Otj−tj−1

}
.

From the definitions of E(h) in (5) and Ēj(h) in (8), we see that up to a rearrangement of the rows, Ēj(h) takes the form

Ēj(h) =

[
Itj−tj−1

0

]
. Thus, to obtain the desired bound on dist2(X,Xh), it remains to prove the following:

Lemma 1. Let S =

[
S1

S2

]
∈ St(p, q) be given, with S1 ∈ Rq×q and S2 ∈ R(p−q)×q . Consider the following problem:

v∗ = min

{∥∥∥∥S − [Iq0
]
X

∥∥∥∥2
F

∣∣∣∣∣ X ∈ Oq
}
.

Suppose that v∗ < 1. Then, we have v∗ = Θ
(
‖S2‖2F

)
.

Proof. Since ∥∥∥∥S − [Iq0
]
X

∥∥∥∥2
F

= ‖S1 −X‖2F + ‖S2‖2F ,

it suffices to consider the problem
min

{
‖S1 −X‖2F | X ∈ Oq

}
. (11)

Problem (11) is an instance of the orthogonal Procrustes problem, whose optimal solution is given by X∗ = UV T , where
S1 = UΣV T is the singular value decomposition of S1 (Schönemann, 1966). It follows that

v∗ = ‖Σ− Iq‖2F + ‖S2‖2F .

Now, since S ∈ St(p, q), we have STS = ST1 S1 + ST2 S2 = Iq , or equivalently,

Σ2 + V TST2 S2V = Iq.



Explicit Łojasiewicz Exponent for Quadratic Optimization with Orthogonality Constraints

This implies that 0 � Σ � Iq and
Iq − Σ = (Iq + Σ)−1

(
V TST2 S2V

)
.

It follows that
1

4
‖S2‖4F + ‖S2‖2F ≤ v∗ ≤ ‖S2‖4F + ‖S2‖2F .

This, together with the fact that ‖S2‖2F ≤ v∗ < 1, yields v∗ = Θ
(
‖S2‖2F

)
, as desired.

8.3. Proof of Proposition 4

Recall that P ∗ = BlkDiag
(
P ∗1 , . . . , P

∗
nA

)
∈ Om, Q∗ = BlkDiag

(
Q∗1, . . . , Q

∗
nB

)
∈ On, X̄ = (P ∗)TX(Q∗)T . Upon

observing that AP ∗ = P ∗A, BQ∗ = Q∗B, B = BlkDiag
(
bt1It1−t0 , . . . , btnB

ItnB
−tnB−1

)
and using (8), we compute

∥∥AXB −XBXTAX
∥∥2
F

=
∥∥AP ∗X̄Q∗B − P ∗X̄Q∗B(Q∗)T X̄T (P ∗)TAP ∗X̄Q∗

∥∥2
F

=
∥∥P ∗ (AX̄B − X̄BX̄TAX̄

)
Q∗
∥∥2
F

=
∥∥AX̄B − X̄BX̄TAX̄

∥∥2
F

=

nB∑
j=1

∥∥∥∥∥btjAX̄j −
nB∑
k=1

btkX̄k

(
X̄T
k AX̄j

)∥∥∥∥∥
2

F

. (12)

Now, observe that the columns of X̄ are orthonormal and span an n-dimensional subspace L. In particular, for j =
1, . . . , nB , each column of AX̄j can be decomposed as u + v, where u is a linear combination of the columns of X̄ and
v ∈ L⊥, the orthogonal complement of L. In view of the structure of X̄ in (8), this leads to

AX̄j =

nB∑
k=1

X̄k

(
X̄T
k AX̄j

)
+ Tj ,

where Tj ∈ Rm×(tj−tj−1) is formed by projecting the columns of AX̄j onto L⊥. Hence,∥∥∥∥∥btjAX̄j −
nB∑
k=1

btkX̄k

(
X̄T
k AX̄j

)∥∥∥∥∥
2

F

=
∑
k 6=j

(btj − btk)2
∥∥X̄k

(
X̄T
k AX̄j

)∥∥2
F

+ b2tj‖Tj‖
2
F

= Ω

∑
k 6=j

∥∥X̄k

(
X̄T
k AX̄j

)∥∥2
F

+ ‖Tj‖2F


= Ω

(∥∥AX̄j − X̄jX̄
T
j AX̄j

∥∥2
F

)
, (13)

where (13) follows from the fact that btj 6= btk whenever j 6= k and btj 6= 0 since B is assumed to have full rank. By
combining the above with (12), the proof is completed.

8.4. Proof of Proposition 5

Consider a fixed j ∈ {1, . . . , nB}. Let x̄k be the k-th column of X̄j and (x̄k)α be the α-th entry of x̄k, where k =
1, . . . , tj − tj−1 and α = 1, . . . ,m. Suppose that dist(X,Xh) =

∥∥X̄ − E(h)
∥∥
F

= τ for some τ ∈ (0, 1). Using the
definition of E(h) in (5), we have

(x̄k)α =

{
1 +O(τ) if α = π(k),
O(τ) otherwise,

where π(k) is the coordinate of the k-th column of Ēj(h) that equals 1. Since π(k) 6= π(`) whenever k 6= `, it follows that

x̄TkAx̄` =

{
aπ(k) +O(τ) if k = `,

O(τ) otherwise.
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Now, let ∆k be the k-th column of AX̄j − X̄jX̄
T
j AX̄j , where k = 1, . . . , tj − tj−1. Then,

∆k = Ax̄k −
tj−tj−1∑
`=1

x̄`
(
x̄T` Ax̄k

)
=
(
A− aπ(k)Im

)
x̄k −O(τ) ·

(
tj−tj−1∑
`=1

x̄`

)
.

Let ΠIj be the projector onto the coordinates in Ij . By Proposition 3 and the assumption that dist(X,Xh) = τ , we have

tj−tj−1∑
`=1

∥∥ΠIj (x̄`)
∥∥2
2

=
∑
k∈Ij

∥∥[X̄j

]
k

∥∥2
2

= O(τ).

Hence,

∥∥ΠIj (∆k)
∥∥
2
≥

∥∥ΠIj
((
A− aπ(k)Im

)
x̄k
)∥∥

2
−O(τ) ·

(
tj−tj−1∑
`=1

∥∥ΠIj (x̄`)
∥∥
2

)
≥

∥∥ΠIj
((
A− aπ(k)Im

)
x̄k
)∥∥

2
−O(τ2). (14)

Let i′ ∈ {0, 1, . . . , nA − 1} be such that si′ + 1 ≤ π(k) ≤ si′+1. Then, we have∥∥ΠIj
((
A− aπ(k)Im

)
x̄k
)∥∥2

2
=

∑
i 6=i′

∑
α∈Ij∩{si+1,...,si+1}

((
asi+1 − aπ(k)

)
(x̄k)α

)2
=

∑
i 6=i′

∑
α∈Ij∩{si+1,...,si+1}

Ω
(
(x̄k)2α

)
= Ω

(∥∥ΠIj (x̄k)
∥∥2
2

)
−O

(∥∥∥ΠIj∩{si′+1,...,si′+1}(x̄k)
∥∥∥2
2

)
. (15)

To bound the term
∥∥∥ΠIj∩{si′+1,...,si′+1}(x̄k)

∥∥∥2
2
, we proceed as follows. Let Y = X(Q∗)T ∈ St(m,n) and decompose it

as

Y =

 Y11 · · · Y1nA

...
. . .

...
YnA1 · · · YnAnA

 ,
where Yii ∈ R(si−si−1)×hi , for i = 1, . . . , nA. Observe that

dist2(X,Xh) = min
{
‖Y − BlkDiag(P1, . . . , PnA

) · E(h)‖2F
∣∣∣ Pi ∈ Osi−si−1 for i = 1, . . . , nA

}
=

∑
1≤i6=j≤nA

‖Yij‖2F +

nA∑
i=1

min

{∥∥∥∥Yii − Pi [Ihi

0

]∥∥∥∥2
F

∣∣∣∣∣ Pi ∈ Osi−si−1

}
. (16)

The following lemma establishes a bound on the second term in (16):

Lemma 2. For i = 1, . . . , nA, let

v∗i = min

{∥∥∥∥Yii − Pi [Ihi

0

]∥∥∥∥2
F

∣∣∣∣∣ Pi ∈ Osi−si−1

}
. (17)

Suppose that v∗i < 1. Then, we have

v∗i = Θ


∥∥∥∥∥∥
∑
j 6=i

Y Tji Yji

∥∥∥∥∥∥
2

F

 .
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Let us defer the proof of Lemma 2 to the end of this section. Together with (16), Lemma 2 implies that

dist2(X,Xh) =
∑

1≤i 6=j≤nA

‖Yij‖2F +

nA∑
i=1

Θ


∥∥∥∥∥∥
∑
j 6=i

Y Tji Yji

∥∥∥∥∥∥
2

F

 .

Since dist(X,Xh) = τ for some τ ∈ (0, 1), we have
∑

1≤i 6=j≤nA
‖Yij‖2F = O(τ2). This implies that for i = 1, . . . , nA,

v∗i = O


∑
j 6=i

‖Yji‖2F

2
 = O(τ4)

Now, decompose X̄ = (P ∗)TY as  X̄11 · · · X̄1nA

...
. . .

...
X̄nA1 · · · X̄nAnA

 ,
where X̄ii = (P ∗i )TYii ∈ R(si−si−1)×hi for i = 1, . . . , nA. Note that for i = 1, . . . , nA, we have

v∗i =

∥∥∥∥X̄ii −
[
Ihi

0

]∥∥∥∥2
F

.

Moreover, observe that ΠIj∩{si′+1,...,si′+1}(x̄k) is part of X̄i′+1,i′+1 and does not intersect the diagonal of the top hi′+1×
hi′+1 block of X̄i′+1,i′+1. Thus, by Lemma 2,∥∥∥ΠIj∩{si′+1,...,si′+1}(x̄k)

∥∥∥2
2
≤ v∗i′+1 = O(τ4).

Together with (14) and (15), this yields∥∥ΠIj (∆k)
∥∥2
2
≥ Ω

(∥∥ΠIj (x̄k)
∥∥2
2

)
−O(τ3).

It follows that

∥∥AX̄j − X̄jX̄
T
j AX̄j

∥∥2
F

=

tj−tj−1∑
k=1

‖∆k‖22

≥
tj−tj−1∑
k=1

∥∥ΠIj (∆k)
∥∥2
2

≥
tj−tj−1∑
k=1

Ω
(∥∥ΠIj (x̄k)

∥∥2
2

)
−O(τ3)

=
∑
k∈Ij

Ω
(∥∥[X̄j

]
k

∥∥2
2

)
−O(τ3).

Since dist(X,Xh) = τ , upon summing both sides of the above inequality over j = 1, . . . , nB and using Proposition 3, we
conclude that for sufficiently small τ ∈ (0, 1),

nB∑
j=1

∥∥AX̄j − X̄jX̄
T
j AX̄j

∥∥2
F

= Ω (dist(X,Xh))−O(τ3) = Ω (dist(X,Xh)) =

nB∑
j=1

∑
k∈Ij

Ω
(∥∥[X̄j

]
k

∥∥2
2

)
,

as desired.

To complete the proof, it remains to prove Lemma 2.
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Proof of Lemma 2. Consider a fixed i ∈ {1, . . . , nA}. Note that Problem (17) is again an instance of the orthogonal
Procrustes problem. Hence, by the result in (Schönemann, 1966), an optimal solution to Problem (17) is given by

P ∗i = Hi

[
WT
i 0
0 Isi−si−1−hi

]
,

where Yii = Hi

[
Σi
0

]
WT
i is a singular value decomposition of Yii with Hi ∈ Osi−si−1 , Wi ∈ Ohi , and Σi ∈ Shi being

diagonal. It follows from (17) that

v∗i =

∥∥∥∥Yii − P ∗i [Ihi

0

]∥∥∥∥2
F

= ‖Σi − Ihi
‖2F .

Now, since Y ∈ St(m,n), we have

Y Tii Yii +
∑
j 6=i

Y Tji Yji = WiΣ
2
iW

T
i +

∑
j 6=i

Y Tji Yji = Ihi ,

or equivalently,

Σ2
i +WT

i

∑
j 6=i

Y Tji Yji

Wi = Ihi .

By following the arguments in the proof of Lemma 1, we conclude that

‖Σi − Ihi
‖2F = Θ


∥∥∥∥∥∥
∑
j 6=i

Y Tji Yji

∥∥∥∥∥∥
2

F

 ,

as desired.

8.5. Proof of Proposition 6

Observe that F , when viewed as a function on Rm×n, is continuously differentiable with Lipschitz continuous gradient.
Thus, we have

|F (X)− F (X∗)− 〈∇F (X∗), X −X∗〉| ≤ L

2
‖X −X∗‖2F , (18)

where L > 0 is the Lipschitz constant of ∇F ; see, e.g., (Nesterov, 2004). Now, by Proposition 1, we have ∇F (X∗) =
X∗∇F (X∗)TX∗. This implies that

〈∇F (X∗), X −X∗〉 =
〈
X∗∇F (X∗)TX∗, X −X∗

〉
=
〈
∇F (X∗)TX∗, (X∗)TX − In

〉
. (19)

On the other hand, 〈
∇F (X∗)TX∗, In −XTX∗

〉
=

〈
(X∗)T∇F (X∗), (X∗)TX∗ −XTX∗

〉
=

〈
X∗∇F (X∗)TX∗, X∗ −X

〉
= −〈∇F (X∗), X −X∗〉. (20)

Upon adding (19) and (20) and using the fact that (X −X∗)T (X −X∗) = 2In − (X∗)TX −XTX∗, we obtain

2〈∇F (X∗), X −X∗〉 = −
〈
∇F (X∗)TX∗, (X −X∗)T (X −X∗)

〉
.

Together with the fact that ‖AB‖F ≤ ‖A‖ · ‖B‖F for any matrices A,B, where ‖ · ‖ denotes the spectral norm, this gives

|〈∇F (X∗), X −X∗〉| ≤ 1

2

∥∥∇F (X∗)TX∗
∥∥
F
‖X −X∗‖2F

=
∥∥B(X∗)TAX∗

∥∥
F
‖X −X∗‖2F

≤ ‖A‖F ‖B‖F ‖X −X∗‖2F .

By combining this with (18), we obtain the desired inequality with η = (L/2) + ‖A‖F ‖B‖F .
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8.6. Proof of Proposition 7

To prove (i), observe that since ξ = −2(I −XXT )AX , we have

[UTA ξ]1 = −2ΣA,1[UTAX]1 + 2[UTAX]1
(
[UTAX]T1 ΣA,1[UTAX]1 + [UTAX]T2 ΣA,2[UTAX]2

)
,

where ΣA = BlkDiag(ΣA,1,ΣA,2) with ΣA,1 ∈ Sm−n and ΣA,2 ∈ Sn being diagonal. Moreover,

[UTAX]T1 [UTAX]1 + [UTAX]T2 [UTAX]2 = In.

Hence,

g̃′(0) = 2 · tr
(
[UTAX]T1 [UTA ξ]1

)
= −4 · tr

((
I − [UTAX]T1 [UTAX]1

)
[UTAX]T1 ΣA,1[UTAX]1

)
+ 4 · tr

(
[UTAX]T1 [UTAX]1[UTAX]T2 ΣA,2[UTAX]2

)
= −4 · tr

(
[UTAX]T2 [UTAX]2[UTAX]T1 ΣA,1[UTAX]1

)
+ 4 · tr

(
[UTAX]T1 [UTAX]1[UTAX]T2 ΣA,2[UTAX]2

)
≤ −4(am−n − am−n+1) tr

(
[UTAX]T1 [UTAX]1[UTAX]T2 [UTAX]2

)
≤ −4λ

(
g(X)− g2(X)

)
,

as desired.

To prove (ii), we compute

g̃′′(α) = 2 · tr
(
[UTA ξ]

T
1 [UTA ξ]1(In + α2ξT ξ)−1

)
− 2 · tr

((
[UTAX]T1 [UTAX]1 + 3α([UTAX]T1 [UTA ξ]1 + [UTA ξ]

T
1 [UTAX]1) + 5α2[UTA ξ]

T
1 [UTA ξ]1

)
ξT ξ(In + α2ξT ξ)−2

)
+ 8α2 tr

(
([UTAX]1 + α[UTA ξ]1)T ([UTAX]1 + α[UTA ξ]1)(ξT ξ)2(In + α2ξT ξ)−3

)
.

Since In + α2ξT ξ � In, we have 0 � (In + α2ξT ξ)−1 � In. This, together with the fact that [UTA ξ]
T
1 [UTA ξ]1 � 0 and

[UTA ξ]
T
1 [UTA ξ]1 � ξT ξ, implies that

tr
(
[UTA ξ]

T
1 [UTA ξ]1(In + α2ξT ξ)−1

)
≤ tr

(
[UTA ξ]

T
1 [UTA ξ]1

)
≤ ‖ξ‖2F . (21)

Next, using the fact that ‖AB‖F ≤ ‖A‖ · ‖B‖F for any matrices A,B, we bound∥∥[UTAX]T1 [UTAX]1
∥∥
F
≤
∥∥[UTAX]1

∥∥ · ∥∥[UTAX]1
∥∥
F
≤
√
n, (22)∥∥[UTAX]T1 [UTA ξ]1

∥∥
F
≤
∥∥[UTAX]1

∥∥ · ∥∥[UTA ξ]1
∥∥
F
≤ ‖ξ‖F . (23)

Moreover, we have ∥∥[UTA ξ]
T
1 [UTA ξ]1

∥∥
F
≤
∥∥[UTA ξ]1

∥∥2
F
≤ ‖ξ‖2F . (24)

Since 0 � (In + α2ξT ξ)−2 � In, it follows from (22)–(24) that∣∣∣tr (([UTAX]T1 [UTAX]1 + 3α([UTAX]T1 [UTA ξ]1 + [UTA ξ]
T
1 [UTAX]1) + 5α2[UTA ξ]

T
1 [UTA ξ]1

)
ξT ξ(In + α2ξT ξ)−2

) ∣∣∣
≤

∥∥∥[UTAX]T1 [UTAX]1 + 3α([UTAX]T1 [UTA ξ]1 + [UTA ξ]
T
1 [UTAX]1) + 5α2[UTA ξ]

T
1 [UTA ξ]1

∥∥∥
F

∥∥ξT ξ(In + α2ξT ξ)−2
∥∥
F

≤ ‖ξ‖2F
(√
n+ 6α‖ξ‖F + 5α2‖ξ‖2F

)
. (25)

Lastly, using similar techniques as above, we bound

tr
(
([UTAX]1 + α[UTA ξ]1)T ([UTAX]1 + α[UTA ξ]1)(ξT ξ)2(In + α2ξT ξ)−3

)
≤ ‖ξ‖4F

(√
n+ 2α‖ξ‖F + α2‖ξ‖2F

)
. (26)

It follows from (21), (25), and (26) that

|g̃′′(α)| ≤ 2‖ξ‖2F + 2‖ξ‖2F
(√
n+ 6α‖ξ‖F + 5α2‖ξ‖2F

)
+ 8α2‖ξ‖4F

(√
n+ 2α‖ξ‖F + α2‖ξ‖2F

)
.

Recall that ξ = −2(I − XXT )AX . Hence, we have ‖ξ‖2F ≤ 4‖AX‖2F ≤ 4n‖A‖2. In particular, for α ∈
(0, (2

√
n‖A‖)−1], we have |g̃′′(α)| ≤ 8n‖A‖2(5

√
n+ 24). This completes the proof.


