
Control of Memory, Active Perception, and Action in Minecraft

Junhyuk Oh JUNHYUK@UMICH.EDU
Valliappa Chockalingam VALLI@UMICH.EDU
Satinder Singh BAVEJA@UMICH.EDU
Honglak Lee HONGLAK@UMICH.EDU

Computer Science & Engineering, University of Michigan

Abstract
In this paper, we introduce a new set of rein-
forcement learning (RL) tasks in Minecraft (a
flexible 3D world). We then use these tasks
to systematically compare and contrast exist-
ing deep reinforcement learning (DRL) architec-
tures with our new memory-based DRL architec-
tures. These tasks are designed to emphasize,
in a controllable manner, issues that pose chal-
lenges for RL methods including partial observ-
ability (due to first-person visual observations),
delayed rewards, high-dimensional visual obser-
vations, and the need to use active perception in
a correct manner so as to perform well in the
tasks. While these tasks are conceptually simple
to describe, by virtue of having all of these chal-
lenges simultaneously they are difficult for cur-
rent DRL architectures. Additionally, we evalu-
ate the generalization performance of the archi-
tectures on environments not used during train-
ing. The experimental results show that our new
architectures generalize to unseen environments
better than existing DRL architectures.

1. Introduction
Deep learning approaches (surveyed in LeCun et al., 2015;
Schmidhuber, 2015) have made advances in many low-
level perceptual supervised learning problems (Krizhevsky
et al., 2012; Girshick et al., 2014; Simonyan & Zisserman,
2015). This success has been extended to reinforcement
learning (RL) problems that involve visual perception. For
example, the Deep Q-Network (DQN) (Mnih et al., 2015)
architecture has been shown to successfully learn to play
many Atari 2600 games in the Arcade Learning Environ-
ment (ALE) benchmark (Bellemare et al., 2013) by learn-
ing visual features useful for control directly from raw pix-
els using Q-Learning (Watkins & Dayan, 1992).

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

To
p-

D
ow

n
V

ie
w

Fi
rs

t-
Pe

rs
on

V
ie

w

(a) t=3 (b) t=10 (c) t=11 (d) t=19

Figure 1. Example task in Minecraft. In this task, the agent should
visit the red block if the indicator (next to the start location) is
yellow. Otherwise, if the indicator is green, it should visit the blue
block. The top row shows the agent’s first-person observation.
The bottom row visualizes the map and the agent’s location; this
is not available to the agent. (a) The agent observes the yellow
indicator. (b) The agent looks left and sees the blue block, (c)
but it decides to keep going straight having previously seen the
yellow indicator. (d) Finally, it visits the red block and receives a
positive reward.

Recently, researchers have explored problems that require
faculties associated with higher-level cognition (e.g., in-
ferring simple general purpose algorithms: Graves et al.,
2014, and, Q&A: Weston et al., 2015). Most of these
advances, however, are restricted to the supervised learn-
ing setting, which provides clear error signals. In this pa-
per, we are interested in extending this success to similarly
cognition-inspired RL tasks. Specifically, this paper intro-
duces a set of tasks in Minecraft1, a flexible 3D world in
which an agent can collect resources, build structures, and
survive attacks from enemies. Our RL tasks (one exam-
ple is illustrated in Figure 1) not only have the usual RL
challenges of partial observability, high-dimensional (vi-
sual) perception, and delayed reward, but also require an
agent to develop movement policies by learning how to use
its active perception to observe useful information and col-
lect reward. In addition, our RL tasks require an agent to
learn to use any memory it possesses including its interac-
tion with active perception which feeds observations into

1https://minecraft.net/

https://minecraft.net/


Control of Memory, Active Perception, and Action in Minecraft

memory. We note that for simplicity we hereafter refer
to these cognition-inspired tasks as cognitive tasks but ac-
knowledge that they form at best a very limited exploration
of the range of cognitive faculties in humans.

In this work, we aim to not only systematically evaluate
the performance of different neural network architectures
on our tasks, but also examine how well such architec-
tures generalize to unseen or larger topologies (Minecraft
maps). The empirical results show that existing DRL ar-
chitectures (Mnih et al., 2015; Hausknecht & Stone, 2015)
perform worse on unseen or larger maps compared to train-
ing sets of maps, even though they perform reasonably well
on the training maps. Motivated by the lack of generaliza-
tion of existing architectures on our tasks, we also propose
new memory-based DRL architectures. Our proposed ar-
chitectures store recent observations into their memory and
retrieve relevant memory based on the temporal context,
whereas memory retrieval in existing architectures used in
RL problems is not conditioned on the context. In sum-
mary, we show that our architectures outperform existing
ones on most of the tasks as well as generalize better to un-
seen maps by exploiting their new memory mechanisms.

2. Related Work
Neural Networks with External Memory. Graves et al.
(2014) introduced a Neural Turing Machine (NTM), a dif-
ferentiable external memory architecture, and showed that
it can learn algorithms such as copy and reverse. Zaremba
& Sutskever (2015) proposed RL-NTM that has a non-
differentiable memory to scale up the addressing mecha-
nism of NTM and applied policy gradient to train the ar-
chitecture. Joulin & Mikolov (2015) implemented a stack
using neural networks and demonstrated that it can infer
several algorithmic patterns. Sukhbaatar et al. (2015b) pro-
posed a Memory Network (MemNN) for Q&A and lan-
guage modeling tasks, which stores all inputs and retrieves
relevant memory blocks depending on the question.

Deep Reinforcement Learning. Neural networks have
been used to learn features for RL tasks for a few decades
(e.g., Tesauro, 1995 and Lange & Riedmiller, 2010). Re-
cently, Mnih et al. (2015) proposed a Deep Q-Network
(DQN) for training deep convolutional neural networks
(CNNs) through Q-Learning in an end-to-end fashion;
this achieved state-of-the-art performance on Atari games.
Guo et al. (2014) used slow Monte-Carlo Tree Search
(MCTS) (Kocsis & Szepesvári, 2006) to generate a rela-
tively small amount of data to train fast-playing convolu-
tional networks in Atari games. Schulman et al. (2015),
Levine et al. (2016), and Lillicrap et al. (2016) have suc-
cessfully trained deep neural networks to directly learn
policies and applied their architectures to robotics prob-
lems. In addition, there are deep RL approaches to tasks
other than Atari such as learning algorithms (Zaremba

et al., 2016) and text-based games (Sukhbaatar et al.,
2015a; Narasimhan et al., 2015). There have also been a
few attempts to learn state-transition models using deep
learning to improve exploration in RL (Oh et al., 2015;
Stadie et al., 2015). Most recently, Mnih et al. (2016)
proposed asynchronous DQN and showed that it can learn
to explore a 3D environment similar to Minecraft. Unlike
their work, we focus on a systematic evaluation of the abil-
ity to deal with partial observability, active perception, and
external memory in different neural network architectures
as well as generalization across size and maps.

Model-free Deep RL for POMDPs. Building a model-
free agent in partially observable Markov decision pro-
cesses (POMDPs) is a challenging problem because the
agent needs to learn how to summarize history for action-
selection. To deal with such a challenge, Bakker et al.
(2003) used a Long Short-Term Memory (LSTM) net-
work (Hochreiter & Schmidhuber, 1997) in an offline pol-
icy learning framework to show that a robot controlled
by an LSTM network can solve T-Mazes where the robot
should go to the correct destination depending on the traf-
fic signal at the beginning of the maze. Wierstra et al.
(2010) proposed a Recurrent Policy Gradient method and
showed that an LSTM network trained using this method
outperforms other methods in several tasks including T-
Mazes. More recently, Zhang et al. (2016) introduced
continuous memory states to augment the state and ac-
tion space and showed it can memorize salient information
through Guided Policy Search (Levine & Koltun, 2013).
Hausknecht & Stone (2015) proposed Deep Recurrent Q-
Network (DRQN) which consists of an LSTM on top of a
CNN based on the DQN framework and demonstrated im-
proved handling of partial observability in Atari games.

Departure from Related Work. The architectures we
introduce use memory mechanisms similar to MemNN, but
our architectures have a layer that constructs a query for
memory retrieval based on temporal context. Our architec-
tures are also similar to NTM in that a recurrent controller
interacts with an external memory, but ours have a simpler
writing and addressing mechanism which makes them eas-
ier to train. Most importantly, our architectures are used in
an RL setting and must learn from a delayed reward sig-
nal, whereas most previous work in exploring architectures
with memory is in the supervised learning setting with its
much more direct and undelayed error signals. We describe
details of our architectures in Section 4.

The tasks we introduce are inspired by the T-maze
experiments (Bakker et al., 2003) as well as Maze-
Base (Sukhbaatar et al., 2015a), which has natural language
descriptions of mazes available to the agent. Unlike these
previous tasks, our mazes have high-dimensional visual ob-
servations with deep partial observability due to the nature
of the 3D worlds. In addition, the agent has to learn how



Control of Memory, Active Perception, and Action in Minecraft

Mkey
t

Mval
t

Wval

Wkey

M blocks
'

xtxt

(a) Write

ht

softmax

pt

⇥⇥

Mkey
t Mval

t

(b) Read

Figure 2. Illustration of memory operations.

best to control its active perception system to collect useful
information at the right time in our tasks; this is not neces-
sary in previous work.

3. Background: Deep Q-Learning
Denote the state, immediate reward, and action at time t as
st, rt, at respectively. In the DQN framework, every tran-
sition Tt = (st, st+1, at, rt) is stored in a replay memory.
For (each) iteration i, the deep neural network (with param-
eters θ) is trained to approximate the action-value function
from transitions {(s, s′, a, r)} by minimizing the loss func-
tions Li (θi) as follows:

Li (θ) = Es,a∼πθ

[
(yi −Q (s, a; θ))

2
]

∇θLi (θ) = Es,a∼πθ
[(yi −Q (s, a; θ))∇θQ (s, a; θ)]

where yi = Es′∼πθ
[r + γmaxa′ Q (s′, a′; θ′)] is the tar-

get Q-value estimated by a target Q-network (θ′). In prac-
tice, the expectation terms are approximated by sampling a
mini-batch of transitions from the replay memory. The pa-
rameter of target Q-network (θ′) is synchronized with the
learned network (θ) after a fixed number of iterations.

4. Architectures
The importance of retrieving a prior observation from
memory depends on the current context. For example,
in the maze of Figure 1 where the color of the indica-
tor block determines the desired target color, the indica-
tor information is important only when the agent is see-
ing a potential target and has to decide whether to ap-
proach it or find a different target. Motivated by the lack
of “context-dependent memory retrieval” in existing DRL
architectures, we present three new memory-based archi-
tectures in this section.

Our proposed architectures (Figure 3c-e) consist of con-
volutional networks for extracting high-level features from
images (§4.1), a memory that retains a recent history of ob-
servations (§4.2), and a context vector used both for mem-
ory retrieval and (in part for) action-value estimation (§4.3).
Depending on how the context vector is constructed, we ob-
tain three new architectures: Memory Q-Network (MQN),
Recurrent Memory Q-Network (RMQN), and Feedback
Recurrent Memory Q-Network (FRMQN).

Context

xtxt�M

CNN

Q

(a) DQN

Context

xt

CNN

Q

(b) DRQN

Context

Memory

Q

xt

CNN

(c) MQN

Context

Memory

xt

CNN

Q

(d) RMQN

Context

Memory

xt

CNN

Q

(e) FRMQN

Figure 3. Illustration of different architectures

4.1. Encoding
For each time-step, a raw observation (pixels) is encoded
to a fixed-length vector as follows:

et = ϕenc (xt) (1)

where xt ∈ Rc×h×w is h × w image with c channels, and
et ∈ Re is the encoded feature at time t. In this work, we
use a CNN to encode the observation.

4.2. Memory
The memory operations in the proposed architectures are
similar to those proposed in MemNN.
Write. The encoded features of last M observations are
linearly transformed and stored into the memory as key and
value memory blocks as illustrated in Figure 2a. More for-
mally, two types of memory blocks are defined as follows:

Mkey
t = WkeyEt (2)

Mval
t = WvalEt (3)

where Mkey
t ,Mval

t ∈ Rm×M are memory blocks with m-
dimensional embeddings, and Wkey,Wval ∈ Rm×e are
parameters of the linear transformations for keys and val-
ues respectively. Et = [et−1, et−2, ..., et−M ] ∈ Re×M is
the concatenation of features of the last M observations.
Read. The reading mechanism of the memory is based
on soft attention (Graves, 2013; Bahdanau et al., 2015) as
illustrated in Figure 2b. Given a context vector ht ∈ Rm
(§4.3), the memory module draws soft attention over mem-
ory locations (and implicitly time) by computing the inner-
product between the context and all key memory blocks as
follows:

pt,i =
exp

(
h>t M

key
t [i]

)
∑M
j=1 exp

(
h>t M

key
t [j]

) (4)

where pt,i ∈ R is an attention weight for i-th memory block
(t−i time-step). The output of the read operation is the lin-
ear sum of the value memory blocks based on the attention
weights as follows:

ot = Mval
t pt (5)

where ot ∈ Rm and pt ∈ RM are the retrieved memory
and the attention weights respectively.



Control of Memory, Active Perception, and Action in Minecraft

xt

ht

qtqt�1

ht�1

xt�1 xt+1

ht+1

qt+1

retrieve

Figure 4. Unrolled illustration of FRMQN.

4.3. Context
To retrieve useful information from memory, the context
vector should capture relevant spatio-temporal information
from the observations. To this end, we present three differ-
ent architectures for constructing the context vector:

MQN: ht = Wcet (6)
RMQN: [ht, ct] = LSTM (et,ht−1, ct−1) (7)

FRMQN: [ht, ct] = LSTM ([et, ot−1] ,ht−1, ct−1) (8)

where ht, ct ∈ Rm are a context vector and a memory cell
of LSTM respectively, and [et, ot−1] denotes concatenation
of the two vectors as input for LSTM. MQN is a feedfor-
ward architecture that constructs the context based on only
the current observation, which is very similar to MemNN
except that the current input is used for memory retrieval in
the temporal context of an RL problem. RMQN is a recur-
rent architecture that captures spatio-temporal information
from the history of observations using LSTM. This archi-
tecture allows for retaining temporal information through
LSTM as well as external memory. Finally, FRMQN has
a feedback connection from the retrieved memory to the
context vector as illustrated in Figure 4. This allows the
FRMQN architecture to refine its context based on the pre-
viously retrieved memory so that it can do more complex
reasoning as time goes on. Note that feedback connec-
tions are analogous to the idea of multiple hops in MemNN
in the sense that the architecture retrieves memory blocks
multiple times based on the previously retrieved memory.
However, FRMQN retrieves memory blocks through time,
while MemNN does not.

Finally, the architectures estimate action-values by incor-
porating the retrieved memory and the context vector:

qt = ϕq (ht, ot) (9)

where qt ∈ Ra is the estimated action-value, and ϕq is
a multi-layer perceptron (MLP) taking two inputs. In the
results we report here, we used an MLP with one hidden
layer as follows: gt = f

(
Whht + ot

)
,qt = Wqgt where

f is a rectified linear function (Nair & Hinton, 2010) ap-
plied only to half of the hidden units for easy optimization
by following Sukhbaatar et al. (2015b).

(a) I-Maze (b) Pattern Matching

(c) Random Maze (d) Random Maze w/ Ind

Figure 5. Examples of maps. (a) has an I-structured topology
where the location of indicator (yellow/green), goals (red/blue),
and spawn locations (black circle) are fixed across episodes. (b)
has two goals and two rooms with color patterns. (c) consists
of randomly generated walls and two goals. The agent can be
spawned anywhere except for goal locations. (d) is similar to (c)
except that it has an indicator at the fixed location (yellow/green)
and a fixed spawn location.

5. Experiments
The experiments, baselines, and tasks are designed
to investigate how useful context-dependent mem-
ory retrieval is for generalizing to unseen maps, and
when memory feedback connections in FRMQN are
helpful. Game play videos can be found in the sup-
plementary material and at the following website:
https://sites.google.com/a/umich.edu/
junhyuk-oh/icml2016-minecraft. Next, we
describe aspects that are common to all tasks and our
training methodology.
Environment. In all the tasks, episodes terminate either
when the agent finishes the task or after 50 steps. An agent
receives -0.04 reward at every time step. The agent’s initial
looking direction is randomly selected among four direc-
tions: north, south, east, and west. For tasks where there is
randomness (e.g., maps, spawn points), we randomly sam-
pled an instance after every episode.
Actions. The following six actions are available: Look
left/right (±90◦ in yaw), Look up/down (±45◦ in pitch),
and Move forward/backward. Moving actions move the
agent one block forward or backward in the direction it is
facing. The pitch is limited to [−45◦, 0◦].
Baselines. We compare our three architectures with two
baselines: DQN (Mnih et al., 2015) (see Figure 3a) and
DRQN (Hausknecht & Stone, 2015) (see Figure 3b). DQN
is a CNN architecture that takes a fixed number of frames as
input. DRQN is a recurrent architecture that has an LSTM
layer on top of the CNN. Note that DQN cannot take more

https://sites.google.com/a/umich.edu/junhyuk-oh/icml2016-minecraft
https://sites.google.com/a/umich.edu/junhyuk-oh/icml2016-minecraft


Control of Memory, Active Perception, and Action in Minecraft

Table 1. Performance on I-Maze. Each entry shows the average
success rate with standard error measured from 10 runs. For each
run, we measured the average success rate of 10 best-performing
parameters based on the performance on unseen set of maps. The
success rate is defined as the number of episodes that the agent
reaches the correct goal within 100 steps divided by the total num-
ber of episodes. ‘Size’ represents the number of blocks of the ver-
tical corridor. ‘X’ indicates that such sizes of I-Mazes belong to
the training set of maps.

SIZE TRAIN DQN DRQN MQN RMQN FRMQN
4 92.1(1.5) 94.8(1.5) 87.2(2.3) 89.2(2.4) 96.9(1.0)
5 X 99.3(0.5) 98.2(1.1) 96.2(1.0) 98.6(0.5) 99.3(0.7)
6 99.4(0.4) 98.2(1.0) 96.0(1.0) 99.0(0.4) 99.7(0.3)
7 X 99.6(0.3) 98.8(0.8) 98.0(0.6) 98.8(0.5) 100.0(0.0)
8 99.3(0.4) 98.3(0.8) 98.3(0.5) 98.0(0.8) 100.0(0.0)
9 X 99.0(0.5) 98.4(0.6) 98.0(0.7) 94.6(1.8) 100.0(0.0)
10 96.5(0.7) 97.4(1.1) 98.2(0.7) 87.5(2.6) 99.6(0.3)
15 50.7(0.9) 83.3(3.2) 96.7(1.3) 89.8(2.4) 97.4(1.1)
20 48.3(1.0) 63.6(3.7) 97.2(0.9) 96.3(1.2) 98.8(0.5)
25 48.1(1.0) 57.6(3.7) 98.2(0.7) 90.3(2.5) 98.4(0.6)
30 48.6(1.0) 60.5(3.6) 97.9(0.9) 87.1(2.4) 98.1(0.6)
35 49.5(1.2) 59.0(3.4) 95.0(1.1) 84.0(3.2) 94.8(1.2)
40 46.6(1.2) 59.2(3.6) 77.2(4.2) 71.3(5.0) 89.0(2.6)

than the number of frames used during training because its
first convolution layer takes a fixed number of observations.
However, DRQN and our architectures can take arbitrary
number of input frames using their recurrent layers. Addi-
tionally, our architectures can use an arbitrarily large size
of memory during evaluation as well.

Training details. Input frames from Minecraft are cap-
tured as 32 × 32 RGB images. All the architectures use
the same 2-layer CNN architecture as described in the sup-
plementary material. In the DQN and DRQN architec-
tures, the last convolutional layer is followed by a fully-
connected layer with 256 hidden units. In our architectures,
the last convolution layer is given as the encoded feature
for memory blocks. In addition, 256 LSTM units are used
in DRQN, RMQN, and FRMQN. More details including
hyperparameters for Deep Q-Learning are described in the
supplementary material. Our implementation is based on
Torch7 (Collobert et al., 2011), a public DQN implementa-
tion (Mnih et al., 2015), and a Minecraft Forge Mod.2

5.1. I-Maze: Description and Results

Task. Our I-Maze task was inspired by T-Mazes which
have been used in animal cognition experiments (Olton,
1979). Maps for this task (see Figure 5a) have an indicator
at the top that has equal chance of being yellow or green. If
the indicator is yellow, the red block gives +1 reward and
the blue block gives -1 reward; if the indicator is green,
the red block gives -1 and the blue block gives +1 reward.
Thus, the agent should memorize the color of the indicator
at the beginning while it is in view and visit the correct goal
depending on the indicator-color. We varied the length of
the vertical corridor to l = {5, 7, 9} during training. The
last 12 frames were given as input for all architectures, and

2http://files.minecraftforge.net/

the size of memory for our architectures was 11.
Performance on the training set. We observed two
stages of behavior during learning from all the architec-
tures: 1) early in the training the discount factor and time
penalty led to the agent to take a chance by visiting any
goal, and 2) later in the training the agent goes to the correct
goal by learning the correlation between the indicator and
the goal. As seen in the learning curves in Figure 6a, our ar-
chitectures converge more quickly than DQN and DRQN to
the correct behavior. In particular, we observed that DRQN
takes many more epochs to reach the second stage after
the first stage has been reached. This is possibly due to
the long time interval between seeing the indicator and the
goals. Besides, the indicator block is important only when
the agent is at the bottom end of the vertical corridor and
needs to decide which way to go (see Figure 5a). In other
words, the indicator information does not affect the agent’s
decision making along its way to the end of the corridor.
This makes it even more difficult for DRQN to retain the
indicator information for a long time. On the other hand,
our architectures can handle these problems by storing the
history of observations into memory and retrieving such in-
formation when it is important, based on the context.
Generalization performance. To investigate gen-
eralization performance, we evaluated the archi-
tectures on maps that have vertical corridor lengths
{4, 6, 8, 10, 15, 20, 25, 30, 35, 40} that were not present
in the training maps. More specifically, testing on {6, 8}
sizes of maps and the rest of the sizes of maps can
evaluate interpolation and extrapolation performance,
respectively (Schaul et al., 2015). Since some unseen maps
are larger than the training maps, we used 50 last frames as
input during evaluation on the unseen maps for all archi-
tectures except for DQN, which can take only 12 frames as
discussed in the experimental setup. The size of memory
for our architectures is set to 49. The performance on the
unseen set of maps is visualized in Figure 6b. Although
the generalization performances of all architectures are
highly variable even after training performance converges,
it can be seen that FRMQN consistently outperforms the
other architectures in terms of average reward. To further
investigate the performance for different lengths of the
vertical corridor, we measured the performance on each
size of map in Table 1. It turns out that all architectures
perform well on {6, 8} sizes of maps, which indicates
that they can interpolate within the training set of maps.
However, our architectures extrapolate to larger maps
significantly better than the two baselines.
Analysis of memory retrieval. Figure 7a visualizes FR-
MQN’s memory retrieval on a large I-Maze, where FR-
MQN sharply retrieves the indicator information only when
it reaches the end of the corridor where it then makes a de-
cision of which goal block to visit. This is a reasonable
strategy because the indicator information is important only

http://files.minecraftforge.net/


Control of Memory, Active Perception, and Action in Minecraft

0 20 40 60 80 100 120 140−2.0

−1.5

−1.0

−0.5

0.0

0.5

(a) I-Maze (Train)

0 20 40 60 80 100 120 140−2.0

−1.5

−1.0

−0.5

0.0

(b) I-Maze (Unseen)

0 20 40 60 80 100 120 140−2.0

−1.5

−1.0

−0.5

0.0

0.5

(c) Matching (Train)

0 20 40 60 80 100 120 140−2.0

−1.5

−1.0

−0.5

0.0

0.5

(d) Matching (Unseen)

0 50 100 150 200−2.0

−1.5

−1.0

−0.5

0.0

0.5

(e) Seq+I (Train)

0 50 100 150 200−2.0

−1.5

−1.0

−0.5

(f) Seq+I (Unseen)

0 50 100 150 200−2.0

−1.5

−1.0

−0.5

(g) Seq+I (Unseen-L)

DQN
DRQN
MQN
RMQN
FRMQN

Figure 6. Learning curves for different tasks: (a-b) I-maze (§5.1), (c-d) pattern matching (§5.2), (e-g) random mazes (§5.3). X-axis and
y-axis correspond to the number of training epochs (1 epoch = 10K steps) and the average reward. For (b) and (d), ‘Unseen’ represents
unseen maps with different sizes and different patterns respectively. For (f) and (g), ‘Unseen’ and ‘Unseen-L’ indicate unseen topologies
with the same sizes and larger sizes of maps, respectively. The performance was measured from 4 runs for random mazes and 10 runs
for I-Maze and Pattern Matching. For the random mazes, we only show the results on Sequential Goals with Indicator due to space
constraints. More plots are provided in the supplementary material.

Table 2. Performance on pattern matching. The entries represent
the probability of visiting the correct goal block for each set of
maps with standard error. The performance reported is averages
over 10 runs and 10 best-performing parameters for each run.

TRAIN UNSEEN
DQN 62.9% (±3.4%) 60.1% (±2.8%)
DRQN 49.7% (±0.2%) 49.2% (±0.2%)
MQN 99.0% (±0.2%) 69.3% (±1.5%)
RMQN 82.5% (±2.5%) 62.3% (±1.5%)
FRMQN 100.0% (±0.0%) 91.8% (±1.0%)

when it is at the end of the vertical corridor. This qualitative
result implies that FRMQN learned a general strategy that
looks for the indicator, goes to the end of the corridor, and
retrieves the indicator information when it decides which
goal block to visit. We observed similar policies learned
by MQN and RMQN, but the memory attention for the in-
dicator was not as sharp as FRMQN’s attention and so they
visit wrong goals in larger I-Mazes more often.

The results on I-Maze shown above suggest that solving a
task on a set of maps does not guarantee solving the same
task on similar but unseen maps, and such generalization
performance highly depends on the feature representation
learned by deep neural networks. The extrapolation re-
sult shows that context-dependent memory retrieval in our
architectures is important for learning a general strategy
when the importance of an observational-event depends
highly on the temporal context.

5.2. Pattern Matching: Description and Results
Task. As illustrated in Figure 5b, this map consists of two
3 × 3 rooms. The visual patterns of the two rooms are ei-
ther identical or different with equal probability. If the two

rooms have the exact same color patterns, the agent should
visit the blue block. If the rooms have different color pat-
terns, the agent should visit the red block. The agent re-
ceives a +1 reward if it visits the correct block and a -1
reward if it visits the wrong block. This pattern matching
task requires more complex reasoning (comparing two vi-
sual patterns given at different time steps) than the I-Maze
task above. We generated 500 training and 500 unseen
maps in such a way that there is little overlap between the
two sets of visual patterns. Details of the map generation
process are described in the supplementary material. The
last 10 frames were given as input for all architectures, and
the size of memory was set to 9.

Performance on the training set. The results plotted in
Figure 6c and Table 2 show that MQN and FRMQN suc-
cessfully learned to go to the correct goal block for all
runs in the training maps. We observed that DRQN al-
ways learned a sub-optimal policy that goes to any goal
regardless of the visual patterns of the two rooms. An-
other observation is the training performances of DQN and
RMQN are a bit unstable; they often learned the same sub-
optimal policy, whereas MQN and FRMQN consistently
learned to go to the correct goal across different runs. We
hypothesize that it is not trivial for a neural network to com-
pare two visual patterns observed in different time-steps
unless the network can model high-order interactions be-
tween two specific observations for visual matching, which
might be the reason why DQN and DRQN fail more often.
Context-dependent memory retrieval mechanism in our ar-
chitectures can alleviate this problem by retrieving two vi-
sual patterns corresponding to the observations of the two
rooms before decision making.



Control of Memory, Active Perception, and Action in Minecraft

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

(a) I-Maze (§5.1)

(b) Pattern matching (§5.2) (c) Sequential w/ Ind (§5.3)

Figure 7. Visualization of FRMQN’s memory retrieval. Each fig-
ure shows a trajectory of FRMQN at the top row, and the fol-
lowing rows visualize attention weights over time. (a) The agent
looks at the indicator, goes to the end of the corridor, and retrieves
the indicator frame before visiting the goal block. (b) The agent
looks at both rooms at the beginning and gradually switches atten-
tion weights from one room to another room as it approaches the
goal blocks. (c) The agent pays attention to the indicator (yellow)
and the first goal block (blue).

Generalization performance. Table 2 and Figure 6d
show that FRMQN achieves the highest success rate on the
unseen set of maps. Interestingly, MQN fails to general-
ize to unseen visual patterns. We observed that MQN pays
attention to the two visual patterns before choosing one of
the goals through its memory retrieval. However, since the
retrieved memory is just a convex combination of two vi-
sual patterns, it is hard for MQN to compare the similarity
between them. Thus, we believe that MQN simply overfits
to the training maps by memorizing the weighted sum of
pairs of visual patterns in the training set of maps. On the
other hand, FRMQN can utilize retrieved memory as well
as its recurrent connections to compare visual patterns over
time.
Analysis of memory retrieval. An example of FR-
MQN’s memory retrieval is visualized in Figure 7b. FR-
MQN pays attention to both rooms, gradually moving
weight from one to the other as time progresses, which
means that the context vector is repeatedly refined based
on the encoded features of the room retrieved through its
feedback connections. Given this visualization and its good
generalization performance, we hypothesize that FRMQN
utilizes its feedback connection to compare the two visual
features over time rather than comparing them at a single
time-step. This result supports our view that feedback con-
nections can play an important role in tasks where more
complex reasoning is required with retrieved memories.

5.3. Random Mazes: Description and Results
Task. A random maze task consists of randomly gener-
ated walls and goal locations as shown in Figure 5c and 5d.
We present 4 classes of tasks using random mazes.

Distance between indicator and goal
0 5 10 15

P
re

ci
si

on

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

DQN
DRQN
MQN
RMQN
FRMQN

Figure 8. Precision vs. distance. X-axis represents the distance
between indicator and goal in Single Goal with Indicator task. Y-
axis represents the number of correct goal visits divided by the
total number of goal visits.

• Single Goal: The task is to visit the blue block which
gives +1 reward while avoiding the red block that gives
-1 reward.

• Sequential Goals: The task is to visit the red block first
and then the blue block later which gives +0.5 and +1 re-
ward respectively. If an agent visits the colored blocks in
the reverse order, it receives -0.5 and -1 reward respec-
tively.

• Single Goal with Indicator: If the indicator is yellow,
the task is to visit the red block. If the indicator is
green, the task is to visit the blue block. Visiting the cor-
rect block results in +1 reward and visiting the incorrect
block results in -1 reward.

• Sequential Goals with Indicator: If the indicator is yel-
low, the task is to visit the blue block first and then the
red block. If the indicator is green, the task is to visit
the red block first and then the blue block. Visiting the
blocks in the correct order results in +0.5 for the first
block and +1 reward for the second block. Visiting the
blocks in the reverse order results in -0.5 and -1 reward
respectively.

We randomly generated 1000 maps used for training and
two types of unseen evaluation sets of maps: 1000 maps
of the same sizes present in the training maps and 1000
larger maps. The last 10 frames were given as input for all
architectures, and the size of memory was set to 9.
Performance on the training set. In this task, the agent
not only needs to remember important information while
traversing the maps (e.g., an indicator) but it also has to
search for the goals as different maps have different ob-
stacle and goal locations. Table 3 shows that RMQN and
FRMQN achieve higher asymptotic performances than the
other architectures on the training set of maps.
Generalization performance. For the larger-sized un-
seen maps, we terminated episodes after 100 steps rather
than 50 steps and used a time penalty of−0.02 considering
their size. During evaluation, we used 10 frames as input
for DQN and DRQN and 30 frames for MQN, RMQN, and



Control of Memory, Active Perception, and Action in Minecraft

Table 3. Performance on random maze. The ‘Size’ column lists the size of each set of maps. The entries in the ‘Reward’, ‘Success’, and
‘Fail’ columns are average rewards, success rates, and failure rates measured from 4 runs. We picked the 10 best parameters based on
performance on unseen maps for each run and evaluated them on 1000 episodes. ‘Success’ represents the number of correctly completed
episodes divided by the total number of episodes, and ‘Fail’ represents the number of incorrectly completed episodes divided by the total
number of episodes (e.g., visiting goals in reverse order in sequential goal tasks). The standard errors are lower than 0.03, 1.5%, 1.0%
for all average rewards, success rates, and failure rates respectively.

TASK TYPE SIZE
DQN DRQN MQN RMQN FRMQN

REWARD SUCCESS FAIL REWARD SUCCESS FAIL REWARD SUCCESS FAIL REWARD SUCCESS FAIL REWARD SUCCESS FAIL

SINGLE
TRAIN 4-8 0.31 90.4% 0.6% 0.45 94.5% 0.1% 0.01 78.8% 0.4% 0.49 95.7% 0.1% 0.46 94.6% 0.3%
UNSEEN 4-8 0.22 87.3% 0.7% 0.23 86.6% 0.2% 0.02 79.4% 0.3% 0.30 89.4% 0.3% 0.26 88.0% 0.5%
UNSEEN-L 9-14 -0.28 70.0% 0.3% −0.40 63.0% 0.1% −0.63 54.3% 0.4% -0.28 69.3% 0.1% -0.28 69.0% 0.1%

SEQ
TRAIN 5-7 −0.60 47.6% 0.8% −0.08 66.0% 0.6% −0.48 52.1% 0.1% 0.21 77.0% 0.2% 0.22 77.6% 0.2%
UNSEEN 5-7 −0.66 45.0% 1.0% −0.54 48.5% 0.9% −0.59 48.4% 0.1% -0.13 64.3% 0.1% -0.18 63.1% 0.3%
UNSEEN-L 8-10 −0.82 36.6% 1.4% −0.89 32.6% 1.0% −0.77 38.9% 0.6% -0.43 49.6% 1.1% -0.42 50.8% 1.0%

SINGLE+I
TRAIN 5-7 −0.04 79.3% 6.3% 0.23 87.9% 1.2% 0.11 83.9% 0.7% 0.34 91.7% 0.8% 0.24 88.0% 1.4%
UNSEEN 5-7 −0.41 64.8% 16.1% −0.46 61.0% 13.4% −0.46 64.2% 7.8% -0.27 70.0% 10.2% -0.23 71.8% 8.2%
UNSEEN-L 8-10 −0.74 49.4% 31.6% −0.98 38.5% 28.3% −0.66 55.5% 17.1% -0.39 63.4% 20.4% -0.43 63.4% 17.2%

SEQ+I
TRAIN 4-6 −0.13 68.0% 7.0% 0.25 78.5% 1.1% −0.07 67.7% 2.3% 0.37 83.7% 1.0% 0.48 87.4% 0.9%
UNSEEN 4-6 −0.58 54.5% 14.5% −0.65 48.8% 9.7% −0.71 47.3% 7.2% -0.32 62.4% 7.2% -0.28 63.8% 7.5%
UNSEEN-L 7-9 −0.95 39.1% 17.8% −1.14 30.2% 13.1% −1.04 34.4% 9.9% -0.60 49.5% 12.5% -0.54 51.5% 12.9%

FRMQN; these choices gave the best results for each archi-
tecture.

The results in Table 3 show that, as expected, the per-
formance of all the architectures worsen in unseen maps.
From the learning curves (see Figure 6e-g), we observed
that generalization performance on unseen maps does not
improve after some epochs, even though training perfor-
mance is improving. This implies that improving policies
on a fixed set of maps does not necessarily guarantee bet-
ter performance on new environments. However, RMQN
and FRMQN generalize better than the other architectures
in most of the tasks. In particular, compared to the other ar-
chitectures, DRQN’s performance is significantly degraded
on unseen maps. In addition, while DQN shows good gen-
eralization performance on the Single Goal task which pri-
marily requires search, on the other tasks it tends to go to
any goal regardless of important information (e.g., color of
indicator). This can be seen through the higher failure rate
(the number of incorrectly completed episodes divided by
the total number of episodes) of DQN on indicator tasks in
Table 3.

To investigate how well the architectures handle partial ob-
servability, we measured precision (proportion of correct
goal visits to all goal visits) versus the distance between
goal and indicator in Single Goal with Indicator task, which
is visualized in Figure 8. Notably, the gap between our
architectures (RMQN and FRMQN) and the other archi-
tectures becomes larger as the distance increases. This re-
sult implies that our architectures are better at handling par-
tial observability than the other architectures, because large
distance between indicator and goal is more likely to in-
troduce deeper partial observability (i.e., long-term depen-
dency).

Compared to MQN, the RMQN and FRMQN architectures
achieve better generalization performance which suggests
that the recurrent connections in the latter two architectures

are a crucial component for handling random topologies.
In addition, FRMQN and RMQN achieve similar perfor-
mances, which implies that the feedback connection may
not be always helpful in these tasks. We note that given a
retrieved memory (e.g., indicator), the reasoning required
for these tasks is simpler than the reasoning required for
Pattern Matching task.
Analysis of memory retrieval. An example of memory
retrieval in FRMQN is visualized in Figure 7c. It retrieves
memory that contains important information (e.g., indica-
tor) before it visits a goal block. The memory retrieval
strategy is reasonable and is an evidence that the proposed
architectures make it easier to generalize to large-scale en-
vironments by better handling partial observability.

6. Discussion
In this paper, we introduced three classes of cognition-
inspired tasks in Minecraft and compared the performance
of two existing architectures with three architectures that
we proposed here. We emphasize that unlike most evalua-
tions of RL algorithms, we trained and evaluated architec-
tures on disjoint sets of maps so as to specifically consider
the applicability of learned value functions to unseen (in-
terpolation and extrapolation) maps.

In summary, our main empirical result is that context-
dependent memory retrieval, particularly with a feedback
connection from the retrieved memory, can more effec-
tively solve our set of tasks that require control of ac-
tive perception and external physical movement actions.
Our architectures, particularly FRQMN, also show supe-
rior ability relative to the baseline architectures when learn-
ing value functions whose behavior generalizes better from
training to unseen environments. In future work, we intend
to take advantage of the flexibility of the Minecraft domain
to construct even more challenging cognitive tasks to fur-
ther evaluate our architectures.



Control of Memory, Active Perception, and Action in Minecraft

Acknowledgement
This work was supported by NSF grant IIS-1526059. Any
opinions, findings, conclusions, or recommendations ex-
pressed here are those of the authors and do not necessarily
reflect the views of the sponsor.

References
Bahdanau, Dzmitry, Cho, Kyunghyun, and Bengio,

Yoshua. Neural machine translation by jointly learning
to align and translate. In International Conference on
Learning Representations, 2015.

Bakker, Bram, Zhumatiy, Viktor, Gruener, Gabriel, and
Schmidhuber, Jürgen. A robot that reinforcement-learns
to identify and memorize important previous observa-
tions. In Intelligent Robots and Systems, 2003.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 06 2013.

Collobert, Ronan, Kavukcuoglu, Koray, and Farabet,
Clément. Torch7: A matlab-like environment for ma-
chine learning. In BigLearn, Advances in the Neural In-
formation Processing System Workshop, 2011.

Girshick, Ross, Donahue, Jeff, Darrell, Trevor, and Malik,
Jitendra. Rich feature hierarchies for accurate object de-
tection and semantic segmentation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 2014.

Graves, Alex. Generating sequences with recurrent neural
networks. arXiv preprint arXiv:1308.0850, 2013.

Graves, Alex, Wayne, Greg, and Danihelka, Ivo. Neural
turing machines. arXiv preprint arXiv:1410.5401, 2014.

Guo, Xiaoxiao, Singh, Satinder, Lee, Honglak, Lewis,
Richard L, and Wang, Xiaoshi. Deep learning for
real-time atari game play using offline monte-carlo tree
search planning. In Advances in the Neural Information
Processing System, 2014.

Hausknecht, Matthew and Stone, Peter. Deep recurrent
q-learning for partially observable mdps. In AAAI Fall
Symposium on Sequential Decision Making for Intelli-
gent Agents, 2015.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-
term memory. Neural Computation, 9(8):1735–1780,
1997.

Joulin, Armand and Mikolov, Tomas. Inferring algorith-
mic patterns with stack-augmented recurrent nets. In

Advances in the Neural Information Processing System,
2015.

Kocsis, Levente and Szepesvári, Csaba. Bandit based
monte-carlo planning. In European Conference on Ma-
chine Learning, 2006.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.
Imagenet classification with deep convolutional neural
networks. In Advances in the Neural Information Pro-
cessing System, 2012.

Lange, Sascha and Riedmiller, Martin. Deep auto-encoder
neural networks in reinforcement learning. In Interna-
tional Joint Conference on Neural Networks, 2010.

LeCun, Yann, Bengio, Yoshua, and Hinton, Geoffrey. Deep
learning. Nature, 521(7553):436–444, 2015.

Levine, Sergey and Koltun, Vladlen. Guided policy search.
In Proceedings of the International Conference on Ma-
chine Learning, 2013.

Levine, Sergey, Finn, Chelsea, Darrell, Trevor, and Abbeel,
Pieter. End-to-end training of deep visuomotor policies.
Journal of Machine Learning Research, 2016.

Lillicrap, Timothy P, Hunt, Jonathan J, Pritzel, Alexander,
Heess, Nicolas, Erez, Tom, Tassa, Yuval, Silver, David,
and Wierstra, Daan. Continuous control with deep re-
inforcement learning. In International Conference on
Learning Representations, 2016.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David,
Rusu, Andrei A, Veness, Joel, Bellemare, Marc G,
Graves, Alex, Riedmiller, Martin, Fidjeland, Andreas K,
Ostrovski, Georg, Petersen, Stig, Beattie, Charles, Sadik,
Amir, Antonoglou, Ioannis, King, Helen, Kumaran,
Dharshan, Wierstra, Daan, Legg, Shane, and Hassabis,
Demis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

Mnih, Volodymyr, Badia, Adria Puigdomenech, Mirza,
Mehdi, Graves, Alex, Lillicrap, Timothy P, Harley, Tim,
Silver, David, and Kavukcuoglu, Koray. Asynchronous
methods for deep reinforcement learning. In Proceed-
ings of the International Conference on Machine Learn-
ing, 2016.

Nair, Vinod and Hinton, Geoffrey E. Rectified linear units
improve restricted boltzmann machines. In Proceedings
of the International Conference on Machine Learning,
2010.

Narasimhan, Karthik, Kulkarni, Tejas, and Barzilay,
Regina. Language understanding for text-based games
using deep reinforcement learning. In Conference on
Empirical Methods on Natural Language Processing,
2015.



Control of Memory, Active Perception, and Action in Minecraft

Oh, Junhyuk, Guo, Xiaoxiao, Lee, Honglak, Lewis,
Richard L, and Singh, Satinder. Action-conditional
video prediction using deep networks in atari games. In
Advances in the Neural Information Processing System,
2015.

Olton, David S. Mazes, maps, and memory. American
Psychologist, 34(7):583, 1979.

Schaul, Tom, Horgan, Daniel, Gregor, Karol, and Silver,
David. Universal value function approximators. In Pro-
ceedings of the International Conference on Machine
Learning, 2015.

Schmidhuber, Jürgen. Deep learning in neural networks:
An overview. Neural Networks, 61:85–117, 2015.

Schulman, John, Levine, Sergey, Moritz, Philipp, Jordan,
Michael I, and Abbeel, Pieter. Trust region policy op-
timization. In Proceedings of the International Confer-
ence on Machine Learning, 2015.

Simonyan, Karen and Zisserman, Andrew. Very deep con-
volutional networks for large-scale image recognition. In
International Conference on Learning Representations,
2015.

Stadie, Bradly C, Levine, Sergey, and Abbeel, Pieter.
Incentivizing exploration in reinforcement learn-
ing with deep predictive models. arXiv preprint
arXiv:1507.00814, 2015.

Sukhbaatar, Sainbayar, Szlam, Arthur, Synnaeve, Gabriel,
Chintala, Soumith, and Fergus, Rob. Mazebase: A
sandbox for learning from games. arXiv preprint
arXiv:1511.07401, 2015a.

Sukhbaatar, Sainbayar, Weston, Jason, and Fergus, Rob.
End-to-end memory networks. In Advances in the Neu-
ral Information Processing System, 2015b.

Tesauro, Gerald. Temporal difference learning and td-
gammon. Communications of the ACM, 38(3):58–68,
1995.

Watkins, Christopher JCH and Dayan, Peter. Q-learning.
Machine Learning, 8(3-4):279–292, 1992.

Weston, Jason, Chopra, Sumit, and Bordes, Antoine. Mem-
ory networks. In International Conference on Learning
Representations, 2015.

Wierstra, Daan, Förster, Alexander, Peters, Jan, and
Schmidhuber, Jürgen. Recurrent policy gradients. Logic
Journal of IGPL, 18(5):620–634, 2010.

Zaremba, Wojciech and Sutskever, Ilya. Reinforce-
ment learning neural turing machines. arXiv preprint
arXiv:1505.00521, 2015.

Zaremba, Wojciech, Mikolov, Tomas, Joulin, Armand, and
Fergus, Rob. Learning simple algorithms from exam-
ples. In Proceedings of the International Conference on
Machine Learning, 2016.

Zhang, Marvin, Levine, Sergey, McCarthy, Zoe, Finn,
Chelsea, and Abbeel, Pieter. Policy learning with contin-
uous memory states for partially observed robotic con-
trol. In International Conference on Robotics and Au-
tomation, 2016.


