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1 KL divergence between matrix variate Gaus-
sian prior and posterior

LetMN 0(M0,U0,V0) andMN 1(M1,U1,V1) be two matrix variate Gaussian
distributions for random matrices of size n × p. We can use the fact that the
matrix variate Gaussian is a multivariate Gaussian if we flatten the matrix,
i.e. MN 0(M0,U0,V0) = N0(vec(M0),V0 ⊗U0), and as a result use the KL-
divergence between two multivariate Gaussians:
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Now to compute each term in the KL efficiently we need to use some properties
of the vectorization and Kronecker product:
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So putting everything together we have that:
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2 Different toy dataset

We also performed an experiment with a different toy dataset that was employed
in [2]. We generated 12 inputs from U [0, 0.6] and 8 inputs from U [0.8, 1]. We
then transform those inputs via:

yi = xi + εi + sin(4(xi + εi)) + sin(13(xi + εi))

where εi ∼ N (0, 0.0009). We continued in fitting four neural networks that had
two hidden-layers with 50 units each. The first was trained with probabilistic
back-propagation [1], and the remaining three with our model while varying the
nonlinearities among the layers: we used ReLU, cosine and hyperbolic tangent
activations. For our model we set the upper bound of the variational dropout
rate to 0.2 and we used 2 pseudo data pairs for the input layer and 4 for the
rest. The resulting predictive distributions can be seen at Figure 1.

(a) PBP (b) MG ReLU

(c) MG cosine (d) MG tanh

Figure 1: Predictive distributions for the toy dataset. Grey areas correspond to
±{1, 2} standard deviations around the mean function.
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