Structured and Efficient Variational Deep
 Learning with Matrix Gaussian Posteriors

Christos Louizos, Max Welling

1 KL divergence between matrix variate Gaussian prior and posterior

Let $\mathcal{M} \mathcal{N}_{0}\left(\mathbf{M}_{0}, \mathbf{U}_{0}, \mathbf{V}_{0}\right)$ and $\mathcal{M} \mathcal{N}_{1}\left(\mathbf{M}_{1}, \mathbf{U}_{1}, \mathbf{V}_{1}\right)$ be two matrix variate Gaussian distributions for random matrices of size $n \times p$. We can use the fact that the matrix variate Gaussian is a multivariate Gaussian if we flatten the matrix, i.e. $\mathcal{M} \mathcal{N}_{0}\left(\mathbf{M}_{0}, \mathbf{U}_{0}, \mathbf{V}_{0}\right)=\mathcal{N}_{0}\left(\operatorname{vec}\left(\mathbf{M}_{0}\right), \mathbf{V}_{0} \otimes \mathbf{U}_{0}\right)$, and as a result use the KLdivergence between two multivariate Gaussians:

$$
\begin{aligned}
K L\left(\mathcal{N}_{0}| | \mathcal{N}_{1}\right) & =\frac{1}{2}\left(\operatorname{tr}\left(\boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\Sigma}_{0}\right)+\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{0}\right)^{T} \boldsymbol{\Sigma}_{1}^{-1}\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{0}\right)-K+\log \frac{\left|\boldsymbol{\Sigma}_{1}\right|}{\left|\boldsymbol{\Sigma}_{0}\right|}\right) \\
& =\frac{1}{2}\left(\operatorname{tr}\left(\left(\mathbf{V}_{1} \otimes \mathbf{U}_{1}\right)^{-1}\left(\mathbf{V}_{0} \otimes \mathbf{U}_{0}\right)\right)+\left(\operatorname{vec}\left(\mathbf{M}_{1}\right)-\operatorname{vec}\left(\mathbf{M}_{0}\right)\right)^{T}\right. \\
& \left.\left(\mathbf{V}_{1} \otimes \mathbf{U}_{1}\right)^{-1}\left(\operatorname{vec}\left(\mathbf{M}_{1}\right)-\operatorname{vec}\left(\mathbf{M}_{0}\right)\right)-n p+\log \frac{\left|\mathbf{V}_{1} \otimes \mathbf{U}_{1}\right|}{\left|\mathbf{V}_{0} \otimes \mathbf{U}_{0}\right|}\right)
\end{aligned}
$$

Now to compute each term in the KL efficiently we need to use some properties of the vectorization and Kronecker product:

$$
\begin{align*}
& t_{a}= \operatorname{tr}\left(\left(\mathbf{V}_{1} \otimes \mathbf{U}_{1}\right)^{-1}\left(\mathbf{V}_{0} \otimes \mathbf{U}_{0}\right)\right) \\
&= \operatorname{tr}\left(\left(\mathbf{V}_{1}^{-1} \otimes \mathbf{U}_{1}^{-1}\right)\left(\mathbf{V}_{0} \otimes \mathbf{U}_{0}\right)\right) \\
&= \operatorname{tr}\left(\left(\mathbf{V}_{1}^{-1} \mathbf{V}_{0}\right) \otimes\left(\mathbf{U}_{1}^{-1} \mathbf{U}_{0}\right)\right) \\
&= \operatorname{tr}\left(\mathbf{U}_{1}^{-1} \mathbf{U}_{0}\right) \operatorname{tr}\left(\mathbf{V}_{1}^{-1} \mathbf{V}_{0}\right) \tag{1}\\
& t_{b}=\left(\operatorname{vec}\left(\mathbf{M}_{1}\right)-\operatorname{vec}\left(\mathbf{M}_{0}\right)\right)^{T}\left(\mathbf{V}_{1} \otimes \mathbf{U}_{1}\right)^{-1}\left(\operatorname{vec}\left(\mathbf{M}_{1}\right)-\operatorname{vec}\left(\mathbf{M}_{0}\right)\right) \\
&=\operatorname{vec}\left(\mathbf{M}_{1}-\mathbf{M}_{0}\right)^{T}\left(\mathbf{V}_{1}^{-1} \otimes \mathbf{U}_{1}^{-1}\right) \operatorname{vec}\left(\mathbf{M}_{1}-\mathbf{M}_{0}\right) \\
&=\operatorname{vec}\left(\mathbf{M}_{1}-\mathbf{M}_{0}\right)^{T} \operatorname{vec}\left(\mathbf{U}_{1}^{-1}\left(\mathbf{M}_{1}-\mathbf{M}_{0}\right) \mathbf{V}_{1}^{-1}\right) \\
&=\operatorname{tr}\left(\left(\mathbf{M}_{1}-\mathbf{M}_{0}\right)^{T} \mathbf{U}_{1}^{-1}\left(\mathbf{M}_{1}-\mathbf{M}_{0}\right) \mathbf{V}_{1}^{-1}\right) \tag{2}\\
& \qquad \begin{aligned}
t_{c} & =\log \frac{\left|\mathbf{V}_{1} \otimes \mathbf{U}_{1}\right|}{\left|\mathbf{V}_{0} \otimes \mathbf{U}_{0}\right|} \\
& =\log \frac{\left|\mathbf{U}_{1}\right|^{p}\left|\mathbf{V}_{1}\right|^{n}}{\left|\mathbf{U}_{0}\right|^{p}\left|\mathbf{V}_{0}\right|^{n}} \\
& =p \log \left|\mathbf{U}_{1}\right|+n \log \left|\mathbf{V}_{1}\right|- \\
& -p \log \left|\mathbf{U}_{0}\right|-n \log \left|\mathbf{V}_{0}\right|
\end{aligned}
\end{align*}
$$

So putting everything together we have that:

$$
\begin{align*}
K L\left(\mathcal{M} \mathcal{N}_{0}, \mathcal{M} \mathcal{N}_{1}\right) & =\frac{1}{2}\left(\operatorname{tr}\left(\mathbf{U}_{1}^{-1} \mathbf{U}_{0}\right) \operatorname{tr}\left(\mathbf{V}_{1}^{-1} \mathbf{V}_{0}\right)+\operatorname{tr}\left(\left(\mathbf{M}_{1}-\mathbf{M}_{0}\right)^{T} \mathbf{U}_{1}^{-1}\left(\mathbf{M}_{1}-\mathbf{M}_{0}\right) \mathbf{V}_{1}^{-1}\right)-\right. \\
& \left.-n p+p \log \left|\mathbf{U}_{1}\right|+n \log \left|\mathbf{V}_{1}\right|-p \log \left|\mathbf{U}_{0}\right|-n \log \left|\mathbf{V}_{0}\right|\right) \tag{4}
\end{align*}
$$

2 Different toy dataset

We also performed an experiment with a different toy dataset that was employed in [2]. We generated 12 inputs from $U[0,0.6]$ and 8 inputs from $U[0.8,1]$. We then transform those inputs via:

$$
y_{i}=x_{i}+\epsilon_{i}+\sin \left(4\left(x_{i}+\epsilon_{i}\right)\right)+\sin \left(13\left(x_{i}+\epsilon_{i}\right)\right)
$$

where $\epsilon_{i} \sim \mathcal{N}(0,0.0009)$. We continued in fitting four neural networks that had two hidden-layers with 50 units each. The first was trained with probabilistic back-propagation [1], and the remaining three with our model while varying the nonlinearities among the layers: we used ReLU, cosine and hyperbolic tangent activations. For our model we set the upper bound of the variational dropout rate to 0.2 and we used 2 pseudo data pairs for the input layer and 4 for the rest. The resulting predictive distributions can be seen at Figure 1.

Figure 1: Predictive distributions for the toy dataset. Grey areas correspond to $\pm\{1,2\}$ standard deviations around the mean function.

References

[1] José Miguel Hernández-Lobato and Ryan Adams, Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks, Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015.
[2] Ian Osband, Charles Blundell, Alexander Pritzel, Benjamin Van Roy, Deep Exploration via Bootstrapped DQN, arXiv preprint arXiv:1602.04621, 2016.

