
Structured and Efficient Variational Deep

Learning with Matrix Gaussian Posteriors

Christos Louizos, Max Welling

1 KL divergence between matrix variate Gaus-
sian prior and posterior

LetMN 0(M0,U0,V0) andMN 1(M1,U1,V1) be two matrix variate Gaussian
distributions for random matrices of size n × p. We can use the fact that the
matrix variate Gaussian is a multivariate Gaussian if we flatten the matrix,
i.e. MN 0(M0,U0,V0) = N0(vec(M0),V0 ⊗U0), and as a result use the KL-
divergence between two multivariate Gaussians:

KL(N0||N1) =
1

2

(
tr(Σ−1

1 Σ0) + (µ1 − µ0)TΣ−1
1 (µ1 − µ0)−K + log

|Σ1|
|Σ0|

)
=

1

2

(
tr
(
(V1 ⊗U1)−1(V0 ⊗U0)

)
+
(

vec(M1)− vec(M0)
)T

(
V1 ⊗U1

)−1(
vec(M1)− vec(M0)

)
− np+ log

|V1 ⊗U1|
|V0 ⊗U0|

)
Now to compute each term in the KL efficiently we need to use some properties
of the vectorization and Kronecker product:

ta = tr
(
(V1 ⊗U1)−1(V0 ⊗U0)

)
= tr

(
(V−1

1 ⊗U−1
1)(V0 ⊗U0)

)
= tr

(
(V−1

1 V0)⊗ (U−1
1 U0)

)
= tr(U−1

1 U0) tr(V−1
1 V0) (1)

tb =
(

vec(M1)− vec(M0)
)T (

V1 ⊗U1

)−1(
vec(M1)− vec(M0)

)
= vec(M1 −M0)T (V−1

1 ⊗U−1
1) vec(M1 −M0)

= vec(M1 −M0)T vec(U−1
1 (M1 −M0)V−1

1)

= tr
(
(M1 −M0)TU−1

1 (M1 −M0)V−1
1

)
(2)

tc = log
|V1 ⊗U1|
|V0 ⊗U0|

= log
|U1|p|V1|n

|U0|p|V0|n

= p log |U1|+ n log |V1|−
− p log |U0| − n log |V0| (3)

1

So putting everything together we have that:

KL(MN 0,MN 1) =
1

2

(
tr(U−1

1 U0) tr(V−1
1 V0) + tr

(
(M1 −M0)TU−1

1 (M1 −M0)V−1
1

)
−

− np+ p log |U1|+ n log |V1| − p log |U0| − n log |V0|
)

(4)

2 Different toy dataset

We also performed an experiment with a different toy dataset that was employed
in [2]. We generated 12 inputs from U [0, 0.6] and 8 inputs from U [0.8, 1]. We
then transform those inputs via:

yi = xi + εi + sin(4(xi + εi)) + sin(13(xi + εi))

where εi ∼ N (0, 0.0009). We continued in fitting four neural networks that had
two hidden-layers with 50 units each. The first was trained with probabilistic
back-propagation [1], and the remaining three with our model while varying the
nonlinearities among the layers: we used ReLU, cosine and hyperbolic tangent
activations. For our model we set the upper bound of the variational dropout
rate to 0.2 and we used 2 pseudo data pairs for the input layer and 4 for the
rest. The resulting predictive distributions can be seen at Figure 1.

(a) PBP (b) MG ReLU

(c) MG cosine (d) MG tanh

Figure 1: Predictive distributions for the toy dataset. Grey areas correspond to
±{1, 2} standard deviations around the mean function.

2

References

[1] José Miguel Hernández-Lobato and Ryan Adams, Probabilistic Backpropa-
gation for Scalable Learning of Bayesian Neural Networks, Proceedings of
the 32nd International Conference on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015.

[2] Ian Osband, Charles Blundell, Alexander Pritzel, Benjamin Van Roy, Deep
Exploration via Bootstrapped DQN, arXiv preprint arXiv:1602.04621, 2016.

3

