Structured and Efficient Variational Deep
Learning with Matrix Gaussian Posteriors

Christos Louizos, Max Welling

1 KL divergence between matrix variate Gaus-
sian prior and posterior

Let MN (Mo, Ug, Vi) and MN ;1 (M;, Uy, Vi) be two matrix variate Gaussian
distributions for random matrices of size n x p. We can use the fact that the
matrix variate Gaussian is a multivariate Gaussian if we flatten the matrix,
ie. MNo(My, Ug, Vo) = No(vec(My), Vo ® Uyp), and as a result use the KL-
divergence between two multivariate Gaussians:
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Now to compute each term in the KL efficiently we need to use some properties
of the vectorization and Kronecker product:
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So putting everything together we have that:

KL(MNo, MN1) = %(tr(Ulon) tr(Vi Vo) + tr (My — Mo) U (M — M) Vi) —

—np+ plog |U;| + nlog |Vi| — plog |Up| — nlog |V0|>
(4)

2 Different toy dataset

We also performed an experiment with a different toy dataset that was employed
in [2]. We generated 12 inputs from U[0,0.6] and 8 inputs from UJ[0.8,1]. We
then transform those inputs via:

yi = ¢; + € +sin(4(x; + €;)) +sin(13(z; + €;))

where €; ~ N(0,0.0009). We continued in fitting four neural networks that had
two hidden-layers with 50 units each. The first was trained with probabilistic
back-propagation [1], and the remaining three with our model while varying the
nonlinearities among the layers: we used ReLU, cosine and hyperbolic tangent
activations. For our model we set the upper bound of the variational dropout
rate to 0.2 and we used 2 pseudo data pairs for the input layer and 4 for the
rest. The resulting predictive distributions can be seen at Figure 1.
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Figure 1: Predictive distributions for the toy dataset. Grey areas correspond to
+{1,2} standard deviations around the mean function.
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