Structured and Efficient Variational Deep
Learning with Matrix Gaussian Posteriors

Christos Louizos, Max Welling

1 KL divergence between matrix variate Gaus-
sian prior and posterior

Let MN (Mo, Ug, Vi) and MN ;1 (M;, Uy, Vi) be two matrix variate Gaussian
distributions for random matrices of size n x p. We can use the fact that the
matrix variate Gaussian is a multivariate Gaussian if we flatten the matrix,
ie. MNo(My, Ug, Vo) = No(vec(My), Vo ® Uyp), and as a result use the KL-
divergence between two multivariate Gaussians:

|2

1 _ _
5 <tr(21 120) + (pg — Ho)Tzl 1(#1 — o) — K +log |Eo|)

KL(No|IV)

% (tr (Vi®Up) " (Vo®Up)) + (vec(My) — vec(MO))T

V1®U1|)

(V1 ® Ul)_l(vec(Ml) — Vec(Mo)) —np + log Vo ® Uy

Now to compute each term in the KL efficiently we need to use some properties
of the vectorization and Kronecker product:

ta =tr (V1 ®@Up) (Vo ® Up))
=tr (V'@ U (Vo @ Up))
=tr ((Vi'Vo) ® (U7 'Uy))
= tr(UT Up) tr(V Vo) (1)

ty = (vee(M;y) — VGC(Mo))T(Vl ® Ul)fl(vec(Ml) — vec(My))
= vec(M; — Mo)T(Vi! @ Ut vee(M; — M)
= vec(M; — Mg)T vec(U7 (M1 — Mg) Vi)
= tr (My — M) U7 (M; — M) Vi) (2)

t. = log 7|V1 2 Uil
Vo ® Ug|
— log VI
[UolP[Vo|™
= plog |Ui| + nlog|Vi|—
— plog|Up| — nlog V| (3)

So putting everything together we have that:

KL(MNo, MN1) = %(tr(Ulon) tr(Vi Vo) + tr (My — Mo) U (M — M) Vi) —

—np+ plog |U;| + nlog |Vi| — plog |Up| — nlog |V0|>
(4)

2 Different toy dataset

We also performed an experiment with a different toy dataset that was employed
in [2]. We generated 12 inputs from U[0,0.6] and 8 inputs from UJ[0.8,1]. We
then transform those inputs via:

yi = ¢; + € +sin(4(x; + €;)) +sin(13(z; + €;))

where €; ~ N(0,0.0009). We continued in fitting four neural networks that had
two hidden-layers with 50 units each. The first was trained with probabilistic
back-propagation [1], and the remaining three with our model while varying the
nonlinearities among the layers: we used ReLU, cosine and hyperbolic tangent
activations. For our model we set the upper bound of the variational dropout
rate to 0.2 and we used 2 pseudo data pairs for the input layer and 4 for the
rest. The resulting predictive distributions can be seen at Figure 1.

(b) MG ReLU

(¢) MG cosine (d) MG tanh

Figure 1: Predictive distributions for the toy dataset. Grey areas correspond to
+{1,2} standard deviations around the mean function.

References

[1] José Miguel Herndndez-Lobato and Ryan Adams, Probabilistic Backpropa-
gation for Scalable Learning of Bayesian Neural Networks, Proceedings of
the 32nd International Conference on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015.

[2] Tan Osband, Charles Blundell, Alexander Pritzel, Benjamin Van Roy, Deep
Ezploration via Bootstrapped DQN, arXiv preprint arXiv:1602.04621, 2016.

