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A. Appendix A
A.1. Proof of Theorem 1

The proof is by contradiction. Fix a distribution P satis-
fying conditional independence, and let x denote a fixed
set of instances. Denote P(Y = 1|xi) = ηi and the op-
timal classifier by s∗ ∈ {0, 1}n. Suppose there exist in-
dices j, k such that s∗j = 1, s∗k = 0 and ηj < ηk. Let
s′ ∈ {0, 1}n be such that s′j = 0 and s′k = 1, but identical
to s∗ otherwise i.e. s∗i = s′i ∀i ∈ [n]\{j, k}. Note that∑n

i=1 s
∗
i =

∑n
i=1 s

′

i. For convenience, define:

UL(s;P) := EY∼P(.|x)L(s,Y) .

By optimality of s∗,

UL(s∗;P)− UL(s′;P) ≤ 0. (6)

Consider the LHS, UL(s∗;P)− UL(s′;P) is equal to:

∑

y∈{0,1}n

P (y|x)[L(s∗,y)− L(s′,y)] =

∑

y∈{0,1}n:yj ̸=yk

P (y|x)[L(s∗,y)− L(s′,y)]

+
∑

y∈{0,1}n:yj=yk

P (y|x) [L(s∗,y)− L(s′,y)]︸ ︷︷ ︸
(∗)

Note that when yj = yk,
∑n

i=1 s
∗
i yi =

∑n
i=1 s

′
iyi, so

L(s∗,y)−L(s′,y) = 0. It follows that the term (∗) equals
0.

Next we apply the representation of Proposition 1 with
v(s) = 1

n

∑n
i=1 si and p(y) = 1

n

∑n
i=1 yi. Let z ∈

{0, 1}n−2 denote the vector corresponding to n−2 indices
{yi, i ∈ [n] \ {j, k}}, then UL(s∗;P)− UL(s′;P) is given
by:

∑

y∈{0,1}n:yj ̸=yk

P(y|x)[L(s∗,y)− L(s′,y)] =

∑

z∈{0,1}n−2

P(z, yj = 1, yk = 0|x)
[
Φ(T̂P(s∗,y), v(s∗), p(y))

− Φ(T̂P(s′,y), v(s′), p(y))
]

+ P(z, yj = 0, yk = 1|x)
[
Φ(T̂P(s∗,y), v(s∗), p(y))

− Φ(T̂P(s′,y), v(s′), p(y))
]

Let s̃ = {s∗i ∀i ∈ [n] \ {j, k}} and define #TP (z) :=∑
i s̃izi and #p(z) = zi (where the # prefix indi-

cates counts rather than normalized values), and note that
v(s∗) = v(s′). With these substitutions, UL(s∗;P) −

UL(s′;P) is given by:
∑

z∈{0,1}n−2

P(z, yj = 1, yk = 0|x)

[
Φ

(
1

n
(#TP (z) + 1), v(s′),

1

n
(#p(z) + 1)

)

− Φ

(
1

n
#TP (z), v(s′),

1

n
(#p(z) + 1)

)]

+ P(z, yj = 0, yk = 1|x)
[
Φ

(
1

n
#TP (z), v(s′),

1

n
(#p(z) + 1)

)

−Φ( 1
n
(#TP (z) + 1), v(s′),

1

n
(#p(z) + 1)

)]

By conditional independence, we have that
P (z, yj , yk|x) = P (z|x)P (yj |x)P (yk|x), so that the
equation further simplifies to:

∑

z∈{0,1}n−2

P(z|x)
[
Φ

(
1

n
(#TP (z) + 1), v(s′),

1

n
(#p(z) + 1)

)
− Φ

(
1

n
#TP (z), v(s′),

1

n
(#p(z) + 1)

)]

[
ηj(1− ηk)− ηk(1− ηj)

]
=

(ηj − ηk)
∑

z∈{0,1}n−2

P(z|x)
[
Φ

(
1

n
(#TP (z) + 1), v(s′),

1

n
(#p(z) + 1)

)
− Φ

(
1

n
#TP (z), v(s′),

1

n
(#p(z) + 1)

)]

Note that for each z ∈ {0, 1}n−2:

• Φ

(
1
n (#TP (z) + 1), v(s′), 1

n (#p(z) + 1)

)
can be

interpreted as L computed on the vectors y ∈ Rn

defined as {yi = zi ∀ i ∈ [n] \ {j, k}} ∪ {yj =
1} ∪ {yk = 0}, and s∗ ∈ Rn (which is the assumed
optimal).

• Φ

(
1
n#TP (z), v(s′), 1

n (#p(z) + 1)

)
can be inter-

preted as L computed on the vectors y ∈ Rn defined
as above and s′ ∈ Rn.

By TP monotonicity of L, for each z, the difference term

Φ

(
1

n
(#TP (z) + 1), v(s′),

1

n
(#p(z) + 1)

)

−Φ
(
1

n
#TP (z), v(s′),

1

n
(#p(z) + 1)

)
< 0.

This combined with (6) implies that ηj − ηk ≥ 0 which is
a contradiction.
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A.2. Proof of Theorem 2

Fix a multinomial distribution P, and instance x. Let the
classes C1, C2, . . . , Cn be indexed according to the de-
scending order of ηi := P(Y = Ci|x). First, observe
that it suffices to show that for any fixed 0 ≤ k ≤ n,
the optimal solution denoted by s∗(k) that minimizes the
expected loss restricted to subset of vectors Sk = {s ∈
{0, 1}n |

∑n
i=1 si = k} satisfies s∗1(k) = s∗2(k) = · · · =

s∗k(k) = 1, and s∗k+1(k) = · · · = s∗n(k) = 0. Define
[[P ]] = 1 if the predicate P is true or 0 otherwise. Now, for
any s ∈ Sk, we have,

EY∼P(.|x)[L(s, Y )] =
∑

i∈[n]

Φ

(
1

n
[[si = 1]],

k

n
,
1

n

)
ηi

=
∑

i:si=1

Φ

(
1

n
,
k

n
,
1

n

)
ηi +

∑

i:si=0

Φ

(
0,

k

n
,
1

n

)
ηi

= Φ

(
1

n
,
k

n
,
1

n

) ∑

i:si=1

ηi + Φ

(
0,

k

n
,
1

n

)(
1−

∑

i:si=1

ηi

)

=

(
Φ

(
1

n
,
k

n
,
1

n

)
− Φ

(
0,

k

n
,
1

n

)) ∑

i:si=1

ηi

+ Φ

(
0,

k

n
,
1

n

)

By TP monotonicity of L, we have,

Φ

(
1

n
,
k

n
,
1

n

)
< Φ

(
0,

k

n
,
1

n

)
.

So, to minimize the RHS of the above set of equations,
we need to maximize

∑
i:si=1 ηi. Restricting to Sk, the

sum is maximized when we choose classes with k largest
ηi values. We conclude that s∗(k) is the minimizer. This
completes the proof.

A.3. Sufficiency of TP Monotonicity

TP monotonicity of L is sufficient but not necessary for
the optimality characterization we show in the paper. For
instance, consider the subclass of losses where Φ(·, v, p)
is independent of the first argument i.e. independent of
T̂P. SEC is an example of a loss in this family with
ΦSEC(T̂P, v, p) = 2−v−p. But then, it is straight-forward
to characterize optimal solution for such losses:
Proposition 5. Let L = Φ(T̂P, v, p) be a loss independent
of T̂P, then the optimal (1) under L satisfies the ordering of
marginal probabilities as in Theorem 1.

Proof. Suppose Φ(·, v, p) is independent of its first argu-
ment. Let s∗ be an optimal classifier, with v∗ = v(s∗). If
s∗ does not already satisfy the property, then simply sort s∗
with respect to P(Yi|x) to obtain a new classifier s̃. Clearly,
v(s̃) = v∗, and Φ(·, v(s̃∗), p) = Φ(·, v∗, p).

A.4. Proof of Proposition 3

Suppose L satisfies TPR/TNR monotonicity. Let u1 =
TP(s1,y1) and u2 = TP(s2,y2), v = v(s1) = v(s2)
and p = p(y1) = p(y2). Note that Φ(u1, v, p) =
Γ(u1

p , 1−v−p+u1

1−p , p) (and similarly equality holds for
Φ(u2, v, p)). Now, whenever u1 = T̂P(s1,y1) >

T̂P(s2,y2) = u2, v(s1) = v(s2) = v, and
p(y1) = p(y2) = p, we have T̂PR(s1,y1) >

T̂PR(s2,y2), T̂NR(s1,y1) > T̂NR(s2,y2), and

Φ(u1, v, p) = Γ(
u1

p
,
1− v − p+ u1

1− p
, p)

= Γ(T̂PR(s1,y1), T̂NR(s1,y1), p)

(∗)
< Γ(T̂PR(s2,y2), T̂NR(s2,y2), p)

= Γ(u2.p,
1− v − p+ u2

1− p
, p)

= Φ(u2, v, p)

where (∗) follows from TPR/TNR monotonicity of L. Thus
L satisfies TP monotonicity.

B. Appendix B
B.1. Faster Algorithm for Fractional-Linear Losses

We focus our attention on the fractional-linear family of
losses studied by Koyejo et al. (2014; 2015). A fractional-
linear loss can be represented by ΦFL as given in (4).
As shown in Proposition 2, LFL satisfies TP monotonic-
ity when c1 < d1. When c3 = 0 and the constants
{d0, d1, d2, d3} are rational in (4), we can get a quadratic-
time procedure for computing s∗ appealing to the method
proposed by Ye et al. (2012). Formally, we consider the
sub-family of TP monotonic fractional-linear losses:

{LSFL : ΦFL(u, v, p) =
c0 + c1u+ c2v

d0 + d1u+ d2v + d3p
, c1 < d1,

and d0, d1, d2, d3 are rational},
(7)

which includes the loss based on Jaccard measure and oth-
ers not studied by Ye et al. (2012). Consider Step 6 of
Algorithm 1 for a loss in family (7):

Lk ←
∑

0≤k1≤k

C[k1](c0n+ c1k1 + c2k) .

∑

0≤k2≤n−k

D[k2]/(d0n+ (d1 + d3)k1 + d2k + d3k2).

Define b(k,α) =
∑

0≤k2≤n−k Dk[k2]/(α + d3k2). Ver-
ify that b(n,α) = 1/α. From the fact that Dk−1[i] =
ηkDk[i− 1] + (1− ηk)Dk[i], it follows that:

b(k − 1,α) = ηkb(k,α+ d3) + (1− pk)b(k,α).
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Now, when di’s are rational, i.e. di = qi/ri, the above
induction can be implemented using an array to store the
values of b, for possible values of α.

Algorithm 2 Computing s∗ for LSFL in the family (7)
1: Input: Estimates of ηi = P(Yi = 1|x), i = 1, 2, . . . , n

sorted wrt. ηi, and c0, c1, c2, di = qi/ri, i = 0, 1, 2, 3
corresponding to LSFL

2: Init s∗i = 0, ∀i ∈ [n].
3: Set j0 ← r1r2r3q0, ju,1 ← r0r2r3q1, ju,2 ←

r0r1r2q3, jv ← r0r1r3q2
4: for 1 ≤ i ≤ (|ju,1|+ |ju,2|+ |jv|)n do
5: set S[i]← r0r1r2r3/(i+ j0n).
6: end for
7: for k = n to 1 do
8: For 0 ≤ i ≤ k, set Ck[i] as the coefficient of zi in

Πk
i=1

(
ηiz + (1− ηi)

)
.

9: LSFL;k ←
∑

0≤k1≤k

(c0n+ c1k1 + c2k)Ck[k1]S[(ju,1 +

ju,2)k1 + jvk].
10: for i = 1 to (|ju,1|+ |ju,2|+ |jv|)(k − 1) do
11: S[i]← (1− ηk)S[i] + ηkS[i+ ju,2].
12: end for
13: end for
14: Set k∗ ← argmink LSFL;k and s∗i ← 1 for i ∈ [k∗].
15: return s∗

Correctness of Algorithm 2: When d3 ̸= 0, at line
7 of Algorithm 2, we can verify that S[i] = b(k, (i +
j0n)d3/ju,2), and therefore at line 9, S[(ju,1 + ju,2)k1 +
jvk] = b(k, (ju,1 + ju,2)k1 + jvk + j0n)d3/ju,2) =
b(k, (d1 + d3)k1 + d2k + d0n) as desired. When d3 = 0,
b(k,α) = b(k − 1,α) for all 1 ≤ k ≤ n. Let q3 = 0 and
r3 = 1. Then, line 5 sets S[i] = r0r1r2/(i+ j0n), line 11
maintains this invariant as ju,2 = 0 in this case, and there-
fore at line 9, S[(ju,1+ ju,2)k1+ jvk] = 1/(d1k1+ d2k+
d0n) as desired.

B.2. Proof of Theorem 3

For convenience, define:

UL(s;P) := EY∼P(.|x)L(s,Y) .

Let UL
∗ := UL(s∗;P) and let ÛL = UL(ŝ;P). Also define

the empirical distribution:

P̂(y|x) = Πn
i=1η̂

yi
i (1− η̂i)

1−yi .

Now consider:

ÛL − UL
∗ = ÛL + UL(ŝ; P̂)− UL(ŝ; P̂)− UL

∗

≤ ÛL + UL(s∗; P̂)− UL(ŝ; P̂)− UL
∗

≤ 2max
s

∣∣UL(s;P)− UL(s; P̂)
∣∣ (8)

For any fixed s ∈ {0, 1}n, we have:
∣∣UL(s;P)− UL(s; P̂)

∣∣ =
∣∣

∑

y∈{0,1}n

P̂(y|x)L(s,y)−
∑

y∈{0,1}n

P(y|x)L(s,y)
∣∣

≤
∑

y∈{0,1}n

∣∣P̂(y|x)− P(y|x)
∣∣L(s,y) (9)

Let η(x) denote the empirical estimate obtained using m

training samples. Now because η̂(x) p→ η(x), we have that
for sufficiently large set of training examples, P̂(y|x) p→
P(y|x); i.e. for any given ϵ > 0, there exists mϵ such
that for all m > mϵ, |P̂(y|x) − P(y|x)| < ϵ, with
high probability. It follows that, with high probability,
(9) ≤ ϵ

∑
y∈{0,1}n L(s,y). Assuming L is bounded, we

have that for any fixed s,
∣∣UL(s;P) − UL(s; P̂)

∣∣ ≤ Cϵ,
for some constant C that depends only on the metric L and
(fixed) test set size n. The uniform convergence also fol-
lows because the max in (8) is over finitely many vectors
s. Putting together, we have that for any given δ, ϵ′ > 0,
there exists training sample size mϵ′,δ such that the out-
put ŝ of our procedure satisfies, with probability at least
1− δ, ÛL − UL

∗ < ϵ′; when L is unbounded, we have that
s∗ = argmin

s∈{0,1}n

L(s, ·) over all unbounded L(s,y). Thus

all that is required is support consistency i.e. {y|P̂(y|x) >
0} p→ {y|P(y|x) > 0} which is a much weaker condition
than distribution consistency. The proof is complete.

C. Appendix C
EUM and DTA Classification

A recent flurry of theoretical results and practical al-
gorithms highlights a growing interest in understanding
and optimizing non-decomposable metrics (Dembczyn-
ski et al., 2011; Ye et al., 2012; Koyejo et al., 2014;
Narasimhan et al., 2014). Existing theoretical analysis
has focused on two distinct approaches for characterizing
the population version of the non-decomposable metrics:
identified by Ye et al. (2012) as decision theoretic analy-
sis (DTA) and empirical utility maximization (EUM). DTA
population utilities measure the expected gain of a classi-
fier on a fixed-size test set, while EUM population utilities
are a function of the population confusion matrix. In other
words, DTA population utilities measure the the average
utility over an infinite set of test sets, each of a fixed size,
while EUM population utilities evaluate the performance
of a classifier over a single infinitely large test set.

It has recently been shown that for EUM based popu-
lation utilities, the optimal classifier for large classes of
non-decomposable binary classification metrics is just the
sign of the thresholded conditional probability of the posi-
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tive class with a metric-dependent threshold (Koyejo et al.,
2014; Narasimhan et al., 2014). In addition, practical algo-
rithms have been proposed for such EUM consistent clas-
sification based on direct optimization for the threshold on
a held-out validation set. In stark contrast to this burgeon-
ing understanding of EUM optimal classification, we are
aware of only two metrics for which DTA consistent classi-
fiers have been derived and shown to exhibit a simple form;
namely, the Fβ metric (Lewis, 1995; Dembczynski et al.,
2011; Ye et al., 2012) and squared error in counting (SEC)
studied by Lewis (1995).

While the optimal classifiers of both EUM and DTA pop-
ulation utilities associated with the performance metrics
we study comprise signed thresholding of the conditional
probability of the positive class, the evaluation and opti-
mization for EUM and DTA utilities require quite different
techniques. Given a classifier and a distribution, evaluat-
ing a population DTA utility can involve exponential-time
computation, even leaving aside maximizing the utility on
a fixed test set. As we show, in light of the probability rank-
ing principle, and with careful implementation, this can ac-
tually be reduced to cubic complexity. These computations
can be further reduced to quadratic complexity in a few
special cases (Ye et al., 2012). To this end, we propose two
algorithms for optimal DTA classification. The first algo-
rithm runs in O(n3) time for a general metric, where n is
the size of the test set and the second algorithm runs in time
O(n2) for special cases such as Fβ and Jaccard. We show
that our overall procedure for decision-theoretic classifica-
tion is consistent. More recently, Parambath et al. (2014)
gave a theoretical analysis of the binary and multi-label Fβ

measure in the EUM setting. Dembczynski et al. (2011)
analyzed the Fβ measure in the DTA setting including the
case where the data is non i.i.d., and also proposed efficient
algorithms for optimal classification.


