
Generalization and Exploration via Randomized Value Functions

Ian Osband1,2 IOSBAND@STANFORD.EDU
Benjamin Van Roy1 BVR@STANFORD.EDU
Zheng Wen1,3 ZWEN@ADOBE.COM
1Stanford University, 2Google Deepmind, 3Adobe Research

Abstract
We propose randomized least-squares value iter-
ation (RLSVI) – a new reinforcement learning al-
gorithm designed to explore and generalize ef-
ficiently via linearly parameterized value func-
tions. We explain why versions of least-squares
value iteration that use Boltzmann or ✏-greedy
exploration can be highly inefficient, and we
present computational results that demonstrate
dramatic efficiency gains enjoyed by RLSVI.
Further, we establish an upper bound on the ex-
pected regret of RLSVI that demonstrates near-
optimality in a tabula rasa learning context.
More broadly, our results suggest that random-
ized value functions offer a promising approach
to tackling a critical challenge in reinforcement
learning: synthesizing efficient exploration and
effective generalization.

1. Introduction
The design of reinforcement learning (RL) algorithms that
explore intractably large state-action spaces efficiently re-
mains an important challenge. In this paper, we propose
randomized least-squares value iteration (RLSVI), which
generalizes using a linearly parameterized value function.
Prior RL algorithms that generalize in this way require, in
the worst case, learning times exponential in the number
of model parameters and/or the planning horizon. RLSVI
aims to overcome these inefficiencies.

RLSVI operates in a manner similar to least-squares value
iteration (LSVI) and also shares much of the spirit of other
closely related approaches such as TD, LSTD, and SARSA
(see, e.g., (Sutton & Barto, 1998; Szepesvári, 2010)). What
fundamentally distinguishes RLSVI is that the algorithm
explores through randomly sampling statistically plausible
value functions, whereas the aforementioned alternatives

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

are typically applied in conjunction with action-dithering
schemes such as Boltzmann or ✏-greedy exploration, which
lead to highly inefficient learning. The concept of explor-
ing by sampling statistically plausible value functions is
broader than any specific algorithm, and beyond our pro-
posal and study of RLSVI. We view an important role of
this paper is to establish this broad concept as a promising
approach to tackling a critical challenge in RL: synthesiz-
ing efficient exploration and effective generalization.

We will present computational results comparing RLSVI
to LSVI with action-dithering schemes. In our case stud-
ies, these algorithms generalize using identical linearly pa-
rameterized value functions but are distinguished by how
they explore. The results demonstrate that RLSVI enjoys
dramatic efficiency gains. Further, we establish a bound
on the expected regret for an episodic tabula rasa learning
context, where the agent has virtually no prior information
about the MDP. Our bound is ˜O(

p
H3SAT), where S and

A denote the cardinalities of the state and action spaces, T
denotes time elapsed, and H denotes the episode duration.
This matches the worst case lower bound for this problem
up to logarithmic factors (Jaksch et al., 2010). It is interest-
ing to contrast this against known ˜O(

p
H3S2AT) bounds

for other provably efficient tabula rasa RL algorithms (e.g.,
UCRL2 (Jaksch et al., 2010)) adapted to this context. To
our knowledge, our results establish RLSVI as the first RL
algorithm that is provably efficient in a tabula rasa context
and also demonstrates efficiency when generalizing via lin-
early parameterized value functions.

There is a sizable literature on RL algorithms that are prov-
ably efficient in tabula rasa contexts (Brafman & Tennen-
holtz, 2002; Kakade, 2003; Ortner & Ryabko, 2012; Os-
band et al., 2013; Strehl et al., 2006). The literature on RL
algorithms that generalize and explore in a provably effi-
cient manner is sparser. There is work on model-based RL
algorithms (Abbasi-Yadkori & Szepesvári, 2011; Osband
& Van Roy, 2014a;b; Gopalan & Mannor, 2014), which ap-
ply to specific model classes and become computationally
intractable for problems of practical scale. Value function
generalization approaches have the potential to overcome
those computational challenges and offer practical means

Generalization and Exploration via Randomized Value Functions

for synthesizing efficient exploration and effective gener-
alization. A relevant line of work establishes that efficient
RL with value function generalization reduces to efficient
KWIK online regression (Li & Littman, 2010; Li et al.,
2008). However, it is not known whether the KWIK on-
line regression problem can be solved efficiently. In terms
of concrete algorithms, there is optimistic constraint prop-
agation (OCP) (Wen & Van Roy, 2013), a provably effi-
cient RL algorithm for exploration and value function gen-
eralization in deterministic systems, and C-PACE (Pazis &
Parr, 2013), a provably efficient RL algorithm that gen-
eralizes using interpolative representations. These con-
tributions represent important developments, but OCP is
not suitable for stochastic systems and is highly sensitive
to model mis-specification, and generalizing effectively in
high-dimensional state spaces calls for methods that extrap-
olate. RLSVI advances this research agenda, leveraging
randomized value functions to explore efficiently with lin-
early parameterized value functions. The only other work
we know of involving exploration through random sam-
pling of value functions is (Dearden et al., 1998). That
work proposed an algorithm for tabula rasa learning; the
algorithm does not generalize over the state-action space.

2. Episodic reinforcement learning
A finite-horizon MDP M=(S,A,H,P,R,⇡), where S is a
finite state space, A is a finite action space, H is the number
of periods, P encodes transition probabilities, R encodes
reward distributions, and ⇡ is a state distribution. In each
episode, the initial state s

0

is sampled from ⇡, and, in pe-
riod h=0,1,··· ,H�1, if the state is sh and an action ah is
selected then a next state sh+1

is sampled from Ph(·|sh,ah)
and a reward rh is sampled from Rh(·|sh,ah,sh+1

). The
episode terminates when state sH is reached and a terminal
reward is sampled from RH (·|sH).

To represent the history of actions and observations over
multiple episodes, we will often index variables by both
episode and period. For example, slh, alh and rlh respec-
tively denote the state, action, and reward observed during
period h in episode l. A policy µ = (µ

0

, µ
1

, · · · , µH�1

)

is a sequence of functions, each mapping S to A. For each
policy µ, we define a value function for h = 0, .., H:

V µ
h (s):=EM

hPH
⌧=hr⌧

���sh=s,a⌧=µ⌧ (s⌧) for ⌧=h,..,H�1
i

The optimal value function is defined by V ⇤
h (s) =

supµ V
µ
h (s). A policy µ⇤ is said to be optimal if V µ⇤

=

V ⇤. It is also useful to define a state-action optimal value
function for h = 0, .., H � 1:

Q⇤
h(s, a) := EM

⇥
rh + V ⇤

h+1

(sh+1

)

��sh = s, ah = a
⇤

A policy µ⇤ is optimal() µ⇤
h(s)2argmax↵2AQ⇤

h(s,↵), 8s,h.

An RL algorithm generates each action alh based on observations
made up to period h of episode l. Over each episode, the algo-

rithm realizes reward
PH

h=0

rlh. One way to quantify the perfor-
mance of an RL algorithm is in terms of the expected cumulative
regret over L episodes, or time T=LH , defined by

Regret(T,M) =

PT/H�1

l=0

EM

h
V ⇤
0

(sl0)�
PH

h=0

rlh
i
.

Consider a scenario in which the agent models that, for
each h, Q⇤

h 2 span [�h] for some �h 2 RSA⇥K . With
some abuse of notation, we use S and A to denote the car-
dinalities of the state and action spaces. We refer this ma-
trix �h as a generalization matrix and use �h(s, a) to de-
note the row of matrix �h associated with state-action pair
(s, a). For k = 1, 2, · · · ,K, we write the kth column of
�h as �hk and refer to �hk as a basis function. We refer
to contexts where the agent’s belief is correct as coherent
learning, and refer the alternative as agnostic learning.

3. The problem with dithering for exploration
LSVI can be applied at each episode to estimate the op-
timal value function Q⇤ from data gathered over previous
episodes. To form an RL algorithm based on LSVI, we
must specify how the agent selects actions. The most com-
mon scheme is to selectively take actions at random, we
call this approach dithering. Appendix A presents RL algo-
rithms resulting from combining LSVI with the most com-
mon schemes of ✏-greedy or Boltzmann exploration.

The literature on efficient RL shows that these dithering
schemes can lead to regret that grows exponentially in
H and/or S (Kearns & Singh, 2002; Brafman & Ten-
nenholtz, 2002; Kakade, 2003). Provably efficient explo-
ration schemes in RL require that exploration is directed to-
wards potentially informative state-action pairs and consis-
tent over multiple timesteps. This literature provides sev-
eral more intelligent exploration schemes that are provably
efficient, but most only apply to tabula rasa RL, where lit-
tle prior information is available and learning is considered
efficient even if the time required scales with the cardinal-
ity of the state-action space. In a sense, RLSVI represents a
synthesis of ideas from efficient tabula rasa reinforcement
learning and value function generalization methods.

To motivate some of the benefits of RLSVI, in Figure 1
we provide a simple example that highlights the failings of
dithering methods. In this setting LSVI with Boltzmann or
✏-greedy exploration requires exponentially many episodes
to learn an optimal policy, even in a coherent learning con-
text and even with a small number of basis functions.

Figure 1. An MDP where dithering schemes are highly inefficient.

Generalization and Exploration via Randomized Value Functions

This environment is made up of a long chain of states
S = {1, .., N}. Each step the agent can transition left or
right. Actions left are deterministic, but actions right only
succeed with probability 1 � 1/N , otherwise they go left.
All states have zero reward except for the far right N which
gives a reward of 1. Each episode is of length H = N � 1

and the agent will begin each episode at state 1. The opti-
mal policy is to go right at every step to receive an expected
reward of p⇤ = (1� 1

N)

N�1 each episode, all other policies
give no reward. Example 1 establishes that, for any choice
of basis function, LSVI with any ✏-greedy or Boltzmann
exploration will lead to regret that grows exponentially in
S . A similar result holds for policy gradient algorithms. x

Example 1. Let l⇤ be the first episode during which state
N is visited. It is easy to see that ✓lh = 0 for all h
and all l < l⇤. Furthermore, with either ✏-greedy or
Boltzmann exploration, actions are sampled uniformly at
random over episodes l < l⇤. Thus, in any episode
l < l⇤, the red node will be reached with probability
p⇤2�(S�1)

= p⇤2�H . It follows that E[l⇤] � 2

S�1 � 1

and lim infT!1 Regret(T,M) � 2

S�1 � 1.

4. Randomized value functions
We now consider an alternative approach to exploration
that involves randomly sampling value functions rather
than actions. As a specific scheme of this kind, we propose
randomized least-squares value iteration (RLSVI), which
we present as Algorithm 1.1 To obtain an RL algorithm,
we simply select greedy actions in each episode, as speci-
fied in Algorithm 2.

The manner in which RLSVI explores is inspired by
Thompson sampling (Thompson, 1933), which has been
shown to explore efficiently across a very general class of
online optimization problems (Russo & Van Roy, 2013;
2014). In Thompson sampling, the agent samples from a
posterior distribution over models, and selects the action
that optimizes the sampled model. RLSVI similarly sam-
ples from a distribution over plausible value functions and
selects actions that optimize resulting samples. This distri-
bution can be thought of as an approximation to a poste-
rior distribution over value functions. RLSVI bears a close
connection to PSRL (Osband et al., 2013), which maintains
and samples from a posterior distribution over MDPs and
is a direct application of Thompson sampling to RL. PSRL
satisfies regret bounds that scale with the dimensionality,
rather than the cardinality, of the underlying MDP (Osband
& Van Roy, 2014b;a). However, PSRL does not accommo-
date value function generalization without MDP planning,
a feature that we expect to be of great practical importance.

1Note that when l = 0, both A and b are empty, hence, we set
˜✓l0 =

˜✓l1 = · · · = ˜✓l,H�1

= 0.

Algorithm 1 Randomized Least-Squares Value Iteration
Input: Data �

0

(si0,ai0),ri0,..,�H�1

(siH�1

,aiH�1

),riH :

i<L, Parameters �>0, �>0

Output: ˜✓l0,..,˜✓l,H�1

1: for h=H�1,..,1,0 do
2: Generate regression problem A2Rl⇥K , b2Rl:

A

2

64
�h(s0h,a0h)

...
�h(sl�1,h,al�1,h)

3

75

bi
(

rih+max↵

⇣
�h+1

˜✓l,h+1

⌘
(si,h+1

,↵) if h<H�1
rih+ri,h+1

if h=H�1

3: Bayesian linear regression for the value function

✓lh 1

�2

✓
1

�2

A>A+�I

◆�1

A>b

⌃lh
✓

1

�2

A>A+�I

◆�1

4: Sample ˜✓lh⇠N(✓lh,⌃lh) from Gaussian posterior
5: end for

Algorithm 2 RLSVI with greedy action
Input: Features �

0

,..,�H�1

; �>0, �>0

1: for l=0,1,.. do
2: Compute ˜✓l0,..,˜✓l,H�1

using Algorithm 1
3: Observe sl0
4: for h=0,..,H�1 do
5: Sample alh2argmax↵2A

⇣
�h

˜✓lh
⌘
(slh,↵)

6: Observe rlh and sl,h+1

7: end for
8: Observe rlH
9: end for

5. Provably efficient tabular learning
RLSVI is an algorithm designed for efficient exploration in
large MDPs with linear value function generalization. So
far, there are no algorithms with analytical regret bounds in
this setting. In fact, most common methods are provably
inefficient, as demonstrated in Example 1, regardless of the
choice of basis function. In this section we will establish
an expected regret bound for RLSVI in a tabular setting
without generalization where the basis functions �h = I .

The bound is on an expectation with respect to a prob-
ability space (⌦,F ,P). We define the MDP M =

(S,A, H, P,R,⇡) and all other random variables we will
consider with respect to this probability space. We assume
that S , A, H , and ⇡, are deterministic and that R and P
are drawn from a prior distribution. We will assume that

Generalization and Exploration via Randomized Value Functions

rewards R(s, a, h) are drawn from independent Dirichlet
↵R

(s, a, h) 2 R2

+

with values on {�1, 0} and transitions
Dirichlet ↵P

(s, a, h) 2 RS
+

. Analytical techniques exist to
extend similar results to general bounded distributions; see,
for example (Agrawal & Goyal, 2012).
Theorem 1. If Algorithm 1 is executed with �h=I for h=
0,..,H�1, ��max

(s,a,h)

�
1T↵R

(s,a,h)+1T↵P
(s,a,h)

�

and ��p
H2

+1, then:

E [Regret(T,M)]  ˜O
⇣p

H3SAT
⌘

(1)

Surprisingly, these scalings better state of the art opti-
mistic algorithms specifically designed for efficient analy-
sis which would admit ˜O(

p
H3S2AT) regret (Jaksch et al.,

2010). This is an important result since it demonstrates
that RLSVI can be provably-efficient, in contrast to popular
dithering approaches such as ✏-greedy which are provably
inefficient.

5.1. Preliminaries

Central to our analysis is the notion of stochastic optimism,
which induces a partial ordering among random variables.
Definition 1. For any real-valued random variables X and
Y we say that X is stochastically optimistic with respect to
Y if for any u:R!R convex and increasing

E[u(X)] � E[u(Y)].

We will use the notation X <
so

Y to express this relation.
It is worth noting that stochastic optimism is closely con-
nected with second-order stochastic dominance: X <

so

Y
if and only if �Y second-order stochastically dominates
�X (Hadar & Russell, 1969). We reproduce the following
result which establishes such a relation involving Gaussian
and Dirichlet random variables in Appendix G.
Lemma 1. For all V 2 [0, 1]N and ↵ 2 [0,1)

N with
↵T1 � 2, if X ⇠ N(↵>V/↵>1, 1/↵>1) and Y = PTV
for P ⇠ Dirichlet(↵) then X <

so

Y .

5.2. Proof sketch

Let ˜Ql
h = �h

˜✓lh and µ̃l denote the value function and
policy generated by RLSVI for episode l and let ˜V l

h(s) =

maxa
˜Ql
h(s, a). We can decompose the per-episode regret

V ⇤
0

(sl0)� V µ̃l
0

(sl0) = ˜V l
0

(sl0)�V µ̃l
0

(sl0)| {z }
�

conc

l

+ V ⇤
0

(sl0)� ˜V l
0

(sl0)| {z }
�

opt

l

.

We will bound this regret by first showing that RLSVI gen-
erates optimistic estimates of V ⇤, so that �opt

l has non-
positive expectation for any history Hl available prior to
episode l. The remaining term �

conc

l vanishes as estimates
generated by RLSVI concentrate around V ⇤.

Lemma 2. Conditional on any data H, the Q-values gen-
erated by RLSVI are stochastically optimistic with respect
to the true Q-values ˜Ql

h(s, a) <so

Q⇤
h(s, a) for all s, a, h.

Proof. Fix any data Hl available and use backwards in-
duction on h = H � 1, .., 1. For any (s, a, h) we write
n(s, a, h) for the amount of visits to that datapoint in Hl.
We will write ˆR(s, a, h), ˆP (s, a, h) for the empirical mean
reward and mean transitions based upon the data Hl. We
can now write the posterior mean rewards and transitions:

R(s, a, h)|Hl =
�1⇥ ↵R

1

(s, a, h) + n(s, a, h) ˆR(s, a, h)

1T↵R
(s, a, h) + n(s, a, h)

P (s, a, h)|Hl =
↵P

(s, a, h) + n(s, a, h) ˆP (s, a, h)

1T↵P
(s, a, h) + n(s, a, h)

Now, using �h = I for all (s, a, h) we can write the RLSVI
updates in similar form. Note that, ⌃lh is diagonal with
each diagonal entry equal to �2/(n(s, a, h) + ��2

). In the
case of h = H � 1

✓
l

H�1

(s, a) =
n(s, a,H � 1)

ˆR(s, a,H � 1)

n(s, a,H � 1) + ��2

Using the relation that ˆR � R Lemma 1 means that

N(✓
l

H�1

(s, a),
1

n(s, a, h) + 1T↵R
(s, a, h)

) <
so

RH�1

|Hl.

Therefore, choosing � > maxs,a,h 1
T↵R

(s, a, h) and � >
1, we must satisfy the lemma for all s, a and h = H � 1.

For the inductive step we assume that the result holds for
all s, a and j > h, we now want to prove the result for all
(s, a) at timestep h. Once again, we can express ✓

l

h(s, a)
in closed form.

✓
l

h(s, a) =
n(s, a, h)

⇣
ˆR(s, a, h) + ˆP (s, a, h)T ˜V l

h+1

⌘

n(s, a, h) + ��2

To simplify notation we omit the arguments (s, a, h) where
they should be obvious from context. The posterior mean
estimate for the next step value V ⇤

h , conditional on Hl:

E[Q⇤
h(s, a)|Hl] = R+ P

T
V ⇤
h+1

 n(ˆR+

ˆPTV ⇤
h+1

)

n+ ��2

.

As long as � > 1T↵R
+ 1T (↵P

) and �2 > H2. By our
induction process ˜V l

h+1

<
so

V ⇤
h+1

so that

E[Q⇤
h(s, a)|Hl]  E

"
n(ˆR+

ˆPT
˜V l
h+1

)

n+ ��2

| Hl

#
.

We can conclude by Lemma 1 and noting that the noise
from rewards is dominated by N(0, 1) and the noise from
transitions is dominated by N(0, H2

). This requires that
�2 � H2

+ 1.

Generalization and Exploration via Randomized Value Functions

Lemma 2 means RLSVI generates stochastically optimistic
Q-values for any history Hl. All that remains is to prove
the remaining estimates E[�conc

l |Hl] concentrate around
the true values with data. Intuitively this should be clear,
since the size of the Gaussian perturbations decreases as
more data is gathered. In the remainder of this section we
will sketch this result.

The concentration error �conc

l =

˜V l
0

(sl0) � V µ̃l
0

(sl0). We
decompose the value estimate ˜V l

0

explicitly:

˜V l
0

(sl0) =

n(ˆR+

ˆPT
˜V l
h+1

)

n+ ��2

+ w�

= R+ P
T
˜V l
h+1

+ bR + bP + w�
0

where w� is the Gaussian noise from RLSVI and bR =

bR(sl0, al00), bP = bP (sl0, al00) are optimistic bias terms
for RLSVI. These terms emerge since RLSVI shrinks es-
timates towards zero rather than the Dirichlet prior for re-
wards and transitions.

Next we note that, conditional on Hl we can rewrite
P

T
˜V l
h+1

=

˜V l
h+1

(s0) + dh where s0 ⇠ P ⇤
(s, a, h) and

dh is some martingale difference. This allows us to decom-
pose the error in our policy to the estimation error of the
states and actions we actually visit. We also note that, con-
ditional on the data Hl the true MDP is independent of the
sampling process of RLSVI. This means that:

E[V µ̃l
0

(sl0)|Hl] = R+ P
T
V µ̃l

h+1

.

Once again, we can replace this transition term with a sin-
gle sample s0 ⇠ P ⇤

(s, a, h) and a martingale difference.
Combining these observations allows us to reduce the con-
centration error

E[˜V l
0

(sl0)� V µ̃l
0

(sl0)|Hl] =

H�1X

h=0

�
bR(slh, alh, h) + bP (slh, alh, h) + w�

h

.

We can even write explicit expressions for bR, bP and w� .

bR(s, a, h) =
n ˆR

n+ ��2

� n ˆR� ↵R
1

n+ 1T↵R

bP (s, a, h) =
n ˆPT

˜V l
h+1

n+ ��2

� (n ˆP + ↵P
)

T
˜V l
h+1

n+ 1T↵P

w�
h ⇠ N

✓
0,

�2

n+ ��2

◆

The final details for this proof are technical but
the argument is simple. We let �=1T↵R

+1T↵P and
�=

p
H2

+1. Up to ˜O notation bR' ↵R
1

n+1T↵P , bP'
H1T↵P

n+1T↵P and w�
h' Hp

n+H21T↵R
+1T↵P

. Summing using

a pigeonhole principle for
P

s,a,hn(s,a,h)=T gives us

an upper bound on the regret. We write K(s,a,h):=�
↵R
1

(s,a,h)+H1T↵P
(s,a,h)

�
to bound the effects of the

prior mistmatch in RLSVI arising from the bias terms
bR, bP . The constraint ↵T1 � 2 can only be violated twice
for each s, a, h. Therefore up to O(·) notation:

E
hPT/H�1

l=0

E[�conc

l |Hl]

i
 2SAH+

P
s,a,hK(s,a,h)log(T+K(s,a,h))+H

p
SAHT log(T)

6. Experiments
Our analysis in Section 5 shows that RLSVI with tabular
basis functions acts as an effective Gaussian approximation
to PSRL. This demonstrates a clear distinction between
exploration via randomized value functions and dithering
strategies such as Example 1. However, the motivation for
RLSVI is not for tabular environments, where several prov-
ably efficient RL algorithms already exist, but instead for
large systems that require generalization.

We believe that, under some conditions, it may be possi-
ble to establish polynomial regret bounds for RLSVI with
value function generalization. To stimulate thinking on this
topic we present a conjecture of a result that may be pos-
sible in Appendix B. For now, we will present a series of
experiments designed to test the applicability and scalabil-
ity of RLSVI for exploration with generalization.

Our experiments are divided into three sections. First, we
present a series of didactic chain environments similar to
Figure 1. We show that RLSVI can effectively synthesize
exploration with generalization with both coherent and ag-
nostic value functions that are intractable under any dither-
ing scheme. Next, we apply our Algorithm to learning to
play Tetris. We demonstrate that RLSVI leads to faster
learning, improved stability and a superior learned policy
in a large-scale video game. Finally, we consider a busi-
ness application with a simple model for a recommendation
system. We show that an RL algorithm can improve upon
even the optimal myopic bandit strategy. RLSVI learns this
optimal strategy when dithering strategies do not.

6.1. Testing for efficient exploration

We now consider a series of environments modelled on
Example 1, where dithering strategies for exploration are
provably inefficient. Importantly, and unlike the tabular
setting of Section 5, our algorithm will only interact with
the MDP but through a set of basis function � which gener-
alize across states. We examine the empirical performance
of RLSVI and find that it does efficiently balance explo-
ration and generalization in this didactic example.

6.1.1. COHERENT LEARNING

In our first experiments, we generate a random set of K ba-
sis functions. This basis is coherent but the individual basis

Generalization and Exploration via Randomized Value Functions

functions are not otherwise informative. We form a ran-
dom linear subspace VhK spanned by (1,Q⇤

h,w̃1

,..,w̃k�2

).
Here wi and w̃i are IID Gaussian ⇠N(0,I)2RSA. We
then form �h by projecting (1,w

1

,..,wk�1

) onto VhK and
renormalize each component to have equal 2-norm2. Figure
2 presents the empirical regret for RLSVI with K=10,N=

50,�=0.1,�=1 and an ✏-greedy agent over 5 seeds3.

(a) First 2000 episodes (b) First 106 episodes
Figure 2. Efficient exploration on a 50-chain

Figure 1 shows that RLSVI consistently learns the opti-
mal policy in roughly 500 episodes. Any dithering strategy
would take at least 1015 episodes for this result. The state
of the art upper bounds for the efficient optimistic algo-
rithm UCRL given by appendix C.5 in (Dann & Brunskill,
2015) for H =15,S=6,A=2,✏=1,�=1 only kick in af-
ter more than 10

10 suboptimal episodes. RLSVI is able
to effectively exploit the generalization and prior structure
from the basis functions to learn much faster.

We now examine how learning scales as we change the
chain length N and number of basis functions K. We ob-
serve that RLSVI essentially maintains the optimal policy
once it discovers the rewarding state. We use the number
of episodes until 10 rewards as a proxy for learning time.
We report the average of five random seeds.

Figure 3 examines the time to learn as we vary the chain
length N with fixed K=10 basis functions. We include the
dithering lower bound 2

N�1 as a dashed line and a lower
bound scaling 1

10

H2SA for tabular learning algorithms as
a solid line (Dann & Brunskill, 2015). For N=100, 2N�1>
10

28 and H2SA>10

6. RLSVI demonstrates scalable gen-
eralization and exploration to outperform these bounds.

Figure 3. RLSVI learning time against chain length.

Figure 4 examines the time to learn as we vary the basis
2For more details on this experiment see Appendix C.
3In this setting any choice of ✏ or Boltzmann ⌘ is equivalent.

functions K in a fixed N=50 length chain. Learning time
scales gracefully with K. Further, the marginal effect of K
decrease as dim(VhK)=K approaches dim(RSA

)=100.
We include a local polynomial regression in blue to high-
light this trend. Importantly, even for large K the perfor-
mance is far superior to the dithering and tabular bounds4.

Figure 4. RLSVI learning time against number of basis features.

Figure 5 examines these same scalings on a logarithmic
scale. We find the data for these experiments is consis-
tent with polynomial learning as hypothesized in Appendix
B. These results are remarkably robust over several orders
of magnitude in both � and �. We present more detailed
analysis of these sensitivities in Appendix C.

Figure 5. Empirical support for polynomial learning in RLSVI.

6.1.2. AGNOSTIC LEARNING

Unlike the example above, practical RL problems will typ-
ically be agnostic. The true value function Q⇤

h will not lie
within VhK . To examine RLSVI in this setting we generate
basis functions by adding Gaussian noise to the true value
function �hk ⇠ N(Q⇤

h, ⇢I). The parameter ⇢ determines
the scale of this noise. For ⇢ = 0 this problem is coherent
but for ⇢ > 0 this will typically not be the case. We fix
N = 20,K = 20,� = 0.1 and � = 1.

For i=0,..,1000 we run RLSVI for 10,000 episodes with
⇢=i/1000 and a random seed. Figure 6 presents the num-
ber of episodes until 10 rewards for each value of ⇢. For
large values of ⇢, and an extremely misspecified basis,
RLSVI is not effective. However, there is some region
0 < ⇢ < ⇢⇤ where learning remains remarkably stable5.

4For chain N=50, the bounds 2N�1>10

14 and H2SA>10

5.
5Note Q⇤

h(s,a)2{0,1} so ⇢=0.5 represents significant noise.

Generalization and Exploration via Randomized Value Functions

This simple example gives us some hope that RLSVI can be
useful in the agnostic setting. In our remaining experiments
we will demonstrate that RLSVI can achieve state of the art
results in more practical problems with agnostic features.

Figure 6. RLSVI is somewhat robust to model mispecification.

6.2. Tetris

We now turn our attention to learning to play the iconic
video game Tetris. In this game, random blocks fall se-
quentially on a 2D grid with 20 rows and 10 columns. At
each step the agent can move and rotate the object sub-
ject to the constraints of the grid. The game starts with
an empty grid and ends when a square in the top row be-
comes full. However, when a row becomes full it is re-
moved and all bricks above it move downward. The objec-
tive is to maximize the score attained (total number of rows
removed) before the end of the game.

Tetris has been something of a benchmark problem for RL
and approximate dynamic programming, with several pa-
pers on this topic (Gabillon et al., 2013). Our focus is not
so much to learn a high-scoring Tetris player, but instead
to demonstrate the RLSVI offers benefits over other forms
of exploration with LSVI. Tetris is challenging for RL with
a huge state space with more than 2

200 states. In order to
tackle this problem efficiently we use 22 benchmark fea-
tures. These features give the height of each column, the
absolute difference in height of each column, the maximum
height of a column, the number of “holes” and a constant.
It is well known that you can find far superior linear basis
functions, but we use these to mirror their approach.

In order to apply RLSVI to Tetris, which does not have
fixed episode length, we made a few natural modifica-
tions to the algorithm. First, we approximate a time-
homogeneous value function. We also only the keep most
recent N=10

5 transitions to cap the linear growth in mem-
ory and computational requirements, similar to (Mnih,
2015). Details are provided in Appendix D. In Figure 7
we present learning curves for RLSVI �=1,�=1 and LSVI
with a tuned ✏-greedy exploration schedule6 averaged over
5 seeds. The results are significant in several ways.

First, both RLSVI and LSVI make significant improve-
6We found that we could not acheive good performance for

any fixed ✏. We used an annealing exploration schedule that was
tuned to give good performance. See Appendix D

ments over the previous approach of LSPI with the same
basis functions (Bertsekas & Ioffe, 1996). Both algorithms
reach higher final performance (' 3500 and 4500 respec-
tively) than the best level for LSPI (3183). They also
reach this performance after many fewer games and, un-
like LSPI do not “collapse” after finding their peak perfor-
mance. We believe that these improvements are mostly due
to the memory replay buffer, which stores a bank of recent
past transitions, rather than LSPI which is purely online.

Second, both RLSVI and LSVI learn from scratch where
LSPI required a scoring initial policy to begin learning.
We believe this is due to improved exploration schemes,
LSPI is completely greedy so struggles to learn without an
initial policy. LSVI with a tuned ✏ schedule is much bet-
ter. However, we do see a significant improvement through
exploration via RLSVI even when compared to the tuned
✏ scheme. This outperformance becomes much more ex-
treme on a variant of Tetris with only 5 rows that highlights
the need for efficient exploration. More details are avail-
able in Appendix D.

Figure 7. Learning Tetris with Bertsekas-Ioffe features.

6.3. A recommendation engine

We will now show that efficient exploration and general-
ization can be helpful in a simple model of customer in-
teraction. Consider an agent which recommends J  N
products from Z = {1, 2, . . . , N} sequentially to a cus-
tomer. The conditional probability that the customer likes
a product depends on the product, some items are better
than others. However it also depends on what the user has
observed, what she liked and what she disliked. We repre-
sent the products the customer has seen by ˜Z ✓ Z . For
each product n 2 ˜Z we will indicate xn 2 {�1,+1} for
her preferences {dislike, like} respectively. If the customer
has not observed the product n /2 ˜Z we will write xn = 0.
We model the probability that the customer will like a new
product a /2 ˜Z by a logistic transformation linear in x:

P(a|x) = 1/ (1 + exp (� [�a +
P

n �anxn])) . (2)

Importantly, this model reflects that the customers’ pref-
erences may evolve as their experiences change. For ex-
ample, a customer may be much more likely to watch the
second season of the TV show “Breaking Bad” if they have
watched the first season and liked it.

Generalization and Exploration via Randomized Value Functions

The agent in this setting is the recommendation system,
whose goal is to maximize the cumulative amount of items
liked through time for each customer. The agent does
not know p(a|x) initially, but can learn to estimate the
parameters �, � through interactions across different cus-
tomers. Each customer is modeled as an episode with hori-
zon length H = J with a “cold start” and no previous ob-
served products ˜Z = ;. For our simulations we set �a = 0

8a and sample a random problem instance by sampling
�an ⇠ N(0, c2) independently for each a and n.

Figure 8. RLSVI performs better than Boltzmann exploration.

Figure 9. RLSVI can outperform the optimal myopic policy.

Although this setting is simple, the number of possible
states |S| = |{�1, 0,+1}|H = 3

J is exponential in J .
To learn in time less than |S| it is crucial that we can ex-
ploit generalization between states as per equation (2). For
this problem we constuct the following simple basis func-
tions: 81  n,m, a  N , let �m(x, a) = 1{a = m}
and �mn(x, a) = xn1{a = m}. In each period h form
�h = ((�n)n, (�m)m). The dimension of our function
class K = N2

+N is exponentially smaller than the num-
ber of states. However, barring a freak event, this simple
basis will lead to an agnostic learning problem.

Figure 8 and 9 show the performance of RLSVI compared
to several benchmark methods. In Figure 8 we plot the
cumulative regret of RLSVI when compared against LSVI
with Boltzmann exploration and identical basis features.
We see that RLSVI explores much more efficiently than
Boltzmann exploration over a wide range of temperatures.

In Figure 9 we show that, using this efficient exploration
method, the reinforcement learning policy is able to out-
perform not only benchmark bandit algorithms but even

the optimal myopic policy7. Bernoulli Thompson sampling
does not learn much even after 1200 episodes, since the
algorithm does not take context into account. The linear
contextual bandit outperforms RLSVI at first. This is not
surprising, since learning a myopic policy is simpler than
a multi-period policy. However as more data is gathered
RLSVI eventually learns a richer policy which outperforms
the myopic policy.

Appendix E provides pseudocode for this computational
study. We set N = 10, H = J = 5, c = 2 and L = 1200.
Note that such problems have |S| = 4521 states; this al-
lows us to solve each MDP exactly so that we can compute
regret. Each result is averaged over 100 problem instances
and for each problem instance, we repeat simulations 10

times. The cumulative regret for both RLSVI (with � = 0.2
and �2

= 10

�3) and LSVI with Boltzmann exploration
(with � = 0.2 and a variety of “temperature” settings ⌘)
are plotted in Figure 8. RLSVI clearly outperforms LSVI
with Boltzmann exploration.

Our simulations use an extremely simplified model. Never-
theless, they highlight the potential value of RL over multi-
armed bandit approaches in recommendation systems and
other customer interactions. An RL algorithm may outper-
form even an optimal myopic system, particularly where
large amounts of data are available. In some settings, effi-
cient generalization and exploration can be crucial.

7. Closing remarks
We have established a regret bound that affirms efficiency
of RLSVI in a tabula rasa learning context. However the
real promise of RLSVI lies in its potential as an efficient
method for exploration in large-scale environments with
generalization. RLSVI is simple, practical and explores
efficiently in several environments where state of the art
approaches are ineffective.

We believe that this approach to exploration via random-
ized value functions represents an important concept be-
yond our specific implementation of RLSVI. RLSVI is de-
signed for generalization with linear value functions, but
many of the great successes in RL - from Backgammon
(Tesauro, 1995) to Atari8 (Mnih, 2015) - have made use
of highly nonlinear “deep” neural networks. The insights
of this paper and of generalization and exploration via ran-
domized value functions should extend to nonlinear con-
texts. For example, one could approximate posterior sam-
ples of nonlinearly parameterized value functions via the
bootstrap (Osband & Van Roy, 2015).

7The optimal myopic policy knows the true model defined in
Equation 2, but does not plan over multiple timesteps.

8Interestingly, recent work has been able to reproduce similar
performance using linear value functions (Liang et al., 2015).

Generalization and Exploration via Randomized Value Functions

References
Abbasi-Yadkori, Yasin and Szepesvári, Csaba. Regret

bounds for the adaptive control of linear quadratic sys-
tems. Journal of Machine Learning Research - Proceed-
ings Track, 19:1–26, 2011.

Agrawal, Shipra and Goyal, Navin. Further optimal re-
gret bounds for Thompson sampling. arXiv preprint
arXiv:1209.3353, 2012.

Bertsekas, Dimitri P and Ioffe, Sergey. Temporal
differences-based policy iteration and applications in
neuro-dynamic programming. Lab. for Info. and De-
cision Systems Report LIDS-P-2349, MIT, Cambridge,
MA, 1996.

Brafman, Ronen I. and Tennenholtz, Moshe. R-max - a
general polynomial time algorithm for near-optimal re-
inforcement learning. Journal of Machine Learning Re-
search, 3:213–231, 2002.

Dann, Christoph and Brunskill, Emma. Sample complex-
ity of episodic fixed-horizon reinforcement learning. In
Advances in Neural Information Processing Systems, pp.
2800–2808, 2015.

Dearden, Richard, Friedman, Nir, and Russell, Stuart J.
Bayesian Q-learning. In AAAI/IAAI, pp. 761–768, 1998.

Gabillon, Victor, Ghavamzadeh, Mohammad, and Scher-
rer, Bruno. Approximate dynamic programming finally
performs well in the game of tetris. In Advances in
Neural Information Processing Systems, pp. 1754–1762,
2013.

Gopalan, Aditya and Mannor, Shie. Thompson sampling
for learning parameterized markov decision processes.
arXiv preprint arXiv:1406.7498, 2014.

Hadar, Josef and Russell, William R. Rules for ordering
uncertain prospects. The American Economic Review,
pp. 25–34, 1969.

Jaksch, Thomas, Ortner, Ronald, and Auer, Peter. Near-
optimal regret bounds for reinforcement learning. Jour-
nal of Machine Learning Research, 11:1563–1600,
2010.

Kakade, Sham. On the Sample Complexity of Reinforce-
ment Learning. PhD thesis, University College London,
2003.

Kearns, Michael J. and Singh, Satinder P. Near-optimal
reinforcement learning in polynomial time. Machine
Learning, 49(2-3):209–232, 2002.

Lagoudakis, Michail, Parr, Ronald, and Littman,
Michael L. Least-squares methods in reinforcement
learning for control. In Second Hellenic Conference on
Artificial Intelligence (SETN-02), 2002.

Levy, Haim. Stochastic dominance and expected utility:
survey and analysis. Management Science, 38(4):555–
593, 1992.

Li, Lihong and Littman, Michael. Reducing reinforcement
learning to KWIK online regression. Annals of Mathe-
matics and Artificial Intelligence, 2010.

Li, Lihong, Littman, Michael L., and Walsh, Thomas J.
Knows what it knows: a framework for self-aware learn-
ing. In ICML, pp. 568–575, 2008.

Liang, Yitao, Machado, Marlos C., Talvitie, Erik, and
Bowling, Michael H. State of the art control of atari
games using shallow reinforcement learning. CoRR,
abs/1512.01563, 2015. URL http://arxiv.org/

abs/1512.01563.

Mnih, Volodymyr et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533,
2015.

Ortner, Ronald and Ryabko, Daniil. Online regret bounds
for undiscounted continuous reinforcement learning. In
NIPS, 2012.

Osband, Ian and Van Roy, Benjamin. Model-based rein-
forcement learning and the eluder dimension. In Ad-
vances in Neural Information Processing Systems, pp.
1466–1474, 2014a.

Osband, Ian and Van Roy, Benjamin. Near-optimal rein-
forcement learning in factored MDPs. In Advances in
Neural Information Processing Systems, pp. 604–612,
2014b.

Osband, Ian and Van Roy, Benjamin. Bootstrapped thomp-
son sampling and deep exploration. arXiv preprint
arXiv:1507.00300, 2015.

Osband, Ian, Russo, Daniel, and Van Roy, Benjamin.
(More) efficient reinforcement learning via posterior
sampling. In NIPS, pp. 3003–3011. Curran Associates,
Inc., 2013.

Pazis, Jason and Parr, Ronald. PAC optimal exploration in
continuous space Markov decision processes. In AAAI.
Citeseer, 2013.

Russo, Dan and Van Roy, Benjamin. Eluder dimension
and the sample complexity of optimistic exploration. In
NIPS, pp. 2256–2264. Curran Associates, Inc., 2013.

http://arxiv.org/abs/1512.01563
http://arxiv.org/abs/1512.01563

Generalization and Exploration via Randomized Value Functions

Russo, Daniel and Van Roy, Benjamin. Learning to opti-
mize via posterior sampling. Mathematics of Operations
Research, 39(4):1221–1243, 2014.

Strehl, Alexander L., Li, Lihong, Wiewiora, Eric, Lang-
ford, John, and Littman, Michael L. PAC model-free
reinforcement learning. In ICML, pp. 881–888, 2006.

Sutton, Richard and Barto, Andrew. Reinforcement Learn-
ing: An Introduction. MIT Press, March 1998.

Szepesvári, Csaba. Algorithms for Reinforcement Learn-
ing. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers,
2010.

Tesauro, Gerald. Temporal difference learning and td-
gammon. Communications of the ACM, 38(3):58–68,
1995.

Thompson, W.R. On the likelihood that one unknown prob-
ability exceeds another in view of the evidence of two
samples. Biometrika, 25(3/4):285–294, 1933.

Wen, Zheng and Van Roy, Benjamin. Efficient exploration
and value function generalization in deterministic sys-
tems. In NIPS, pp. 3021–3029, 2013.

