
Generalization and Exploration via Randomized Value Functions

APPENDICES

A. LSVI with Boltzmann
exploration/✏-greedy exploration

The LSVI algorithm iterates backwards over time periods
in the planning horizon, in each iteration fitting a value
function to the sum of immediate rewards and value esti-
mates of the next period. Each value function is fitted via
least-squares: note that vectors ✓lh satisfy

✓lh 2 argmin

⇣2RK

�kA⇣ � bk2 + �k⇣k2� . (3)

Notice that in Algorithm 3, when l = 0, matrix A and vec-
tor b are empty. In this case, we simply set ✓l0 = ✓l1 =

· · · = ✓l,H�1

= 0.

Algorithm 3 Least-Squares Value Iteration
Input: Data �(si0,ai0),ri0,..,�(siH�1

,aiH�1

),riH : i<L
. Parameter �>0

Output: ✓l0,...,✓l,H�1

1: ✓lH 0, �H 0
2: for h=H�1,...,1,0 do
3: Generate regression problem A2Rl⇥K , b2Rl:

A

2

64
�h(s0h,a0h)

...
�h(sl�1,h,al�1,h)

3

75

bi
(

rih+max↵

⇣
�h+1

˜✓l,h+1

⌘
(si,h+1

,↵) if h<H�1
rih+ri,h+1

if h=H�1

4: Linear regression for value function

✓lh (A>A+�I)�1A>b

5: end for

RL algorithms produced by synthesizing Boltzmann explo-
ration or ✏-greedy exploration with LSVI are presented as
Algorithms 4 and 5. In these algorithms the “temperature”
parameters ⌘ in Boltzmann exploration and ✏ in ✏-greedy
exploration control the degree to which random perturba-
tions distort greedy actions.

Algorithm 4 LSVI with Boltzmann exploration
Input: Features �

0

,..,�H�1

; ⌘>0, �>0

1: for l=0,1,··· do
2: Compute ✓l0,...,✓l,H�1

based on Algorithm 3
3: Observe xl0

4: for h=0,1,...,H�1 do
5: Sample alh⇠E[(�h✓lh)(xlh,a)/⌘]
6: Observe rlh and xl,h+1

7: end for
8: end for

Algorithm 5 LSVI with ✏-greedy exploration
Input: Features �

0

,..,�H�1

; ✏>0, �>0

1: for l=0,1,... do
2: Compute ✓l0,...,✓l,H�1

using Algorithm 3
3: Observe xl0

4: for h=0,1,···,H�1 do
5: Sample ⇠⇠Bernoulli(✏)
6: if ⇠=1 then
7: Sample alh⇠unif(A)

8: else
9: Sample alh2argmax↵2A(�h✓lh)(xlh,↵)

10: end if
11: Observe rlh and xl,h+1

12: end for
13: end for

B. Efficient exploration with generalization
Our computational results suggest that, when coupled with
generalization, RLSVI enjoys levels of efficiency far be-
yond what can be achieved by Boltzmann or ✏-greedy ex-
ploration. We leave as an open problem establishing effi-
ciency guarantees in such contexts. To stimulate thinking
on this topic, we put forth a conjecture.

Conjecture 1. For all M = (S,A, H, P,R,⇡),
�

0

, . . . ,�H�1

, �, and �, if reward distributions R have
support [��,�], there is a unique (✓

0

, . . . , ✓H�1

) 2
RK⇥H satisfying Q⇤

h = �h✓h for h = 0, . . . , H � 1, andPH�1

h=0

k✓hk2  KH
� , then there exists a polynomial poly

such that

Regret(T,M) 
p
T poly

✓
K,H,max

h,x,a
k�h(x, a)k,�, 1/�

◆
.

As one would hope for from an RL algorithm that gener-
alizes, this bound does not depend on the number of states
or actions. Instead, there is a dependence on the number
of basis functions. In Appendix C we present empirical
results that are consistent with this conjecture.

Generalization and Exploration via Randomized Value Functions

C. Chain experiments
C.1. Generating a random coherent basis

We present full details for Algorithm 6, which generates the
random coherent basis functions �h 2 RSA⇥K for h =

1, .., H . In this algorithm we use some standard notation
for indexing vector elements. For any A 2 Rm⇥n we will
write A[i, j] for the element in the ith row and jth column.
We will use the placeholder · to repesent the entire axis so
that, for example, A[·, 1] 2 Rn is the first column of A.

Algorithm 6 Generating a random coherent basis
Input: S,A,H,K 2 N, Q⇤

h 2 RSA for h = 1, .., H
Output: �h 2 RSA⇥K for h = 1, .., H

1: Sample ⇠ N(0, I) 2 RHSA⇥K

2: Set [·, 1] 1
3: Stack Q⇤ (Q⇤

1

, .., Q⇤
h) 2 RHSA

4: Set [·, 2] Q⇤

5: Form projection P (

T
)

�1

T

6: Sample W ⇠ N(0, I) 2 RHSA⇥K

7: Set W [·, 1] 1
8: Project WP PW 2 RHSA⇥K

9: Scale WP [·, k] WP [·,k]
kWP [·,k]k

2

HSA for k = 1, ..,K

10: Reshape � reshape(WP) 2 RH⇥SA⇥K

11: Return �[h, ·, ·] 2 RSA⇥K for h = 1, .., H

The reason we rescale the value function in step (9) of Al-
gorithm 6 is so that the resulting random basis functions
are on a similar scale to Q⇤. This is a completely arbitrary
choice as any scaling in� can be exactly replicated by sim-
ilar rescalings in � and �.

C.2. Robustness to �,�

In Figures 10 and 11 we present the cumulative regret for
N = 50,K = 10 over the first 10000 episodes for several
orders of magnitude for � and �. For most combinations of
parameters the learning remains remarkably stable.

Figure 10. Fixed � = 0.1, varying �.

We find that large values of � lead to slowers learning, since
the Bayesian posterior concentrates only very slowly with
new data. However, in stochastic domains we found that
choosing a � which is too small might cause the RLSVI
posterior to concentrate too quickly and so fail to suffi-
ciently explore. This is a similar insight to previous anal-
yses of Thompson sampling (Agrawal & Goyal, 2012) and
matches the flavour of Theorem 1.

Figure 11. Fixed � = 100, varying �.

C.3. Scaling with number of bases K
In Figure 4 we demonstrated that RLSVI seems to scale
gracefully with the number of basis features on a chain of
length N = 50. In Figure 13 we reproduce these reults for
chains of several different lengths. To highlight the over-
all trend we present a local polynomial regression for each
chain length.

Figure 12. Graceful scaling with number of basis functions.

Roughly speaking, for low numbers of features K the num-
ber of episodes required until learning appears to increase
linearly with the number of basis features. However, the
marginal increase from a new basis features seems to de-
crease and almost plateau once the number of features
reaches the maximum dimension for the problem K � SA.

C.4. Approximate polynomial learning
Our simulation results empirically demonstrate learning
which appears to be polynomial in both N and K. Inspired
by the results in Figure 5, we present the learning times for
different N and K together with a quadratic regression fit
separately for each K.

Figure 13. Graceful scaling with number of basis functions.
This is only one small set of experiments, but these re-
sults are not inconsistent with Conjecture 1. This quadratic
model seems to fit data pretty well.

Generalization and Exploration via Randomized Value Functions

D. Tetris experiments
D.1. Algorithm specification

In Algorithm 7 we present a natural adaptation to RLSVI
without known episode length, but still a regular episodic
structure. This is the algorithm we use for our experiments
in Tetris. The LSVI algorithms are formed in the same way.

Algorithm 7 Stationary RLSVI
Input: Data �(s

1

,a
1

),r
1

,..,�(sT ,aT)
. Previous estimate ˜✓�l ⌘ ˜✓l�1

. Parameters �>0, �>0, �2 [0,1]
Output: ˜✓l

1: Generate regression problem A2RT⇥K , b2RT :

A

2

64
�h(s1,a1

)

...
�h(sT ,aT)

3

75

bi
(

ri+�max↵

⇣
�

˜✓�l

⌘
(si+1

,↵) if si not terminal
ri if si is terminal

2: Bayesian linear regression for the value function

✓l 1

�2

✓
1

�2

A>A+�I

◆�1

A>b

⌃l
✓

1

�2

A>A+�I

◆�1

3: Sample ˜✓l⇠N(✓l,⌃l) from Gaussian posterior

Algorithm 8 RLSVI with greedy action
Input: Features �; �>0, �>0, �2 [0,1]

1: ✓�
0

 0; t 0

2: for Episode l=0,1,.. do
3: Compute ˜✓l using Algorithm 7
4: Observe st
5: while TRUE do
6: Update t t+1

7: Sample at2argmax↵2A

⇣
�

˜✓
⌘
(st,↵)

8: Observe rt and st+1

9: if st+1

is terminal then
10: BREAK
11: end if
12: end while
13: end for

This algorithm simply approximates a time-homogenous
value function using Bayesian linear regression. We found
that a discount rate of � = 0.99 was helpful for stability in
both RLSVI and LSVI.

In order to avoid growing computational and memory cost
as LSVI collects more data we used a very simple strategy

to only store the most recent N transitions. For our ex-
periments we set N = 10

5. Computation for RLSVI and
LSVI remained negligible compared to the cost of running
the Tetris simulator for our implementations.

To see how small this memory requirement is note that,
apart from the number of holes, every feature and reward is
a positive integer between 0 and 20 inclusive. The number
of holes is a positive integer between 0 and 199. We could
store the information 10

5 transitions for every possible ac-
tion using less than 10mb of memory.

D.2. Effective improvements

We present the results for RLSVI with fixed � = 1 and
� = 1. This corresponds to a Bayesian linear regression
with a known noise variance in Algorithm 7. We actually
found slightly better performance using a Bayesian linear
regression with an inverse gamma prior over an unknown
variance. This is the conjugate prior for Gaussian regres-
sion with known variance. Since the improvements were
minor and it slightly complicates the algorithm we omit
these results. However, we believe that using a wider prior
over the variance will be more robust in application, rather
than picking a specific � and �.

D.3. Mini-tetris

In Figure 7 we show that RLSVI outperforms LSVI even
with a highly tuned annealing scheme for✏. However, these
results are much more extreme on a didactic version of
mini-tetris. We make a tetris board with only 4 rows and
only S, Z pieces. This problem is much more difficult and
highlights the need for efficient exploration in a more ex-
treme way.

In Figure 14 we present the results for this mini-tetris en-
vironment. As expected, this example highlights the ben-
efits of RLSVI over LSVI with dithering. RLSVI greatly
outperforms LSVI even with a tuned ✏ schedule. RLSVI
learns faster and reaches a higher convergent policy.

Figure 14. Reduced 4-row tetris with only S and Z pieces.

Generalization and Exploration via Randomized Value Functions

E. Recommendation system experiments
E.1. Experiment Setup

For the recommendation system experiments, the experi-
ment setup is specified in Algorithm 9. We set N = 10,
J = H = 5, c = 2 and L = 1200.

Algorithm 9 Recommendation System Experiments: Ex-
periment Setup
Input: N 2 Z

++

, J = H 2 Z
++

, c > 0, L 2 Z
++

Output: ˆ

�(0), . . . , ˆ�(L� 1)

for i = 1, . . . , 100 do
Sample a problem instance �an ⇠ N(0, c2)
Run the Bernoulli bandit algorithm 100 times
Run the linear contextual bandit algorithm 100 times
for for each ⌘ 2 {10�4, 10�3, 10�2, 10�1, 1, 10} do

Run LSVI-Boltzmann with � = 0.2 and ⌘ 10 times
end for
Run RLSVI with � = 0.2 and �2

= 10

�3

10 times
end for
Compute the average regret for each algorithm

The myopic policy is defined as follows: for all episode l =
0, 1, · · · and for all step h = 0, · · · , H � 1, choose alh 2
argmaxa P (a|xlh), where alh and xlh are respectively the
action and the state at step h of episode l.

E.2. Bernoulli bandit algorithm

The Bernoulli bandit algorithm is described in Algorithm
10, which is a Thompson sampling algorithm with uniform
prior. Obviously, this algorithm aims to learn the myopic
policy.

Algorithm 10 Bernoulli bandit algorithm
Input: N 2 N, J 2 N, L 2 N

Initialization: Set ↵n = �n = 1, 8n = 1, 2, . . . , N
for l = 0, . . . , L� 1 do

Randomly sample p̂ln ⇠ beta (↵n,�n), 8n =

1, . . . , N
Sort p̂ln’s in the descending order, and recommend the
first J products in order to the customer
for n = 1, . . . , N do

if product n is recommended in episode l then
if customer likes product then
↵n ↵n + 1

else
�n �n + 1

end if
end if

end for
end for

E.3. Linear contextual bandit algorithm

In this subsection, we describe the linear contextual bandit
algorithm. The linear contextual bandit algorithm is simi-
lar to RLSVI, but without backward value propagation, a
key feature of RLSVI. It is straightforward to see that the
linear contextual bandit algorithm aims to learn the my-
opic policy. This algorithm is specified in Algorithm 11
and 12. Notice that this algorithm can be implemented in-
crementally, hence, it is computationally efficient. In this
computational study, we use the same basis functions as
RLSVI, and the same algorithm parameters (i.e. � = 0.2
and �2

= 10

�3).

Algorithm 11 Randomized exploration in linear contextual
bandits
Input: Data �(si0,ai0),ri0,..,�(siH�1

,aiH�1

),riH : i<L
. Parameters �>0, �>0

Output: ˆ✓l0,...,ˆ✓l,H�1

1: ˆ✓lH 0, �H 0

2: for h=H�1,...,1,0 do
3: Generate regression matrix and vector

A

2

64
�h(s0h,a0h)

...
�h(sl�1,h,al�1,h)

3

75

b

2

64
r
0,h

...
rl�1,h

3

75

4: Estimate value function

✓lh 1

�2

✓
1

�2

A>A+��2I

◆�1

A>b

⌃lh
✓

1

�2

A>A+�I

◆�1

5: Sample ˆ✓lh⇠N(✓lh,⌃lh)

6: end for

Algorithm 12 Linear contextual bandit algorithm
Input: Features �

0

,..,�H , �>0,�>0

1: for l=0,1,··· do
2: Compute ˆ✓l0,...,ˆ✓l,H�1

using Algorithm 11
3: Observe xl0

4: for h=0,···,H�1 do
5: Sample alh⇠unif

⇣
argmax↵2A

⇣
�h

ˆ✓lh
⌘
(xlh,↵)

⌘

6: Observe rlh and xl,h+1

7: end for
8: end for

Generalization and Exploration via Randomized Value Functions

F. Extensions
We now briefly discuss a couple possible extensions of the version of RLSVI proposed in Algorithm 1 and 8. One is an
incremental version which is computationally more efficient. The other addresses continual learning in an infinite horizon
discounted Markov decision process. In the same sense that RLSVI shares much with LSVI but is distinguished by its new
approach to exploration, these extensions share much with least-squares Q-learning (Lagoudakis et al., 2002).

F.1. Incremental learning

Note that Algorithm 1 is a batch learning algorithm, in the sense that, in each episode l, though ⌃lh’s can be computed
incrementally, it needs all past observations to compute ¯✓lh’s. Thus, its per-episode compute time grows with l, which is
undesirable if the algorithm is applied over many episodes.

One way to fix this problem is to derive an incremental RLSVI that updates ¯✓lh’s and ⌃lh’s using summary statistics of
past data and new observations made over the most recent episode. One approach is to do this by computing

⌃

�1

l+1,h (1� ⌫l)⌃
�1

lh +

1

�2

�h (xlh, alh)
>
�h (xlh, alh)

yl+1,h (1� ⌫l)ylh +

1

�2


rlh +max

↵2A

⇣
�h+1

˜✓l,h+1

⌘
(xl,h+1

,↵)

�
�h (xlh, alh)

> , (4)

and setting ¯✓l+1,h = ⌃

�1

l+1,hyl+1,h. Note that we sample ˜✓lh ⇠ N(

¯✓lh,⌃lh), and initialize y
0h = 0, ⌃�1

0h = �I , 8h.
The step size ⌫l controls the influence of past observations on ⌃lh and ¯✓lh. Once ˜✓lh’s are computed, the actions are
chosen based on Algorithm 8. Another approach would be simply to approximate the solution for ✓lh numerically via
random sampling and stochastic gradient descent similar to other works with non-linear architectures (Mnih, 2015). The
per-episode compute time of these incremental algorithms are episode-independent, which allows for deployment at large
scale. On the other hand, we expect the batch version of RLSVI to be more data efficient and thus incur lower regret.

F.2. Continual learning

Finally, we propose a version of RLSVI for RL in infinite-horizon time-invariant discounted MDPs. A discounted MDP is
identified by a sextuple M = (S,A, �, P,R,⇡), where � 2 (0, 1) is the discount factor. S,A, P,R,⇡ are defined similarly
with the finite horizon case. Specifically, in each time t = 0, 1, . . ., if the state is xt and an action at is selected then a
subsequent state xt+1

is sampled from P (·|xt, at) and a reward rt is sampled from R (·|xt, at, xt+1

). We also use V ⇤ to
denote the optimal state value function, and Q⇤ to denote the optimal action-contingent value function. Note that V ⇤ and
Q⇤ do not depend on t in this case.

Algorithm 13 Continual RLSVI
Input: ˜✓t 2 RK , wt 2 RK , � 2 R|S||A|⇥K , � > 0, � > 0, � 2 (0, 1), {(x⌧ , a⌧ , r⌧) : ⌧  t}, xt+1

Output: ˜✓t+1

2 RK , wt+1

2 RK

1: Generate regression matrix and vector

A

2

64
�(x

0

, a
0

)

...
�(xt, at)

3

75 b

2

6664

r
0

+ �max↵2A

⇣
�

˜✓t
⌘
(x

1

,↵)

...
rt + �max↵2A

⇣
�

˜✓t
⌘
(xt+1

,↵)

3

7775

2: Estimate value function

✓t+1

 1

�2

✓
1

�2

A>A+ �I

◆�1

A>b ⌃t+1

✓

1

�2

A>A+ �I

◆�1

3: Sample wt+1

⇠ N(�wt, (1� �2

)⌃t+1

)

4: Set ˜✓t+1

= ✓t+1

+ wt+1

Similarly with the episodic case, an RL algorithm generates each action at based on observations made up to time t,

Generalization and Exploration via Randomized Value Functions

including all states, actions, and rewards observed in previous time steps, as well as the state space S , action space A,
discount factor �, and possible prior information. We consider a scenario in which the agent has prior knowledge that Q⇤

lies within a linear space spanned by a generalization matrix � 2 R|S||A|⇥K .

A version of RLSVI for continual learning is presented in Algorithm 13. Note that ˜✓t and wt are values computed by
the algorithm in the previous time period. We initialize ˜✓

0

= 0 and w
0

= 0. Similarly to Algorithm 1, Algorithm 13
randomly perturbs value estimates in directions of significant uncertainty to incentivize exploration. Note that the random
perturbation vectors wt+1

⇠ N(

p
1� �2wt, �2

⌃t+1

) are sampled to ensure autocorrelation and that marginal covariance
matrices of consecutive perturbations differ only slightly. In each period t, once ˜✓t is computed, a greedy action is selected.
Avoiding frequent abrupt changes in the perturbation vector is important as this allows the agent to execute on multi-period
plans to reach poorly understood state-action pairs.

G. Gaussian vs Dirichlet optimism
The goal of this subsection is to prove Lemma 1, reproduced below:

For all v 2 [0, 1]N and ↵ 2 [1,1)

N with ↵T1 � 2, if x ⇠ N(↵>v/↵>1, 1/↵>1) and y = pT v for p ⇠ Dirichlet(↵)
then x <

so

y.

We begin with a lemma recapping some basic equivalences of stochastic optimism.
Lemma 3 (Optimism equivalence).
The following are equivalent to X <

so

Y :

1. For any random variable Z independent of X and Y , E[max(X,Z)] � E[max(Y, Z)]

2. For any ↵ 2 R,
R1
↵

{P(X � s)� P(Y � s)} ds � 0.
3. X =D Y +A+W for A � 0 and E [W |Y +A] = 0 for all values y + a.
4. For any u : R! R convex and increasing E[u(X)] � E[u(Y)]

These properties are well known from the theory of second order stochastic dominance (Levy, 1992; Hadar & Russell,
1969) but can be re-derived using only elementary integration by parts. X <

so

Y if and only if �Y is second order
stochastic dominant for �X .

G.1. Beta vs. Dirichlet

In order to prove Lemma 1 we will first prove an intermediate result that shows a particular Beta distribution ỹ is optimistic
for y. Before we can prove this result we first state a more basic result that we will use on Gamma distributions.
Lemma 4. For independent random variables �

1

⇠ Gamma(k
1

, ✓) and �
2

⇠ Gamma(k
2

, ✓),

E[�
1

|�
1

+ �
2

] =

k
1

k
1

+ k
2

(�
1

+ �
2

) and E[�
2

|�
1

+ �
2

] =

k
2

k
1

+ k
2

(�
1

+ �
2

).

We can now present our optimistic lemma for Beta versus Dirichlet.
Lemma 5. Let y = p>v for some random variable p ⇠ Dirichlet(↵) and constants v 2 <d and ↵ 2 Nd. Without loss of
generality, assume v

1

 v
2

 · · ·  vd. Let ↵̃ =

Pd
i=1

↵i(vi � v
1

)/(vd � v
1

) and ˜� =

Pd
i=1

↵i(vd � vi)/(vd � v
1

).
Then, there exists a random variable p̃ ⇠ Beta(↵̃, ˜�) such that, for ỹ = p̃vd + (1� p̃)v

1

, E[ỹ|y] = E[y].

Proof. Let �i = Gamma(↵, 1), with �
1

, . . . , �d independent, and let � =

Pd
i=1

�i, so that

p ⌘D �/�.

Let ↵0

i = ↵i(vi � v
1

)/(vd � v
1

) and ↵1

i = ↵i(vd � vi)/(vd � v
1

) so that

↵ = ↵0

+ ↵1.

Define independent random variables �0 ⇠ Gamma(↵0

i , 1) and �1 ⇠ Gamma(↵1

i , 1) so that

� ⌘D �0

+ �1.

Generalization and Exploration via Randomized Value Functions

Take �0 and �1 to be independent, and couple these variables with � so that � = �0

+ �1. Note that ˜� =

Pd
i=1

↵0

i and
↵̃ =

Pd
i=1

↵1

i . Let �0

=

Pd
i=1

�0

i and �1

=

Pd
i=1

�1

i , so that

1� p̃ ⌘D �0/� and p̃ ⌘D �1/�.

Couple these variables so that 1� p̃ = �0/� and p̃ = �1/�. We then have

E[ỹ|y] = E[(1� p̃)v
1

+ p̃vd|y] = E


v
1

�0

�
+

vd�
1

�

���y
�
= E


E


v
1

�0

+ vd�
1

�

����, y
� ���y
�

= E


v
1

E[�0|�] + vdE[�
1|�]

�

���y
�
= E

"
v
1

Pd
i=1

E[�0

i |�i] + vd
Pd

i=1

E[�1

i |�i]
�

���y
#

(a)
= E

"
v
1

Pd
i=1

�i↵0

i /↵i + vd
Pd

i=1

�i↵1

i /↵i

�

���y
#

= E

"
v
1

Pd
i=1

�i(vi � v
1

) + vd
Pd

i=1

�i(vd � vi)

�(vd � v
1

)

���y
#

= E

"Pd
i=1

�ivi
�

���y
#
= E

"
dX

i=1

pivi
���y
#
= y,

where (a) follows from Lemma 4.

G.2. Gaussian vs Beta

In the previous section we showed that a matched Beta distribution ỹ would be optimistic for the Dirichlet y. We will now
show that the Normal random variable x is optimistic for ỹ and so complete the proof of Lemma 1, x <

so

ỹ <
so

y.

Unfortunately, unlike the case of Beta vs Dirichlet it is quite difficult to show this optimism relationship between Gaussian
x and Beta ỹ directly. Instead we make an appeal to the stronger dominance relationship of single-crossing CDFs.

Definition 2 (Single crossing dominance).
Let X and Y be real-valued random variables with CDFs FX and FY respectively. We say that X single-crossing domi-
nates Y if E[X] � E[Y] and there a crossing point a 2 R such that:

FX(s) � FY (s) () s  a. (5)

Note that single crossing dominance implies stochastic optimism. The remainder of this section is devoted to proving that
the following lemma:

Lemma 6. Let ỹ ⇠ Beta(↵,�) for any ↵ > 0,� > 0 and x ⇠ N
⇣
µ =

↵
↵+� ,�

2

=

1

↵+�

⌘
. Then, x single crossing

dominates ỹ.

Trivially, these two distributions will always have equal means so it is enough to show that their CDFs can cross at most
once on (0, 1).

G.3. Double crossing PDFs

By repeated application of the mean value theorem, if we want to prove that the CDFs cross at most once on (0, 1) then it
is sufficient to prove that the PDFs cross at most twice on the same interval. Our strategy will be to show via mechanical
calculus that for the known densities of x and ỹ the PDFs cross at most twice on (0, 1). We lament that the proof as it stands
is so laborious, but our attempts at a more elegant solution has so far been unsucessful. The remainder of this appendix is
devoted to proving this “double-crossing” property via manipulation of the PDFs for different values of ↵,�.

We write fN for the density of the Normal x and fB for the density of the Beta ỹ respectively. We know that at the
boundary fN (0�) > fB(0�) and fN (1+) > fB(1+) where the ± represents the left and right limits respectively. Since
the densities are postive over the interval, we can consider the log PDFs instead.

lB(x) = (↵� 1) log(x) + (� � 1) log(1� x) +KB

Generalization and Exploration via Randomized Value Functions

lN (x) = �1

2

(↵+ �)

✓
x� ↵

↵+ �

◆
2

+KN

Since log(x) is injective and increasing, if we could show that lN (x)� lB(x) = 0 has at most two solutions on the interval
we would be done.

Instead we will attempt to prove an even stronger condition, that l0N (x)� l0B(x) = 0 has at most one solution in the interval.
This is not necessary for what we actually want to show, but it is sufficient and easier to deal with since we can ignore the
annoying constants.

l0B(x) =
↵� 1

x
� � � 1

1� x

l0N (x) = ↵� (↵+ �)x

Finally we will consider an even stronger condition, if l00N (x) � l00B(x) = 0 has no solution then l0B(x) � l0N (x) must be
monotone over the region and so it can have at most one root.

l00B(x) = �
↵� 1

x2

� � � 1

(1� x)2

l00N (x) = �(↵+ �)

So now let us define:

h(x) := l00N (x)� l00B(x) =
↵� 1

x2

+

� � 1

(1� x)2
� (↵+ �) (6)

Our goal now is to show that h(x) = 0 does not have any solutions for x 2 [0, 1].

Once again, we will look at the derivatives and analyse them for different values of ↵,� > 0.

h0
(x) = �2

✓
↵� 1

x3

� � � 1

(1� x)3

◆

h00
(x) = 6

✓
↵� 1

x4

+

� � 1

(1� x)4

◆

G.3.1. SPECIAL CASE ↵ > 1, �  1

In this region we want to show that actually g(x) = l0N (x) � l0B(x) has no solutions. We follow a very similar line of
argument and write A = ↵� 1 > 0 and B = � � 1  0 as before.

g(x) = ↵� (↵+ �)x+

� � 1

1� x
� ↵� 1

x

g0(x) = h(x) =
A

x2

+

B

(1� x)2
� (↵+ �)

g00(x) = h0
(x) = �2

✓
A

x3

� B

(1� x)3

◆

Now since B  0 we note that g00(x)  0 and so g(x) is a concave function. If we can show that the maximum of g lies
below 0 then we know that there can be no roots.

We now attempt to solve g0(x) = 0:

g0(x) =

A

x2

+

B

(1� x)2
= 0

=) �A/B =

✓
x

1� x

◆
2

=) x =

K

1 +K
2 (0, 1)

Generalization and Exploration via Randomized Value Functions

Where here we write K =

p�A/B > 0. We’re ignoring the case of B = 0 as this is even easier to show separately. We
now evaluate the function g at its minimum xK =

K
1+K and write C = �B � 0.

g(xK) = (A+ 1)� (A+B + 2)

K

1 +K
+B(1 +K)�A

1 +K

K

= �AK2 �AK �A+BK3

+BK2

+BK �K2

+K

= �AK2 �AK �A� CK3 � CK2 � CK �K2

+K

= �A(A/C)�A(A/C)

1/2 �A� C(A/C)

3/2 � C(A/C)� C(A/C)

1/2 �A/C + (A/C)

1/2

= �A2C�1 �A3/2C�1/2 �A�A3/2C�1/2 �A�A1/2C1/2 �AC�1

+A1/2C1/2

= �A2C�1 � 2A3/2C�1/2 � 2A�AC�1  0

Therefore we are done with this sub proof. The case of ↵  1,� > 1 can be dealt with similarly.

G.3.2. CONVEX FUNCTION ↵ > 1,� > 1, (↵� 1)(� � 1) � 1

9

In the case of ↵,� > 1 we know that h(x) is a convex function on (0, 1). So now if we solve h0
(x⇤

) = 0 and h(x⇤
) > 0

then we have proved our statement. We will write A = ↵� 1, B = � � 1 for convenience.

We now attempt to solve h0
(x) = 0

h0
(x) =

A

x3

� B

(1� x)3
= 0

=) A/B =

✓
x

1� x

◆
3

=) x =

K

1 +K
2 (0, 1)

Where for convenience we have written K = (A/B)

1/3 > 0. We now evaluate the function h at its minimum xK =

K
1+K .

h(xK) = A
(K + 1)

2

K2

+B(K + 1)

2 � (A+B + 2)

= A(2/K + 1/K2

) +B(K2

+ 2K)� 2

= 3(A2/3B1/3
+A1/3B2/3

)� 2

So as long as h(xK) > 0 we have shown that the CDFs are single crossing. We note a simpler characterization of A,B
that guarantees this condition:

A,B � 1/3 =) AB � 1/9 =) (A2/3B1/3
+A1/3B2/3

) � 2/3

And so we have shown that somehow for ↵,� large enough away from 1 we are OK. Certianly we have proved the result
for ↵,� � 4/3.

G.3.3. FINAL REGION {↵ > 1, � > 1, (↵� 1)(� � 1)  1

9

}
We now produce a final argument that even in this remaining region the two PDFs are at most double crossing. The
argument is really no different than before, the only difficulty is that it is not enough to only look at the derivatives of the
log likelihoods, we need to use some bound on the normalizing constants to get our bounds. By symmetry in the problem,
it will suffice to consider only the case ↵ > �, the other result follows similarly.

In this region of interest, we know that � 2 (1, 4

3

) and so we will make use of an upper bound to the normalizing constant
of the Beta distribution, the Beta function.

B(↵,�) =

Z
1

x=0

x↵�1

(1� x)��1dx


Z

1

x=0

x↵�1dx =

1

↵
(7)

Generalization and Exploration via Randomized Value Functions

Our thinking is that, because in B the value of � � 1 is relatively small, this approximation will not be too bad. Therefore,
we can explicitly bound the log likelihood of the Beta distribution:

lB(x) � ˜lB(x) := (↵� 1) log(x) + (� � 1) log(1� x) + log(↵)

We will now make use of a calculus argument as in the previous sections of the proof. We want to find two points x
1

< x
2

for which h(xi) = l00N (x)� l00B(x) > 0. Since ↵,� > 1 we know that h is convex and so for all x /2 [x
1

, x
2

] then h > 0. If
we can also show that the gap of the Beta over the maximum of the normal log likelihood

Gap : lB(xi)� lN (xi) � f(xi) :=
˜lB(xi)�max

x
lN (x) > 0 (8)

is positive then it must mean there are no crossings over the region [x
1

, x
2

], since ˜lB is concave and therefore totally above
the maximum of lN over the whole region [x

1

, x
2

].

Now consider the regions x 2 [0, x
1

), we know by consideration of the tails that if there is more than one root in this
segment then there must be at least three crossings. If there are three crossings, then the second derivative of their difference
h must have at least one root on this region. However we know that h is convex, so if we can show that h(xi) > 0 this
cannot be possible. We use a similar argument for x 2 (x

2

, 1]. We will now complete this proof by lengthy amounts of
calculus.

Let’s remind ourselves of the definition:

h(x) := l00N (x)� l00B(x) =
↵� 1

x2

+

� � 1

(1� x)2
� (↵+ �)

For ease of notation we will write A = ↵� 1, B = � � 1. We note that:

h(x) � h
1

(x) =
A

x2

� (A+B + 2), h(x) � h
2

(x) =
B

(1� x)2
� (A+B + 2)

and we solve for h
1

(x
1

) = 0, h
2

(x
2

) = 0. This means that

x
1

=

r
A

A+B + 2

, x
2

= 1�
r

B

A+B + 2

and clearly h(x
1

) > 0, h(x
2

) > 0. Now, if we can show that, for all possible values of A,B in this region f(xi) =

lB(xi)�maxx lN (x) > 0, our proof will be complete.

We will now write f(xi) = fi(A,B) to make the dependence on A,B more clear.

f
1

(A,B) = log(1 +A) +A log

 r
A

A+B + 2

!
+B log

1�

r
A

A+B + 2

!
+

1

2

log(2⇡)� 1

2

log(A+B + 2)

f
2

(A,B) = log(1 +A) +A log

1�

r
B

A+B + 2

!
+B log

 r
B

A+B + 2

!
+

1

2

log(2⇡)� 1

2

log(A+B + 2)

Generalization and Exploration via Randomized Value Functions

We will now show that @fi
@B  0 for all of the values in our region A > B > 0.

@f
1

@B
= � A

2(A+B + 2)

+ log

1�

r
A

A+B + 2

!
+

B
p
A

2(A+B + 2)

3/2
⇣
1�

q
A

A+B+2

⌘ � 1

2(A+B + 2)

=

1

2(A+B + 2)

0

@ B
p
A

p
A+B + 2

⇣
1�

q
A

A+B+2

⌘ �A� 1

1

A
+ log

1�

r
A

A+B + 2

!

=

1

2(A+B + 2)

B
p
Ap

A+B + 2�pA �A� 1

!
+ log

1�

r
A

A+B + 2

!

 1

2(A+B + 2)

 p
B/3p

A+B + 2�pA �A� 1

!
�
r

A

A+B + 2

 1

2(A+B + 2)

1

3

r
B

B + 2

�A� 1

!
�
r

A

A+B + 2

 � A

2(A+B + 2)

�
r

A

A+B + 2

 0

and similarly,

@f
2

@B
= �A

0

@

q
B

A+B+2

2B
+

1

2(A+B + 2)

1

A
+ log

 r
B

A+B + 2

!
+B

✓
A+ 2

2B(A+B + 2)

◆
� 1

2(A+B + 2)

=

1

2(A+B + 2)

A+ 2�A� 1�A

r
A+B + 2

B

!
+ log

 r
B

A+B + 2

!

=

1

2(A+B + 2)

1�A

r
A+B + 2

B

!
+

1

2

log

✓
B

A+B + 2

◆

Now we can look at each term to observe that @2f
2

@A@B < 0. Therefore this expression @f
2

@B is maximized over A for A = 0.
We now examine this expression:

@f
2

@B

��
A=0

=

1

2(B + 2)

+

1

2

log

✓
B

B + 2

◆
 1

2

✓
1

B + 2

+

B

B + 2

� 1

◆
 0

Therefore, the expressions fi are minimized at at the largest possible B =

1

9A for any given A over our region. We will
now write gi(A) := fi(A, 1

9A) for this evalutation at the extremal boundary. If we can show that gi(A) � 0 for all A � 1

3

and i = 1, 2 we will be done.

We will perform a similar argument to show that gi is monotone increasing, g0i(A) � 0 for all A � 1

3

.

g
1

(A) = log(1 +A) +A log

 s
A

A+

1

9A + 2

!
+

1

9A
log

1�

s
A

A+

1

9A + 2

!

+

1

2

log(2⇡)� 1

2

log(A+

1

9A
+ 2)

= log(1 +A) +

A

2

log(A)� 1

2

(1 +A) log(A+

1

9A
+ 2)

+

1

9A
log

1�

s
A

A+

1

9A + 2

!
+

1

2

log(2⇡)

Generalization and Exploration via Randomized Value Functions

Note that the function p(A) = A +

1

9A is increasing in A for A � 1

3

. We can conservatively bound g from below noting
1

9A  1 in our region.

g
1

(A) � = log(1 +A) +

A

2

log(A)� 1

2

(1 +A) log(A+ 3) +

1

9A
log

1�

r
A

A+ 2

!
+

1

2

log(2⇡)

� log(1 +A) +

A

2

log(A)� 1

2

(1 +A) log(A+ 3)� 1

9A

p
A+

1

2

log(2⇡) =: g̃
1

(A)

Now we can use calculus to say that:

g̃0
1

(A) =

1

A+ 1

+

1

A+ 3

+

log(A)

2

+

1

18A3/2
� 1

2

log(A+ 3)

� 1

A+ 1

+

1

A+ 3

+

1

18A3/2
+

1

2

log(

A

A+ 3

)

This expression is monotone decreasing in A and with a limit � 0 and so we can say that g̃
1

(A) is monotone increasing.
Therefore g

1

(A) � g̃
1

(A) � g̃
1

(1/3) for all A. We can explicitly evaluate this numerically and g̃
1

(1/3) > 0.01 so we are
done.

The final piece of this proof is to do a similar argument for g
2

(A)

g
2

(A) = log(1 +A) +A log

1�

s
1

9A

A+

1

9A + 2

!
+

1

9A
log

 s
1

9A

A+

1

9A + 2

!

+

1

2

log(2⇡)� 1

2

log(A+

1

9A
+ 2)

= log(1 +A) +A log

1�

r
1

9A2

+ 18A+ 1

!
+

1

2

✓
1

9A
log

✓
1

9A

◆◆

�1

2

✓
1

9A
+ 1

◆
log

✓
A+

1

9A
+ 2

◆
+

1

2

log(2⇡)

� log(1 +A) +A

✓
� 1p

9A2

◆
+

1

2

✓
1

9A
log

✓
1

9A

◆◆
� 1

2

✓
1

3

+ 1

◆
log

✓
A+

1

3

+ 2

◆
+

1

2

log(2⇡)

� log(1 +A)� 1

3

� 1

2e
� 2

3

log(A+

7

3

) +

1

2

log(2⇡) =: g̃
2

(A)

Now, once again we can see that g̃
2

is monotone increasing:

g̃0
2

(A) =

1

1 +A
� 2/3

A+ 7/3

=

A+ 5

(A+ 1)(3A+ 7)

� 0

We complete the argument by noting g
2

(A) � g̃
2

(A) � g̃
2

(1/3) > 0.01, which concludes our proof of the PDF double
crossing in this region.

G.4. Recap

Using the results of the previous sections we complete the proof of Lemma 6 for Gaussian vs Beta dominance for all
possible ↵,� > 0 such that ↵ + � � 1. Piecing together Lemma 5 with Lemma 6 completes our proof of Lemma 1. We
imagine that there is a much more elegant and general proof method available for future work.

