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Abstract
We analyze the problem of linear bandits under
heavy tailed noise. Most of the work on lin-
ear bandits has been based on the assumption of
bounded or sub-Gaussian noise. This assumption
however is often violated in common scenarios
such as financial markets. We present two algo-
rithms to tackle this problem: one based on dy-
namic truncation and one based on a median of
means estimator. We show that, when the noise
admits only a 1 + ✏ moment, these algorithms
are still able to achieve regret in eO(T

2+✏
2(1+✏)

) and
eO(T

1+2✏
1+3✏

) respectively. In particular, they guar-
antee sublinear regret as long as the noise has
finite variance. We also present empirical re-
sults showing that our algorithms achieve a better
performance than the current state of the art for
bounded noise when the L1 bound on the noise
is large yet the 1+✏ moment of the noise is small.

1. Introduction
Sequential decision-making under limited feedback has
become a classic topic in machine learning. Dating as
far back as the classical work of (Robbins, 1952), “ban-
dit problems” are a prime example of the exploration-
exploitation trade-off that comes up in machine learn-
ing, and they have been analyzed, extended, and applied
in many forms. In particular, bandit algorithms have
been successfully used in tasks such as medical diagnosis,
job scheduling, computational advertising, and repeated
games.

In the original stochastic setting of (Robbins, 1952), at each
time t, the learner selects an action out of a set of K possi-
bilities. Each action i makes the learner incur a loss of li,t
which is a random variable with mean µi. The learner can
only observe the loss for the chosen action and his objec-
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tive is to minimize his regret with respect to the best action
i⇤ = argminiµi. That is, the seller minimizes the following
quantity Reg = E[

PT
t=1

µIt � µ⇤
i ], where It is the action

chosen by the learner.

There have been a plethora of extensions to the stochastic
MAB problem of (Robbins, 1952), including to that of infi-
nite action sets (Auer, 2002; Kleinberg, 2004), adversarial
loss functions (Auer et al., 2003), and various types of ad-
ditional structure (e.g. switching costs as in (Cesa-Bianchi
et al., 2013) and contexts as in (Auer et al., 2003; Beygelz-
imer et al., 2011; Agarwal et al., 2014)). We cannot attempt
to do a comprehensive literature review, so we refer the in-
terested reader to the work of (Bubeck and Cesa-Bianchi,
2012) for an exposition of many of the latest advances.

Despite the large body of work in this field, one aspect of
bandit problems that has remained largely ignored is the
setting of heavy-tailed loss functions. In nearly all papers
and settings proposed, the authors assume that the losses
incurred by the learner are either bounded or at worst,
sub-Gaussian (i.e. 9C � 0 constant such that 8� 2 R,
ln

�
E
⇥
e�(l�E[l])⇤�  1

2

C�2). The motivation behind this
assumption is largely technical, as it is the most convenient
relaxation of bounded loss functions that still allows the
use of standard concentration of measure techniques (e.g.
Hoeffding’s inequality (Hoeffding, 1963)).

However, many real-life sequential decision-making prob-
lems do not exhibit bounded or sub-Gaussian losses. A
prime example is that of financial markets, where heavy-
tailed price fluctuations occur far more frequently than
Gaussian models would predict (see e.g. (Rachev, 2003;
Hull, 2012)). Another example can be found in auctions
run to sell online advertisement where unusually large bids
are seen, albeit with low probability.

Since the standard techniques cannot be directly applied, it
is not clear whether one can attain equivalent regret bounds
for such scenarios, or whether sublinear regret algorithms
of any form are even possible at all.

A remarkable analysis of this scenario was given by
(Bubeck et al., 2013) who consider the classic stochastic
MAB setting with heavy-tailed noise. In their work, the
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authors show that by using statistical estimators that are
more robust than the empirical mean for each specific ac-
tion, one can attain regret bounds of the same order as in
the bounded-loss setting. This is an exceptional result since
only a second moment is required to achieve this regret
bound.

In this paper, we consider heavy-tailed losses in the sce-
nario of stochastic linear bandits, a natural yet non-trivial
extension of the MAB problem. Unlike the MAB problem,
the linear bandit setting forces the learner to choose among
and compare himself against an infinite number of actions.
This makes the presence of heavy-tailed losses more diffi-
cult to manage.

A large body of work analyzing the linear bandit prob-
lem exists, most of which is based on the seminal work
of (Auer, 2002). In this paper, the author builds confi-
dence regions for the true model parameter and then opti-
mistically selects the action minimizing the loss over these
sets. However, the so called “associative reinforcement
learning” scenario of (Auer, 2002) is actually a bit differ-
ent from the linear bandit problem we present, since the
learner there is constrained to only a finite number of ac-
tions. This is similarly the case for a number of other ban-
dit problems with linear payoff functions, in particular for
the “LinUCB” algorithm (Li et al., 2010; Chu et al., 2011).
The setup we define allows for infinite action sets and is
based upon the stochastic linear bandit framework of (Dani
et al., 2008), (Rusmevichientong and Tsitsiklis, 2010), and
(Abbasi-Yadkori et al., 2011). In order to tackle this prob-
lem , (Abbasi-Yadkori et al., 2011) show that by using ridge
regression to estimate the model parameter, one can build
an algorithm such that with probability at least 1 � �, the
learner will attain a regret bound of ˜O

�
Rn

p
T log(1/�)

�
,

where R is the sub-Gaussian constant and can be as large as
the L1 norm of the losses. Finally, (Liu and Zhao, 2012)
analyze the linear bandit problem in the context of adap-
tive shortest path algorithms for both light and heavy tailed
losses. Their estimates are based on sample means which
do not have the desired exponential concentration required
for optimal learning in bandit problems (Hsu and Sabato,
2014).

We present two algorithms based on more sophisticated sta-
tistical estimators than ridge regression. We begin by intro-
ducing notation and our exact setup in Section 2. Then, we
describe a general confidence region algorithm and explain
how, if one were able to produce robust estimators, one can
attain sublinear regret using this general algorithm. In the
subsequent two sections, 4 and 5, we construct such es-
timators and derive the resulting regret bounds. Our first
algorithm will demonstrate that if the loss functions ex-
hibit (1 + ✏) finite moments, then sublinear regret is attain-
able of order ˜O

�
nT

1
2+

1
2(1+✏)

�
. It thereby upper bounds the

price of heavy-tailed loss distributions in this scenario as
˜O(T

1
2(1+✏)

). When the loss functions have infinitely-many
moments, we recover the known regret bounds. Our sec-
ond algorithm will provide even better regret guarantees of
˜O
⇣
T

1+2✏
1+3✏

⌘
when the losses have minimal regularity (i.e.

when ✏ < 1), but it will not achieve the asymptotically op-
timal rate of O(T 1/2

) as ✏ ! 1.

2. Notation and Preliminaries
Throughout the paper, we will denote vectors by lower case
boldface letters, e.g. x,y 2 Rn, scalars by Roman charac-
ters, e.g. a, b 2 R, and matrices by upper case boldface
characters, e.g. A,B 2 Rn⇥m. We will also use the nota-
tion x

1:t to denote the sequence (x
1

, . . . , xt).

Given any norm k · k : Rn ! R, we will denote its dual by
k · k⇤. That is, kxk⇤ = supkyk1

x · y. We let k · k
2

be the
Euclidean norm, and given any symmetric positive definite
(SPSD) matrix A, we define the norm kxk

A

=

p
x

T
Ax.

Finally, we let B
1

= {x 2 Rn|kxk
2

 1} be the unit ball.

We consider the standard stochastic online linear optimiza-
tion scenario with bandit feedback presented in (Dani et al.,
2008). Specifically, let X ⇢ Rn be a compact set repre-
senting the action space, and without loss of generality, as-
sume that sup

x2X kxk
2

 1 (this can always be achieved
by re-scaling). At each round t, the learner chooses an ac-
tion xt 2 X and observes the loss lt = lt(xt). We as-
sume the existence of a mean vector µ 2 B

1

such that
lt = µ>

xt + ⌘t, where ⌘t is a random variable satis-
fying E[⌘t|Ft�1

] = 0. Here, Ft := �(⌘
1:t) is the �-

algebra of events up to time t. We will consider deter-
ministic algorithms where the choice of xt is decided by
⌘
1

, . . . , ⌘t�1

and therefore is Ft�1

-measurable. The goal
of the learner is to minimize the (pseudo) regret: RegT =PT

t=1

µ>
xt � µ>

x

⇤, where x

⇤
= argmin

x2Xµ>
x.

The standard assumption in the linear stochastic bandit sce-
nario is that the random variable ⌘t is bounded or sub-
Gaussian. In contrast, we will only require that the (1+ ✏)-
th moment exists: E[|⌘t|1+✏|Ft�1

]  v < 1.

Throughout the paper we will denote by Xt 2 Rn⇥t the
matrix (x

1

, . . . ,xt) whose columns are the played actions.
Similarly, we denote by ⌘t = (⌘

1

, . . . , ⌘t)
> 2 Rt the vec-

tor of noise and lt = (l
1

, . . . , lt)
> 2 Rt the vector of ob-

served losses.

3. Confidence Region Algorithms
The underlying idea behind many regret minimization al-
gorithms for stochastic linear bandits (e.g. (Dani et al.,
2008; Abbasi-Yadkori et al., 2011)) is that of confidence
regions and optimism in the face of uncertainty. More pre-
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Algorithm 1 ConfidenceRegion
1: Input: Confidence function �, Estimate function E ,

number of steps T .
2: C

0

= B
1

3: for t = 1, . . . , T : do
4: Let (xt,µt) = argmin

(x,⌫)2X⇥Ct�1
⌫>

x.
5: Play xt and suffer loss lt.
6: Estimate µt = E(x

1:t, l1:t)
7: Update confidence region: Ct = {⌫ | k⌫�µtkVt 

�(t)}
8: end for

cisely, at every time t, the learner keeps track of an ellipsoid
Ct centered at a current estimate of the mean µt, in which
he believes the true mean vector µ lies. The learner then
optimistically chooses action xt+1

via (xt+1

,µt+1

) =

argmin
(x,⌫)2X⇥Ct

⌫>
x. In order to achieve small regret,

the ellipsoid must shrink quickly around µ. (Abbasi-
Yadkori et al., 2011) construct these ellipsoids by set-
ting µt = (I + XtX

>
t )

�1

Xtlt, i.e. the ridge regres-
sion estimate of the mean obtained using the observed
actions and rewards. They then specify the ellipsoid to
be Ct = {⌫|k⌫ � µtkVt  �(t)}, where they define
Vt = I + XtX

>
t and �(t) is in O(

p
log t). The authors

show that with high probability, µ 2 Ct for all t, and they
are able to provide a regret bound in O(n

p
T log T ), which

is known to be tight up to a logarithmic factor.

The algorithm of (Abbasi-Yadkori et al., 2011) cannot be
used in our scenario, as it is known that that the ridge re-
gression estimate of the mean is not robust under heavy-
tailed noise (Hsu and Sabato, 2014). Nevertheless, we can
apply the same confidence region techniques: find an esti-
mate µt of the mean and define Ct = {⌫ | k⌫ � µtkVt 
�(t)}. For an appropriate choice of radius function �, we
will show that there are estimates µt such that with high
probability, µ remains in Ct. This master algorithm, which
we call ConfidenceRegion, is defined in Algorithm 1 and
its regret is analyzed in the following proposition.

Proposition 1. Let rt = µ>
xt � µ>

x

⇤ denote the instan-
taneous regret of our algorithm. If µ 2 Ct for all t, then

rt  2�(t � 1)kxtk
V

�1
t�1

. (1)

Proof. Using the definition of (xt,µ) as minimizers, we
have

rt = µ>
xt � µ>

x

⇤  µ>
xt � µ>

t xt

= (µ � µt)
>
xt = (µ � µt�1

)

>
xt + (µt�1

� µt)
>
xt

 kµ � µt�1

k
Vt�1kxtk

V

�1
t�1

+ kµt�1

� µtkVt�1kxtk
V

�1
t�1

,

where the last inequality follows from the definition of dual
norm and the fact that k · k⇤

Vt�1
= k · k

V

�1
t�1

. The result is
then true since µ,µt 2 Ct�1

.

Corollary 1. If µ 2 Ct for all t and �(t) > 1, then the
regret of Algorithm 1 can be bounded as:

RegT 

vuut
TX

t=1

�(t � 1)

2

TX

t=1

4min

�
kxtk2

V

�1
t�1

, 1).

Proof. Since kxk
2

, kµk
2

 1, we have that rt  2. There-
fore, by the previous proposition as well as the Cauchy-
Schwarz inequality, we can bound the total regret as:

TX

t=1

rt 
TX

t=1

2min(�(t � 1)kxtk
V

�1
t�1

, 1)



vuut
TX

t=1

�(t � 1)

2

TX

t=1

4min(kxtk2
V

�1
t�1

, 1).

The previous corollary shows that we need

to control both terms
qPT

t=1

�(t � 1)

2 and
rPT

t=1

4min(kxtk2
V

�1
t�1

, 1). Toward this end, we

must use the crucial fact that the matrix Vt is closely re-
lated to the vectors x

1:t via the equation Vt = I+XtX
>
t .

The following proposition appears in (Dani et al., 2008)
and we include the proof in the appendix for completeness.

Proposition 2. Let V
0

= I and suppose Vt = Vt�1

+

xtx
>
t . Then

TX

t=1

min(kxtk2
V

�1
t�1

, 1)  2 log

�
detVT

�

 2n log

⇣
1 +

T

n

⌘

In view of this result, we need only be concerned with
defining �(t) in a way such that with high probability,

µ 2 Ct for all t and such that
qPT

t=1

�(t � 1)

2 is in o(T ).

For bounded losses, this can be achieved directly through
the standard ridge regression estimate:

E(x
1:t, l1:t) = (I+XtX

>
t )

�1

Xtlt. (2)

yielding the following form of �(t) from (Abbasi-Yadkori
et al., 2011):

�(t) = R

s

2 log

✓
det(Vt)

1/2

�

◆
+ 1 (3)
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Algorithm 2 Estimate by Truncation
Input: x

1:t, l1:t,↵1:t with ↵s < ↵s+1

8s 2 [1, t � 1].
Let blt = lt1|lt|↵t

and blt = (

bl
1

, . . . ,blt)
Return V

�1

t Xt
b
lt.

However, this estimate is no longer valid when the noise
exhibits heavy fluctuations. In the following two sections,
we show how one can still derive good estimates on the
confidence region using more sophisticated constructions
of the subroutine E in Algorithm 1.

4. Truncation
One way to counteract the effect of heavy-tailed noise is to
try truncating losses that become too large. More precisely,
one can consider the implementation of E for Algorithm 1
defined in Algorithm 2.

Since truncation biases the distribution, we cannot truncate
our losses at a fixed level uniformly over all time. Instead,
the estimation algorithm we construct must dynamically
adjust the truncation level as the rounds progress. In par-
ticular, we use an increasing sequence ↵

1:T of truncation
levels as input to Algorithm 2. This sequence will be tuned
optimally later on. We now provide a bound on the distance
between the truncation estimate µt and µ.

Lemma 1. Let µt = V

�1

t Xt
b
lt, and define b⌘t =

blt �µ>
xt

as the truncated noise. Denote b⌘t = (b⌘
1

, . . . , b⌘t). Then

kµt � µk
Vt  kXtb⌘tk

V

�1
t

+ kµk
2

. (4)

Lemma 1 implies that to define � appropriately, it suf-
fices to bound kXtb⌘tk

V

�1
t

. Our monotonicity constraint
↵t < ↵t+1

in Algorithm 2 makes ⌘t uniformly bounded
on [1, T ]. Thus, by considering the stochastic process
restricted to the time interval [1, T ], we can modify the
concentration inequality in (Abbasi-Yadkori et al., 2011)
and (Peña et al., 2009), derived using the theory of self-
normalized processes, to arrive at the following result.
Lemma 2. Let ⌘

1

, . . . , ⌘T be random variables such that
|⌘t|  R for all t 2 [1, T ]. Denote by Ft = (⌘

1

, . . . , ⌘t)

the �-algebra generated by these variables up to time t. Let
xt 2 Rn be Ft�1

-measurable random vectors and Vt =

I +

Pt
s=1

xtx
>
t . Then for any � > 0, with probability at

least 1 � �, 8t 2 [1, T ],

kXt⌘tk
V

�1
t

 R

vuut
2 log

 
detV

1/2
t

�

!
.

By leveraging Lemmas 1 and 2, we can derive an up-
per bound on the magnitude of Xtb⌘t uniformly across all
rounds.

Proposition 3. Let µt denote the estimate returned by Al-
gorithm 2. Then for any � > 0, with probability at least
1 � �, the following inequality holds uniformly over t:

kµt � µk
Vt  ↵T

vuut
8 log

 
det(Vt)

1/2

�

!

+ v

vuut
tX

s=1

1

↵2✏
s

+ kµk
2

.

Proof. We can decompose kXtb⌘tk
V

�1
t

as a sum of a bias
and a variance term:

kXtb⌘tk
V

�1
t

 kXt(b⌘t � E[b⌘t|Ft�1

])k
V

�1
t

(5)

+ kXt E[b⌘t|Ft�1

]k
V

�1
t

Let ⇠t = b⌘t � E[⌘t|Ft�1

], and notice that |⇠t|  2↵T uni-
formly over t. Therefore, by Lemma 2, with probability at
least 1 � �, we have that for all t  T :

kXt(b⌘t � E[b⌘t|Ft�1

])k
V

�1
t

(6)

 ↵T

vuut
8 log

 
det(Vt)

1/2

�

!
.

We proceed to bound the second term

kXt E[ b⌘t|Ft�1

]k2
V

�1
t

=

�����

tX

s=1

xs

�
E[ls1|ls|↵s

|Fs�1

] � x

>
s µ
�
�����

2

V

�1
t

=

�����

tX

s=1

xsE[ls1{|ls|>↵s}|Fs�1

]

�����

2

V

�1
t

=

e
l

>
t X

>
t V

�1

t Xt
e
lt,

where elt =

�
E[l

1

1l1>↵1 |F0

], . . . ,E[lt1lt>↵t |Ft�1

]

�>.
Now, we can use the definition of Vt as well as the ma-
trix identity X(I+X

>
X)

�1

= (I+XX

>
)

�1

X to bound
the last term as

e
l

>
t X

>
t V

�1

t Xt
e
lt =

e
l

>
t X

>
t (I+XtX

>
t )

�1

Xt
e
lt

=

e
l

>
t X

>
t Xt(I+X

>
t Xt)

�1e
lt

 keltk2
2

,

where for the last inequality we have used the fact that the
eigenvalues of the matrix X

>
t Xt(I + X

>
t Xt)

�1 are less
than 1. Finally, we have

keltk2
2


tX

s=1

E[|ls|1|ls|>↵s
|Fs�1

]

2


tX

s=1

E
h |ls|1+✏

↵✏
s

���Fs�1

i
2

 v2
tX

s=1

1

↵2✏
s

.



Heavy-Tailed Linear Bandits

In view of inequalities (4), (5), and (6), as well as the last
inequality, we see that with probability at least 1 � �, the
following holds for all t  T :

kµt � µk
Vt  ↵T

vuut
8 log

 
det(Vt)

1/2

�

!

+ v

vuut
tX

s=1

1

↵2✏
s

+ kµk
2

.

The previous quantitive estimate on the confidence region
motivates the choice of ↵t = t

1
2(1+✏) . A regret bound for

this truncation scheme can now be readily derived.

Corollary 2. Let ↵t = t
1

2(1+✏) , and let µt be the estimate
returned by Algorithm 2. Then for any � > 0, with proba-
bility at least 1 � �, the following holds uniformly over all
t � 3:

kµt � µk
Vt

 2

vuut
2t

1
(1+✏)

log

 
det(Vt)

1/2

�

!
+

p
2v2 log t+ 1.

Proof. The result follows by combining Proposition 3, the
fact that µ 2 B

1

, and the following computation:

tX

s=1

1

s
✏

1+✏
 1 +

Z t

1

1

s
✏

1+✏
ds  2t

1
1+✏

log t.

The last inequality follows from Lemma 4 in the appendix,
where we set u =

1

✏ .

Combining the results of Corollary 1, Proposition 2, and
Corollary 2 yields the following regret bound for Algo-
rithm 1 using the subroutine of Algorithm 2 for the param-
eter estimate.

Theorem 1. Fix � > 0, and denote AT,VT ,� =

log

⇣
det(VT )

1/2

�

⌘
, eAT,� = log

⇣
(1+

T
n )

1/2

�

⌘
. Then with

probability at least 1 � �, the regret of Algorithm 1 us-
ing the truncation estimate with ↵t = t

1
2(1+✏) and �(t) =

2

r
2t

1
(1+✏)

⇣
AT,VT ,� + v2 log T

⌘
+ 1 is bounded by:

RegT  C

r
T

2+✏
1+✏

⇣
AT,VT ,� + v2 log T

⌘
log(detVT )

 Cn

r
T

2+✏
1+✏

⇣
eAT,� + v2 log T

⌘
log

⇣
1+

T

n

⌘
,

where C is a universal constant.

Algorithm 3 Mini-Batch ConfidenceRegion
1: Input: confidence function �, estimate function E ,

confidence level �, number of batches m, number of
steps T .

2: C
0

= B
1

3: for i = 1, . . . ,m: do
4: Let r = d T

me and set ti = ir
5: Let (xi,µi) = argmin

(x,⌫)2X⇥Ci�1
⌫>

x.
6: Play xi r times, and suffer losses

lti , lti+1

, . . . , lti+r.
7: Let eli = MoM(lti+1

, . . . , lti+r, �) and eli =

(

el
1

, . . . ,eli)
8: Estimate µi = V

�1

i Xi
e
li

9: Update confidence region: Ci = {⌫ | k⌫�µikVi 
�(i)}

10: end for

Algorithm 4 Median of Means (MoM)
1: Input: Observed losses l

1

, . . . , lr, confidence �
2: Set k = b8 log(2/�)c, N = br/kc
3: Set blj =

1

N

PjN
t=(j�1)N+1

lt for j = 1, . . . , k.
4: return Median(bl

1

, . . . ,blk).

Thus, in view of Proposition 2, the regret of the truncation
algorithm is in eO(vT

2+✏
2(1+✏)

). Recall that the regret of the
standard bandit algorithm is in eO(RT 1/2

) (e.g. (Abbasi-
Yadkori et al., 2011)), where R is the sub-Gaussian con-
stant. Thus, our algorithm not only admits a non-trivial
guarantee for losses that are not sub-Gaussian, but it can
also be more favorable than the standard bandit algorithm
when the sub-Gaussian constant of the noise is much larger
than the (1 + ✏)-th moment (i.e. vT

1
2(1+✏) < R). This fact

is empirically verified in the appendix.

5. Median of Means
In this section we present an algorithm with a better regret
guarantee than the truncation algorithm for ✏ 2 (0, 1). We
consider Algorithm 3 together with the subroutine shown
in Algorithm 4, which depends on the median of means es-
timator of (Alon et al., 1999) and follows the confidence
region guidelines of Section 3. However, instead of re-
computing a new estimate of the model parameter at every
time step, our new algorithm runs in m batches.

At each stage i, beginning at time ti, it will choose an ac-
tion xi and play this action for r =

T
m rounds, After observ-

ing losses {lt}ti+r
t=ti , Algorithm 4 combines them to create

a surrogate loss ˜li associated with stage i. This surrogate
loss is calculated using the median of means estimator. One
may view this modified algorithm as an instance of Algo-
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rithm 1 run on the data
�
(x

1

,el
1

), . . . (xm,elm)

�
, where the

regret accumulated at stage i must now be accounted for r
times.

A natural concern raised by this algorithm is that the mod-
ified losses ˜li are not an unbiased estimate of the true loss.
That is, E[˜li] 6= µ>

xi; nevertheless we can still derive the
following concentration bound:

Proposition 4. Let l
1

, . . . , lr be random variables satisfy-
ing E[li|Fi�1

] = µ for all i and E[|li � µ|1+✏ | Fi�1

]  v.
If el denotes the median of means estimate of Algorithm 4,
then for any � > 0, with probability at least 1 � �,

|el � µ|  (12v)
1

1+✏

⇣
8 log(2/�)

r

⌘ ✏
1+✏

.

To prove this proposition, we first derive the following tail
bound on the sum of martingale differences.

Lemma 3. Let X
1

, . . . , Xn be random variables satisfying
E[Xi|Fi�1

] = 0, and E[|Xi|1+✏|Fi�1

]  v. Where Fi =

�(G[�(X
1

, . . . , Xi)) and G is an arbitrary sigma-algebra.
Then

P
⇣���

1

n

nX

i=1

Xi

��� > t
���G
⌘

 3v

n✏t1+✏

Proof. For notation simplicity we will let P and E denote
the probability and expectation conditioned on G. We can
draw inspiration from the ideas of (Bubeck et al., 2013) and
bound the desired probability as:

P
 ���

1

n

nX

i=1

Xi

��� > t

!

 P(9i s.t|Xi| > a) + P
⇣���

1

n

nX

i=1

Xi1|Xi|a

��� > t
⌘
.

The first term can be bounded by using the union
bound and Markov’s inequality:

Pn
i=1

P(|Xi| > a) 
Pn

i=1 E[|Xi|1+✏
]

a1+✏ =

nv
a1+✏ . On the other hand, we can bound

the second term using Tchebyschev’s inequality:

P
 ���

1

n

nX

i=1

Xi1|Xi|a

��� > t

!


E
⇥Pn

i=1

(Xi1|Xi|a)
2

⇤

n2t2

=

E
⇥Pn

i=1

X2

i 1|Xi|a

⇤

n2t2

+

E
⇥Pn

i=1

P
j<i Xi1|Xi|aXj1|Xj |a

⇤

n2t2
. (7)

We now proceed to bound the cross terms
E[Xi1|Xi|aXj1|Xj |a]. Let mi = E[Xi1|Xi|a|Fi�1

].

Then, using the fact that j > i, we have

E[Xi1|Xi|aXj1|Xj |a]

= E[(Xi1|Xi|a � mi)Xj1|Xj |a] + E[miXj1|Xj |a]

= E[miXj1|Xj |a],

where the last equality can be derived from the tower prop-
erty of conditional expectation. Now, using Hölders in-
equality for conditional expectation with parameters 1 + ✏
and 1 +

1

✏ as well as the fact that E[Xi1|Xi|a|Fi�1

] =

�E[Xi1|Xi|>a|Fi�1

], we have

mi  E[|Xi|1|Xi|>a|Fi�1

]

 E
⇥
|Xi|1+✏|Fi�1

⇤ 1
1+✏P(|Xi| > a|Fi�1

)

✏
1+✏ .

Using the conditional form of Markov’s inequality yields

mi  v
1

1+✏
v

✏
1+✏

a✏
=

v

a✏
.

A similar argument then shows that

E[miXj1|Xj |a]  v2

a2✏
. (8)

On the other hand, a simple manipulation shows that
E[X2

i 1|Xi|a]  a1�✏v. Replacing these estimates in (7)
shows that

P
 
1

n

nX

i=1

|Xi|1|Xi|a > t

!
 a1�✏v

nt2
+

v2

t2a2✏
.

We have thus shown that

P
 
1

n

nX

i=1

|Xi| > t

!
 nv

a1+✏
+

a1�✏v

nt2
+

v2

t2a2✏
.

Choosing a = nt yields

P
 
1

n

nX

i=1

|Xi| > t

!
 2v

n✏t1+✏
+

⇣ v

n✏t1+✏

⌘
2

.

If v
n✏t1+✏ > 1, the desired inequality trivially holds. Other-

wise, it follows from the previous bound.

Proof of Proposition 4. Using the notation of Algorithm 4,
we know by Lemma 3 that P(|blj�µ| > ⌘|Gj�1

)  3v
N✏⌘1+✏ ,

where Gj = �(l
1

, . . . , ljN ). Define the random variable
Xj = 1blj�µ>⌘ and notice that pj := P(Xj = 1|Gj�1

) 
1

4

when ⌘ = (12v)
1

1+✏

⇣
1

N

⌘ ✏
1+✏

. Furthermore, the random
variables Xj � pj form a martingale difference sequence
with respect to Gj . Therefore by Azuma-Hoeffding’s in-
equality for bounded random variables we obtain

P
⇣ kX

j=1

Xj � k/2
⌘
= P

⇣ kX

j=1

Xj �pj � k/4
⌘

 e�k/8

= �/2.
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On the other hand, the median el satisfies el > µ + ⌘ if and
only if at least half of the estimates blj are above µ which
happens if and only if

Pk
j=1

Xj � k/2. Therefore el >
µ+ ⌘ with probability at most �/2, and a similar argument
shows that el < µ � ⌘ with probability at most �/2. Thus,
by the union bound, with probability at least 1 � �,

|el � µ|  (12v)
1

1+✏

⇣
8 log(2/�)

r

⌘ ✏
1+✏

.

Proposition 4 suggests choosing µi at stage i as µi =

V

�1

i Xi
e
li, where Vi, Xi andeli have analogous definitions

to the ones used in the previous section. By selecting µi in
this manner, we can bound the regret of our algorithm us-
ing the same line of reasoning as Corollaries 1 and 2, with
the only difference being that the regret of stage i must be
accounted for r times.

Proposition 5. If µ 2 Ci for all i and �(i) > 1, then the
regret of Algorithm 1 can be bounded as:

Reg  r

vuut
mX

i=1

�(i)2
mX

i=1

4min

�
kxik2

V

�1
i�1

, 1)

 r�(m)

s

m log

✓
det(Vm)

1/2

�

◆
.

As before, to ensure µ 2 Ci we must bound the value of
kµi�µk

Vi . To do so, let e⌘i =
eli�µ>

xi, then by Lemma 1
we must have kµi �µk2

Vi
 kXie⌘ik

V

�1
i

+kµk
2

. We now
proceed to bound kXie⌘ik

V

�1
i

.

Proposition 6. For any � > 0, with probability at least
1 � 2� the following bound holds uniformly over i  m:

kXie⌘ik
V

�1
i

 (12v)
1

1+✏

⇣
8 log

�
2m
�

�

r

⌘ ✏
1+✏

 r
2 log

⇣m det(Vi)
1/2

�

⌘
+

p
i

!
.

Proof. Let c = (12v)
1

1+✏

⇣
8 log

�
2m
�

�

r

⌘ ✏
1+✏

and define the

following variables ⌘(1)i = e⌘i1|e⌘i|c � E[e⌘i1|e⌘i|c|Fi�1

],
⌘
(2)

i = E[e⌘i1|e⌘i|c|Fi�1

] and ⌘
(3)

i = e⌘i1|e⌘i|>c. We can
decompose the desired expression as

kXi⌘ik
V

�1
i

 kXi⌘
(1)

i k
V

�1
i
+kXi⌘

(2)

i k
V

�1
i
+kXi⌘

(3)

i k
V

�1
i
,

where for j = 1, 2, 3, ⌘(j)
i is the vector with entries

(⌘
(j)
1

, . . . , ⌘
(j)
i ). Since ⌘(1)i is bounded and E[⌘(1)i |Fi�1

] =

0, we can apply Lemma 2 and the union bound to see that
with probability at least 1 � �, for all i

kXi⌘
(1)

i k
V

�1
i

 c

r
2 log

⇣m det(Vi)
1/2

�

⌘
.

In the same way as in the proof of Proposition 3, we also
see that: kXi⌘

(2)

i k2
V

�1
i

+ kXi⌘
(3)

i k2
V

�1
i


Pi

j=1

(⌘
(2)

j )

2

+

(⌘
(3)

j )

2.

Moreover, by definition of c, Proposition 4, and the union
bound, we have that with probability at least 1 � �,
(⌘

(3)

j )

2

= 0 for all j 2 {1, . . . ,m}. On the other hand,
⌘(2)  c, therefore

kXie⌘ik
V

�1
i

 c

r
2 log

⇣m det(Vi)
1/2

�

⌘
+ c

p
i.

Substituting in the value of c yields the result.

The previous proposition implies that by setting �(i) =

(12v)
1

1+✏
�
8 log(2m/�)

r

� ✏
1+✏

⇣q
2 log

�m det(Vi)
1/2

�

�
+

p
i
⌘
+

1, we can ensure that µ 2 Ci with probability at least 1 �
2�. Moreover, in view of Proposition 5 and Proposition 2
again, we can provide the following regret guarantee for
our median of means algorithm.
Theorem 2. Let T

✏
1+✏ > n and set �(i) =

(12v)
1

1+✏
�
8 log(2m/�)

r

� ✏
1+✏

⇣q
2 log

�m det(Vi)
1/2

�

�
+

p
i
⌘
+

1 and m = T
2✏

1+3✏ . Then with probability at least 1 � 3�,
the regret of Algorithms 3 and 4 together is bounded by:

RegT  Cv
1

1+✏T
1+2✏
1+3✏

vuutn log

 
2T

✏
1+✏

n�

!"
log

✏
1+✏

⇣
2T

�

⌘

 
T� ✏

1+3✏

s

2n log

⇣
2T

2✏
1+✏

n�

⌘
+ 1

!
+ 1

#
.

for some universal constant C.

The details of the computation are provided in the ap-
pendix.

Theorem 2 tells us that the regret of Algorithms 3 and 4
together is in eO(T

1+2✏
1+3✏

). Note that the regret bound of this
algorithm compares favorably against that of the truncation
algorithm (which was in eO(T

2+✏
2(1+✏)

)) for ✏ < 1, but has a
worse asymptotic rate when ✏ > 1.

Another interesting point is that as ✏ ! 1 (i.e. when
all moments exist), the regret of the median of means al-
gorithm is in eO(vT 2/3

) and the truncation algorithm is in
eO(vT 1/2

). Thus, the median of means algorithm does not
converge to the asymptotically optimal rate.
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Figure 1. Comparison of the truncation algorithm versus the vanilla algorithm for bounded losses. (a) Mean regret over 20 replicas of
the same experiment, the error bars are too small to be noticed in the plots. (b) Distance kµt �µk for one realization of the experiment.
The y-axis is in logarithmic scale. (c) Magnitude of confidence radius �(t) for one experiment realization.

It is known (Bubeck et al., 2013) that for the multi-armed
bandit problem, the optimal regret for sub-Gaussian noise
can be recovered with only a second moment assumption.
In our case, we have only ensured an O(T 3/4

) regret for
both algorithms. It is unclear if this O(T 1/4

) gap between
heavy-tailed noise and sub-Gaussian noise is only due to
our choice of estimator or if it is a general problem for lin-
ear bandits with heavy tails. While one could try other ro-
bust estimates such as the technique of (Hsu and Sabato,
2014), that algorithm is difficult to apply, because the re-
gression matrix Vt could change at every round. In that
case the recurrence Vt = Vt�1

+xtx
>
t ,which was crucial

in the proof of Proposition 2, would no longer be satisfied.

Finally, our analysis relied on a concentration bound for
self-normalized processes (Lemma 2). This bound is of the
Hoeffding type and depends on the L1 norm of the random
variables. We believe that recovering the optimal O(T 1/2

)

regret would be possible under the truncation algorithm if
this concentration bound depended instead on the second
moment in a way similar to Freedman’s inequality. How-
ever, no such bound exists in the literature, and it seems
highly non-trivial to craft such an extension.

Both of the algorithms presented require a priori knowl-
edge of ✏. It is reasonable to inquire whether this can
be avoided. Unfortunately, this issue appears in all
confidence-bound based algorithms in the bandit litera-
ture, including the unbounded MAB case in (Bubeck et al.,
2013). In fact, an a priori upper bound is required even in
the bounded noise case (Bubeck and Cesa-Bianchi, 2012).

6. Experiments
We now present empirical results showing that the trunca-
tion algorithm benefits from a better regret than the vanilla
linear bandit algorithm of (Abbasi-Yadkori et al., 2011).
Our experimental setup is as follows: we let d = 50 and
µ =

1p
n
1 2 Rn, where 1 is a vector with all entries

set to 1. For every x 2 B
1

the reward function is given

by x 7! µ>
x + ⌘, where ⌘ is a random variable taking

values �� with probability 1 � �2 and 1

� with probabil-
ity �2 where � =

1p
40T

. Notice that in this scenario the
L1 norm of the noise is in O(

p
T ) while the second mo-

ment of the noise is equal to v = 1. In order to make the
algorithm of (Abbasi-Yadkori et al., 2011) as competitive
as possible we set the parameter R, defining the function
� in (3), to the optimal sub-Gaussian constant. That is,
R = inf{r|E[et⌘

]  e
r2t2

2 8t}.

Figure 1(a) shows the mean regret over 20 replicas achieved
by both the truncation algorithm and the algorithm of
(Abbasi-Yadkori et al., 2011) for T = 10

6. Notice that,
not only does our algorithm achieves much better regret
(we show a 25% improvement), but it is also more stable.
In particular, Figure 1(b) shows the effect of noisy obser-
vations on each algorithm. Whereas the distance of the
truncation algorithm estimates to the true hypothesis con-
sistently approach zero, the same estimates of the vanilla
algorithm seem to vary more and converge slower. Finally,
notice that the confidence radius �(t) remains consistently
smaller for our algorithm, which, in combination with the
previous statement makes the choice of µt closer to µ.

7. Conclusion
We provided the first known sublinear regret bounds for
stochastic linear bandits with heavy-tailed losses. Instead
of assuming bounded or sub-Gaussian noise, our algo-
rithms only require the existence of the (1+ ✏)-th moment.
One of our algorithms has a regret bound that converges
to the known optimal rate when infinitely many moments
exist, and the other one has a more favorable rate when
✏ < 1. An interesting question is whether one can modify
the median of means algorithm, so that it, too, converges to
the optimal rate for infinitely many moments. Finally, our
analysis poses the non-trivial question of whether an opti-
mal regret in O(T 1/2

) can even be achieved when the noise
has only a second moment.
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