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Abstract

A large class of commonly used probabilistic
models known as log-linear models are defined
up to a normalization constant.Typical learning
algorithms for such models require solving a se-
quence of probabilistic inference queries. These
inferences are typically intractable, and are a ma-
jor bottleneck for learning models with large out-
put spaces. In this paper, we provide a new ap-
proach for amortizing the cost of a sequence of
related inference queries, such as the ones arising
during learning. Our technique relies on a sur-
prising connection with algorithms developed in
the past two decades for similarity search in large
data bases. Our approach achieves improved run-
ning times with provable approximation guaran-
tees. We show that it performs well both on syn-
thetic data and neural language models with large
output spaces.

1. Introduction
A large class of probabilistic models used in machine learn-
ing, physics and statistics are defined up to a normaliza-
tion constant. This constant, often known as the partition
function, ensures that the model is a valid probability dis-
tribution. Models involving a normalization constant in-
clude undirected graphical models, such as Markov Ran-
dom Fields, Conditional Random Fields (Lafferty et al.,
2001), and extremely common special cases such as multi-
nomial logistic regression (softmax) (Koller & Friedman,
2009; Murphy, 2012).

Defining probabilities up to a normalization constant gives
some extra modeling flexibility, however, it comes at a
price. Nearly all inference tasks, including evaluating the
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probability of a state according to the model, require eval-
uating the partition function. Unfortunately, the problem
is generally intractable in the worst case, with complexity
scaling linearly in the number of states (Roth, 1996). Prob-
lems with large output spaces arise naturally in many fields
including NLP and computer vision (Bengio et al., 2006;
Andreas et al., 2015; Devlin et al., 2014), and pose numer-
ous challenges to inference and learning algorithms (Er-
mon et al., 2013a). Learning the parameters from data, in
particular, typically requires solving a sequence of proba-
bilistic inference queries. This is often a major bottleneck
for learning models with large output spaces.

While sequences of inference queries (arising at learning
time, but also at inference time, after the model has been
trained) are often treated independently and solved sepa-
rately, they share some common structure. This observa-
tion has been exploited before, e.g., in the so-called persis-
tent chains used in training RBMs (Tieleman, 2008), where
a Markov Chain is initialized using samples from a related
model (or training data) to speed up convergence. In this
work, we take an alternative view and propose an new ap-
proach to amortize the cost of a sequence of related infer-
ence queries (Gershman & Goodman, 2014). Specifically,
the idea is to pay upfront an overhead cost to construct a
special data structure. This data structure will later allow
us to answer inference queries in a much more efficient
way, thus amortizing the initial cost and overall reducing
the total computational cost.

Our technique relies on a surprising connection with al-
gorithms for similarity search in large data bases. These
algorithms have been critical to scale up information re-
trieval systems in the past two decades, e.g., to efficiently
detect duplicate documents at internet scale (Henzinger,
2006; Manku et al., 2007). In this work, we provide a
novel algorithm to sample from general log-linear models
based on solving a randomly perturbed Maximum Inner
Product Search (MIPS) instance (Shrivastava & Li, 2014).
We show that our approach produces samples with the cor-
rect marginals when an exact MIPS method is used, and
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we are able to bound the error induced by an approximate
MIPS solution technique. Crucially, a large literature ex-
ists on how to exactly or approximately solve sequences
of MIPS instances very efficiently (in an amortized sense).
One class of approaches are space-partitioning methods
(Ram & Gray, 2012; Koenigstein et al., 2012), similar to k-
d trees (Friedman & Tukey, 1974). One such advance is a
way to reduce MIPS to Maximum Cosine Similarity Search
(MCSS) (Neyshabur & Srebro, 2015). MCSS can be solved
using Locality Sensitive Hashing (LSH) techniques such as
the Signed Random Projections hash (Charikar, 2002) or a
Hamming distance LSH on vectors transformed by Signed
Random Projections (Ravichandran et al., 2005). There
is also a recent clustering approach to solve MCSS (Au-
volat et al., 2015) which uses spherical k-means (Zhong,
2005). Our framework allows us to leverage all these re-
sults to efficiently solve a sequence of related sampling
problems, where for example the parameters of the model
are allowed to change over time (a common situation in
a learning loop). Our approach can leverage any existing
MIPS solution technique as a block-box, and inherits im-
proved running times with provable approximation guaran-
tees. We show that it performs well both on synthetic data
and neural language models with large output spaces.

2. Background
2.1. Log-linear Models

There is a large class of probabilistic models in machine
learning where the probabilities are defined up to a normal-
ization constant known as the partition function. This paper
focuses on inference and sampling in log-linear models.

Log-linear models are very common in machine learn-
ing and statistics, and include as special cases multino-
mial logistic regression, Conditional and Markov Random
fields (Lafferty et al., 2001; Koller & Friedman, 2009; Mur-
phy, 2012). Suppose we wish to assign probabilities to a
set of states X , for instance corresponding to all possible
assignments to a set of variables.

The defining characteristic of log-linear models is that the
log unnormalized probability is a linear combination of a
set of features or sufficient statistics φ : X 7→ Rd. Log-
linear models define the following probability distribution:

Pθ(x) = eθ·φ(x)Z−1θ (1)

where θ is a vector of weights. Zθ is a normalization con-
stant known as partition function:

Zθ =
∑
x∈X

eθ·φ(x) (2)

The partition function ensures that Pθ(x) is a valid proba-
bility distribution that sums to one.

2.1.1. INFERENCE AND LEARNING IN LOG-LINEAR
MODELS

The method presented in this paper provides estimates of
the partition function and samples from the model for dif-
ferent parameter values. This section highlights describes
why these tasks are important.

Evaluating the probability of a state (or some data) in a log-
linear models with parameters θ requires computing the
partition function (see equation 2). In general, computing
the partition function requires summing over all possible
states and is known to be computationally intractable in the
worst-case (Koller & Friedman, 2009). In practice, it can
be expensive even if the state space can be enumerated but
is moderately large (millions or billions of possible states).

Another important task is learning. Suppose we have some
data points D = (x1, . . . , xK), xi ∈ X , drawn i.i.d. from
some underlying distribution and we wish to find a θ to fit
a generative log-linear model (1) to this data. One common
estimator for θ is the maximum likelihood estimator which
can be written as

θ̂ = argmax
θ

Πx∈DPθ(x) (3)

and found by minimizing the negative log likelihood,

L(θ) = − 1

|D|
∑
x∈D

θ · φ(x) + log(Zθ) (4)

The negative log likelihood is convex so convex optimiza-
tion techniques can be used, such as gradient descent.

∇L(θ) = − 1

|D|
∑
x∈D

φ(x) + Eθ(φ(x)) (5)

The gradient set to 0 has an intuitive interpretation.
The maximum likelihood estimator for log-linear models
matches the means of the empirical data distribution and
the log-linear model.

Note that the only dependence of the gradient on θ is
through the expectation. Further, this expectation can be
approximated using a Monte Carlo estimate, if we have ac-
cess to samples from (1).

2.1.2. MODEL AVERAGING

Model averaging is a Bayesian technique to incorporate un-
certainty in the parameters. This provides an application of
inference in log-linear models for various values of θ. In
the model averaging framework, the parameters are a dis-
tribution with probability density P (θ) rather than a point
estimate (e.g., a posterior distribution over the parameters
given some data). To perform inference on new data points,
we integrate over the parameters:

P (x) =

∫
θ

Pθ(x)P (θ) (6)
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Since this is an expected value Eθ(Pθ(x)), we can use
Monte Carlo sampling to give an approximation. In par-
ticular, we draw samples S from P (θ) and use the estimate

Pθ(x) ≈ 1

|S|
∑
θ∈S

eθ·φ(x)Z−1θ (7)

2.2. Gumbel Variables

Our solution for the reduction of inference and sampling in
log-linear models to MIPS critically relies on properties of
Gumbel random variables. A Gumbel random variable G
(Gumbel & Lieblein, 1954) is a continuous random vari-
able with the cumulative distribution function (CDF),

P (G < x) = exp(− exp(−x− µ
β

)) (8)

where µ is the location parameter and β is the scale param-
eter. In this work, we will use µ = 0 and β = 1. We can
produce samples from a Gumbel distribution by sampling
U uniformly from [0, 1] and computing,

G = − log(− log(U)) (9)

2.2.1. PROPERTIES OF MAXIMUM OF GUMBELS

Gumbel variables have recently been used for a number of
probabilistic inference algorithms (Papandreou & Yuille,
2011; Hazan et al., 2013; Maddison et al., 2014; Kim et al.,
2016). These methods all rely on the max-stability of Gum-
bel random variables and Gumbel processes.

Lemma 2.1. Let {ai}i be a set of coefficients, and {Gi}i
and G be independent Gumbel random variables, then

max
i
{ai +Gi} ∼ log(

∑
i

eai) +G (10)

argmax
i
{ai +Gi} ∼Multinomial({ eai∑

i e
ai
}) (11)

Proof. See (Gumbel & Lieblein, 1954; Papandreou &
Yuille, 2011; Hazan et al., 2013; Maddison et al., 2014)

If ai = θ ·xi are the log probabilities in a log-linear model,
Lemma 2.1 can be used for inference. The solution to the
optimization problem in (10) is a Gumbel random variable
with the location shifted by the value of the log partition
function. Therefore, the value of the log partition function
can be estimated with a Monte Carlo estimate. Note that
from (11), the argmax will be a sample from the model.
More precisely, if we index X as {xi}Ni=1 and sample inde-
pendent Gumbel variables {Gi}Ni=1,

s = argmax
i

θ · φ(xi) +Gi (12)

is a sample from the model (Papandreou & Yuille, 2011),
i.e., s ∼ Pθ(x). For these reasons, Gumbel variables can
be used to reduce inference and sampling problems into
(randomly perturbed) optimization problems. This idea is
closely related to other recent inference techniques based
on random projections (Chakraborty et al., 2013; Ermon
et al., 2014; Zhu & Ermon, 2015; Hadjis & Ermon, 2014;
Achlioptas & Jiang, 2015; Hsu et al., 2016), and will be
one of the key ingredients for our new inference approach.

2.3. Maximum Inner Product and Cosine Similarity
Search

Maximum Inner Product Search (MIPS) is a standard com-
putational task where we are given a set of vectors V and
a query vector q, and the goal is to find the vector in V
that has the maximum inner product with the query vector
q (Shrivastava & Li, 2014; Ram & Gray, 2012; Shen et al.,
2015). In this work, we reduce sampling and inference in
log-linear models to the MIPS task. More precisely,

Definition 2.1. Given a set of vectors V = {v1, · · · , vN}
and a query vector q, the MIPS task is to compute

argmax
v∈V

q · v (13)

A geometric interpretation of this problem is to find the
vector v that has the maximum projection onto a query vec-
tor q. This problem has numerous applications, including
webpage duplication detection and image querying, where
V is a set of vectorized web pages or images and q is a
search query or webpage under question (Manku et al.,
2007; Henzinger, 2006; Kulis & Grauman, 2009).

In almost all cases, one is interested in solving a large num-
ber of queries for the same set of vectors V . The typical ap-
proach is to perform a preprocessing step on V in order to
quickly respond to a series of multiple queries. Thus, the
objective is to minimize the average query time since the
preprocessing time will be amortized for a large enough
number of queries.

Maximum Cosine Similarity Search (MCSS) is very simi-
lar to MIPS except that the objective is slightly different.

Definition 2.2. Given a set of vectors V = {v1, · · · , vN}
and a query vector q, the MCSS task is to compute

argmax
v∈V

q · v
||q||||v||

(14)

where || · || denotes the Euclidean norm.

Note that MCSS is a special case of MIPS if all of the vec-
tors in V are of unit length.
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2.3.1. CONVERSION OF MIPS TO MCSS

Several recent methods for MIPS rely on a reduction from
MIPS to MCSS. The methods in (Auvolat et al., 2015) and
(Shrivastava & Li, 2015) rely on a particular approximate
reduction of MIPS to MCSS proposed in (Shrivastava & Li,
2015). However, it appears that the reduction presented in
(Bachrach et al., 2014) and used in (Neyshabur & Srebro,
2015) is simpler, faster, and more accurate.

This reduction is summarized here. Because scaling
doesn’t affect the argmax, without loss of generality, let q
be a unit vector and the vectors V be unit length or smaller.
Denote vector concatenation as (·, ·). Define the transfor-
mation: r(v) = (v,

√
1− ||v||2). Let q′ = r(q) = (q, 0)

and V ′ = r(V ). q′ and V ′ are all vectors of unit length
since ||r(v)|| = 1. Finally, the dot product is unchanged:
r(q) · r(v) = q · v. Thus, a solution to the converted MCSS
problem will be a solution to the original MIPS problem.

2.3.2. METHODS FOR MIPS AND MCSS

A simple method to solve the MIPS problem is to iterate
through V to find the vector with maximum dot product
with q. The runtime of this method is simply O(N), where
N = |V |. Note that this naive method is optimal for a sin-
gle query q since we must examine all vectors in V . How-
ever, improvements can be made for the amortized query
time of multiple queries if we perform preprocessing on V .

A number of techniques attempt to optimize the amortized
complexity. These include branch-and-bound techniques
(Ram & Gray, 2012; Koenigstein et al., 2012), which are
similar to k-d trees (Friedman & Tukey, 1974). These were
recently generalized to max kernel search (Curtin et al.,
2013). However, as (Shrivastava & Li, 2014) notes, these
methods suffer from the curse of dimensionality.

There are also several approximate methods that seek to re-
turn a vector such that q · v is close to the maximum, but
not necessarily the maximum. Spherical k-means (Zhong,
2005) clusters V in a hierarchical structure as a preprocess-
ing step. To answer queries, the algorithm recurses down
the cluster hierarchy tree to find the element closest to q
(Auvolat et al., 2015). Note that there are parameters in
this model that trade off the runtime and the accuracy.

Another group of methods are based on Locality Sensitive
Hashing (Indyk & Motwani, 1998). These methods require
a family of hash functions where the collision probability
is monotonic in the similarity. The core idea is to create
many hash tables with a concatenation of the hash function
to amplify the collision probability for similar elements but
not for dissimilar ones. One such method for MCSS uses
Signed Random Projections (Charikar, 2002) as the hash
function. This hash function can be thought of as sampling
a random plane that passes through the origin and assigning

0 to one side and 1 to the other. Another method (Ravichan-
dran et al., 2005) transforms the input vectors to binary
vectors using a concatenation of Signed Random Projec-
tions, then uses a hamming distance hash on the resulting
transformed vectors. This method benefits from an adap-
tive technique for a hamming distance hash presented at
the end of Charikar (2002). LSH methods have probabilis-
tic theoretical guarantees for the results of the queries.
Theorem 2.1. Given a set V of size n with a similarity and
a hash familyH such that for S1 > S2 and p1 > p2,

• If Sim(x, y) ≥ S1, then Ph∈H[h(x) = h(y)] ≥ p1

• If Sim(x, y) ≤ S2, then Ph∈H[h(x) = h(y)] ≤ p2

one can construct a data structure which, given any query
q, does the following with probability 1 − δ: if there exists
a S1-neighbor of q in V , it returns a S2-neighbor of q in
V . Further, this can be done with O(nρ log(n)) query time
and O(n1+ρ) space where ρ = log(p1)

log(p2)
.

Proof. See (Indyk & Motwani, 1998) and (Shrivastava &
Li, 2014)

Intuitively, this theorem states that if we have a hash func-
tion with collision probabilities dependent on similarity, we
can design a data structure that responds to queries in sub-
linear time. Note that we can vary the difference between
S1 and S2 to trade off accuracy and runtime. Some possi-
ble examples are S2 = cS1 or S2 = S1 − c. We will refer
to the later as additive error.

3. Sampling and Inference in Log-linear
Models via MIPS

Our main contribution is a new approach for sampling and
inference in log-linear models based on solving a sequence
of MIPS randomly perturbed by Gumbel random variables.

In order to use log-linear models, it is often necessary to
provide samples from the model or to estimate Z−1θ for
various values of θ. For example, samples can be used to
estimate an expectation for gradient descent (see equation
5) and Z−1θ can be used for inference, such as model aver-
aging (see equation 7).

Here we present a method to accomplish these tasks using
a combination of MIPS and Gumbel variables. As seen in
equation 12, we can use the argmax property of the Gumbel
(equation 11) to get t samples from the model.
Theorem 3.1. Using the previous notation, let

H = max
i
{θ · φ(xi) +Gi} (15)

then e−H is an exponential variable with rate Zθ.
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Proof. From the maximum property of the Gumbel (equa-
tion 10),H has the same distribution as log(Zθ)+G where
G is a Gumbel variable. Thus, if U is a uniform variable
on the unit interval,

H ∼ − log(− log(U)) + log(Zθ) (16)

which implies

e−H ∼ − log(U)Z−1θ (17)

which is an exponential random variable with rate Zθ.

Because of this theorem, e−H has mean Z−1θ and variance
Z−2θ . Thus, we can take t samples of e−H to estimate Z−1θ .

One may wonder why such an estimate is necessary and
if there is another suitable estimate. We may observe that
E[H] = log(Zθ) + γ where γ is the mean of a Gumbel, the
Euler-Mascheroni constant. From this, we might attempt
to to estimate Z−1θ by exp(−(H − γ)) where H is the av-
erage of a sample of several H . While this is a consistent
estimator, it is not unbiased and has a asymptotic variance
of (π2/6)Z−2θ which is π2/6 ≈ 1.645 times the variance
of our proposed estimator. Another estimate we might con-
sider is eH . However, this won’t behave well as it does not
have a finite expectation.

3.1. MIPS Formulation

The key contribution of this work is to formulate this as a
MIPS problem. Denote vector concatenation by (·, ·). In-
tuitively, we can concatenate a series of k Gumbel vari-
ables to the end of the feature vectors and concatenate an
elementary vector to the end of the query to access just
one Gumbel variable at a time. Let, qj = (θ, ej) and
vi = (φ(xi), {Gi,j}j) where j = 1..t and ej is the jth

elementary vector. If we define,

Sj = argmax
i

qj · vi (18)

Hj = max
i
qj · vi (19)

then {Sj}j are independent samples from the model and
{Hj}j can be used for a Monte Carlo estimate of the in-
verse partition function, as described above. Thus, our
query is qj and we perform preprocessing on V = {vi}i.

This method is effective in situations where the input data
X is fixed but we wish to perform sampling or inference for
various values of θ. In these cases, the preprocessing time
is amortized over the various values of θ and thus our infer-
ence and sampling have the time complexity of the query
time, which can be sub-linear for MIPS methods.

Intuitively, we reduce the problem of sampling and infer-
ence to a well-studied optimization problem (Ermon et al.,

Algorithm 1 MIPS-Gumbel Initialization
Input: data {φ(xi)}Ni=1, t, k
for i = 1 to N do

for j = 1 to kt do
Sample Gumbel and save to Gi,j

end for
Set vi = (φ(xi), {Gi,j}j)

end for
Create MIPS data structure M from {vi}Ni=1

Algorithm 2 MIPS-Gumbel t Samples
Input: MIPS data structure M , Parameters θ
Randomly choose subset J of size t from {1, .., kt}
Initialize S = ∅
for j in J do
qj = (θ, ej)
Query M with qj and add the argmax to S

end for
Return: S

2013a;b;c; Achlioptas & Jiang, 2015; Hsu et al., 2016).
Thus, for situations where the same X are used with vari-
ous values of θ, we solve a similar optimization problem.
This opens up the problem to be solved by MIPS tech-
niques. While the naive, standard method performs a com-
putation on X for each value of θ, our method allows for
MIPS preprocessing to avoid wasting computation.

One thing to note about this method is that the estimates for
various θ will have the correct marginal distribution (with
respect to drawing the initial Gumbels) but will not be inde-
pendent. In particular, there will be a dependence for very
similar or equal values of θ. It should be noted that sam-
ples obtained using Markov Chain Monte Carlo methods
are also typically not independent. In our case, this depen-
dence can be mitigated by sampling kt sets of N Gumbels
(each set has one Gumbel for each state) instead of just t.
Then, use a random sample of t sets each time we wish to
perform sampling or inference. This works empirically as
shown in our experiments.

3.2. Algorithm

Our proposed approach has two phases. The first one is a
preprocessing or initialization phase, that sets up the appro-
priate data structures to later speed up a sequence of MIPS
queries. The pseudocode is presented in Algorithm 1. This
algorithm only needs to be run once for input data X . The
sampling algorithm is shown as Algorithm 2. This returns t
independent samples, which, for instance, could be used to
estimate the expectation of φ(x). The inverse partition esti-
mation algorithm is shown as Algorithm 3. This algorithm
returns a numerical estimate from averaging t samples.
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Algorithm 3 MIPS-Gumbel Inverse Partition Estimate
Input: MIPS data structure M , Parameters θ
Randomly choose subset J of size t from {1, .., kt}
Initialize S = ∅
for j in J do
qj = (θ, ej)
Query M with qj and save the max as Hj

add e−Hj to S
end for
Estimate =

∑
s∈S s

t

Return: Estimate (Estimate for Z−1θ )

3.3. Analysis

3.3.1. RUNTIME

Theorem 3.2. Suppose we have a MIPS technique with
O(f(N)) query time. Then the MIPS reduction technique
can produce t exact samples from the model or estimate
the inverse partition function with t unbiased Monte Carlo
samples with known variance in O(f(N)t) time.

Proof. Once the data structure is built, to gain t samples
from the model or t Monte Carlo, we require querying
the MIPS data structure t times. Since each query takes
O(f(N)), the runtime is O(f(N)t). With exact MIPS, the
t samples are exact and the inverse partition function esti-
mate is unbiased and has known variance.

Since t doesn’t increase withN , any sub-linear MIPS tech-
nique will improve the runtime for large N . As some ex-
amples, f(N) = O(Nρ log(N)) for LSH methods, and
f(N) = O(logN) for spherical k-means hierarchical clus-
tering. The space-partitioning in (Ram & Gray, 2012)
does not provide asymptotic runtime complexity but gives
speedups on empirical datasets between 2 and 20,000.

3.3.2. EFFECT OF APPROXIMATE MIPS

There has been recent work in improving approximate
MIPS rather than exact MIPS. One way to do this is by
relying on Locality Sensitive Hashing (Shrivastava & Li,
2014; 2015; Ravichandran et al., 2005).

If an approximate MIPS technique has an additive error
guarantee (as is the case for LSH methods, see Theorem
2.1), we can prove bounds for how the error is propa-
gated through our method. Suppose we have an approxi-
mate MIPS method that returns a vector with inner product
at most c less than the true maximum. Here, bounds are
shown regarding the partition function estimation and sam-
pling probabilities.

Theorem 3.3. For an approximate MIPS method with ad-
ditive error c > 0, let the inverse partition function esti-

mate using Gumbels and exact MIPS be Ẑ−1 and the esti-
mate with approximate MIPS be Z̃−1. Then,

Ẑ−1 ≤ Z̃−1 ≤ ecẐ−1 (20)

Thus, using an approximate MIPS method will not make
the estimate smaller but could increase it by up to a factor
of ec.

Theorem 3.4. For an approximate MIPS method with ad-
ditive error c > 0, let the sample with the approximate
MIPS be ĩ. Then,

e−cPθ(xk) ≤ P (̃i = k) ≤ ecPθ(xk) (21)

Thus, sampling with an approximate MIPS method at most
affects the sampling probabilities by a factor of ec. The
proofs of these two theorems are in the appendix.

4. Experimental Results
The main purpose of our empirical evaluation is to demon-
strate that our MIPS reduction using Gumbels (MRG)
doesn’t affect the accuracy of sampling or inference. We
show the results of the reduction on model averaging and
learning via gradient descent, two tasks introduced in the
Background section. We also show the empirical speedup
achieved using a particular MIPS technique.

We compare the results of the exact methods with the re-
sults of the MRG presented in this work for gradient de-
scent and model averaging. We use naive exact MIPS as
the black box MIPS solver for MRG. The runtime depends
on the particular MIPS technique used. As noted in Section
3.3.1, we use O(f(N)t) time as opposed to O(N) time for
each gradient computation or Monte Carlo estimate, where
f(N) depends on the specific MIPS technique used. In the
case of approximate MIPS, f(N) can be chosen to trade
off accuracy vs. computational cost, as in Theorem 2.1.
We emphasize that we can use any existing MIPS tech-
nique as a black box within our framework. To empirically
show an example of the speedup for one particular MIPS
technique, we run gradient descent with the hierarchical
spherical k-means (HSKM) approximate MIPS technique
(Auvolat et al., 2015).

4.1. Data

We use synthetic data and real data in these experiments.
The synthetic data was normally distributed with 200 di-
mensions and N=10,000 states.

The real data we use is the word2vec dataset, a word
embedding dataset released by Google (Mikolov et al.,
2013a;b). This dataset is made by generating tokens for
words and short phrases and then learning a probabilistic
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model to find vector embeddings. We used the Continuous
Bag of Words (CBOW) model which has an implicit log
linear model (Mikolov et al., 2013a). The log linear model
attempts to predict a word from the surrounding context
and the resulting embeddings can be used as a meaningful
featurization of the words. Our results are run on a dataset
with N = 681, 321 data points and 200 dimensions.

4.2. Model Averaging

For the model averaging task, we have the states X and a
fixed θ0. We can compute the probabilities of the elements
of X according to the log-linear model using θ0 as the pa-
rameters (Equation 1). For this task, we wish to introduce
model uncertainty by averaging over a distribution of θ. In
this case, we use a normal distribution with mean θ0.

The two methods we compare is a Monte Carlo estimate
using exact probabilities and a Monte Carlo estimate us-
ing our inference technique with our MIPS Reduction us-
ing Gumbels (MRG) using exact MIPS. We used 10,000
Monte Carlo samples. For the MIPS reduction, k = 5 and
t = 100. In general, a larger k will make the samples for
different θ less dependent and a larger t will decrease the
variance of the estimate.

We show that the two methods provide similar results in
our experiments, implying that our method is accurate. We
evaluate the techniques by plotting the ratio of the prob-
ability of the model averaging methods to the probability
computed without model averaging, i.e., evaluated using
the MAP parameter estimate θ0. Ideally, we would like to
have similar ratios for the two methods (meaning that their
estimates are similar).

4.2.1. SYNTHETIC DATA

For the synthetic data, we sample θ0 in a random direction
from a normal distribution.

The results can be seen in Figure 1. To evaluate the perfor-
mance on a mix of states with high and low probabilities,
results are shown for the 1st, 2nd, 3rd, 10th, 100th, and
1000th most likely states. We will refer to this as the proba-
bility ranking of the states. The probabilities of these points
without model averaging are in Table 3 in the Appendix.

The horizontal black line is the value without model aver-
aging. To plot on the same axes, the probabilities for each
point were scaled to the value without model averaging. It
can be seen that the results of our MRG method closely
align to the exact method, and both give results different
from those without model averaging.

Figure 1. The estimated probabilities (as a ratio to the probability
w.r.t. MAP parameter estimate) for various elements of X in the
synthetic dataset using exact inference and inference with MRG.
The horizontal line is without model averaging and two standard
deviations are shown as error bars. Our MRG technique achieves
the same level of accuracy.

4.2.2. WORD2VEC DATA

The results for the word2vec data were created in the same
way as in the synthetic data. See the resulting probability
ratios in Figure 2. Again, we see that our MRG method
matches the exact method, and that both are different from
the results without model averaging.

The θ0 was computed according to the implicit log-linear
model using the context of the sentence that was chosen be-
forehand for evaluation: ”it has survived the stresses
flight to put it through”. Intuitively, this is a probabilis-
tic model for the word used to fill the gap. We show the
results for the five most likely words, and then powers of
ten, i.e. for the states (words) with probability ranking 1,
2, 3, 4, 5, 10, 100, 1000, 10000, and 10000. See Table 4
in the appendix for the probabilities of these states and the
corresponding word or short phrase.

4.3. Gradient Descent with word2vec Data

We also show the word2vec results for the gradient descent
algorithm. Each θ defines a probability distribution over
the words in the dataset using the word embeddings as the
features φ(x). The task is to maximize the likelihood of a
subset of words from a specific category, where a Gaussian
prior is put on the parameters. We achieve this by using
Equation 5 with an extra term for the Gaussian prior.

We compare the results of gradient descent with the exact
gradient and of gradient descent using samples from our
MIPS reduction. Ideally, the most likely words under the
learned model will be from the category. However, for a
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Figure 2. The estimated probabilities (as a ratio to the probability
w.r.t. MAP parameter estimate) for various output labels in the
word2vec dataset using the exact method and our MRG method.
The horizontal line is without model averaging and two standard
deviations are shown as error bars. Our MRG technique achieves
the same level of accuracy.

good evaluation of whether the MIPS reduction hurts the
accuracy, there needs to be a difference between solving
with the MLE and a naive method. Note that the mean of
the input words is a simple heuristic that works well in gen-
eral, but fails in some cases. Such a case is the basketball
category, which can be confused with other sports. We use
this category and choose a number of basketball words that
can be found in the appendix in Table 5.

For this experiment, we also include results from using
the hierarchical spherical k-means algorithm (HSKM) (Au-
volat et al., 2015) as the MIPS method. This is not meant
to give an exhaustive comparison of the MIPS techniques,
but rather show that speedups that are possible.

We compare the results of the mean heuristic to the exact
method and our MRG method, both with exact MIPS and
with HSKM. We computed the top 50 words from the four
methods and report the number of non-basketball mistakes
in Table 1. The full list of words can be seen in Table 6 and
Table 7 in the appendix. It can be seen that the heuristic
performs poorly while both exact and and our MRG with
exact MIPS work well. Introducing the approximate MIPS
technique adds error so that it yields results between the
exact and the mean heuristic.

As another comparison, the log posterior probability of the
data and parameters can also be seen in Table 1. Note
that a scaling constant was optimized for a fair compari-
son with the mean heuristic. We can see that our MRG
method with exact MIPS yields almost the same value as
the exact method, while the mean heuristic and our MRG
method with HSKM perform significantly worse.

Method # Mistakes Log Prob.
Exact Gradient 3 -7.15

MRG Method: Exact MIPS 3 -7.18
MRG Method: HSKM MIPS 7 -8.70

Mean Heuristic 13 -8.91

Table 1. A table of the mistakes and posterior probability of the
specification words for the basketball category. We show the re-
sult of gradient descent with the exact method; gradient descent
with our MRG method, with exact MIPS and HSKM MIPS, and
the mean heuristic. We can see that our MRG method with exact
MIPS has similar results to the exact method. HSKM allows us to
trade off accuracy for speed in a principled way.

Method Seconds per Iteration
Exact Gradient 4.7

MRG Method: HSKM MIPS 0.73

Table 2. Runtime for each gradient descent iteration for exact
method and our MRG method using hierarchical spherical k-
means approximate MIPS.

Finally, we present the time per gradient iteration in Table
2 to show a 6X-7X speedup. The times are both for a single
core running in python. It should be noted that the HSKM
comes with around 10 minutes of preprocessing (that could
be amortized for multiple runs) and that the MRG itera-
tions are slightly weaker since they are somewhat stochas-
tic (highly dependent on gradient descent specifics). Even
when these effects are included for our experiment, the
MIPS reduction with HSKM is still faster.

5. Conclusion
In conclusion, we propose an novel way to reduce infer-
ence and sampling problems with large output spaces to
randomly perturbed MIPS. This method is particularly use-
ful in settings where we wish to perform inference or sam-
pling on a fixed set of states for various parameters.

Our method crucially relies on MIPS, a well studied prob-
lem with a number of efficient solutions that perform well
both in theory and practice. Our method thus provides a
way to take advantage of recent advances in algorithms for
MIPS to speed up sampling, partition function estimation,
model averaging, and training. Using approximate MIPS
techniques, we can trade off accuracy and speed in a prin-
cipled way, thanks to our novel error analysis.

Future work will examine the how this method interacts
with various MIPS techniques. It would be important to
understand the tradeoffs between exact MIPS techniques,
LSH-based methods, and other approximate MIPS tech-
niques through empirical evaluation.
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