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1 INRIA – École Normale Supérieure, Paris, France 2 INRIA – CentraleSupélec, Châtenay-Malabry, France
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Abstract
In this paper, we propose several improvements
on the block-coordinate Frank-Wolfe (BCFW)
algorithm from Lacoste-Julien et al. (2013) re-
cently used to optimize the structured support
vector machine (SSVM) objective in the con-
text of structured prediction, though it has wider
applications. The key intuition behind our im-
provements is that the estimates of block gaps
maintained by BCFW reveal the block subop-
timality that can be used as an adaptive crite-
rion. First, we sample objects at each iteration of
BCFW in an adaptive non-uniform way via gap-
based sampling. Second, we incorporate pair-
wise and away-step variants of Frank-Wolfe into
the block-coordinate setting. Third, we cache or-
acle calls with a cache-hit criterion based on the
block gaps. Fourth, we provide the first method
to compute an approximate regularization path
for SSVM. Finally, we provide an exhaustive
empirical evaluation of all our methods on four
structured prediction datasets.

1. Introduction
One of the most popular learning objectives for structured
prediction is the structured support vector machine (Taskar
et al., 2003; Tsochantaridis et al., 2005), which generalizes
the classical binary SVM to problems with structured out-
puts. In this paper, we consider the `2-regularized `1-slack
structured SVM, to which we will simply refer as SSVM.
The SSVM method consists in the minimization of the reg-
ularized structured hinge-loss on the labeled training set.
The optimization problem of SSVM is of significant com-
plexity and, thus, hard to scale up. In the literature, multi-
ple optimization methods have been applied to tackle this
problem, including cutting-plane methods (Tsochantaridis
et al., 2005; Joachims et al., 2009) and stochastic subgradi-
ent methods (Ratliff et al., 2007), among others.
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Recently, Lacoste-Julien et al. (2013) proposed the block-
coordinate Frank-Wolfe method (BCFW), which is cur-
rently one of the state-of-the-art algorithms for SSVM.1

In contrast to the classical (batch) Frank-Wolfe algo-
rithm (Frank & Wolfe, 1956), BCFW is a randomized
block-coordinate method that works on block-separable
convex compact domains. In the case of SSVM, BCFW
operates in the dual domain and iteratively applies Frank-
Wolfe steps on the blocks of dual variables corresponding
to different objects of the training set. Distinctive features
of BCFW for SSVM include optimal step size selection
leading to the absence of the step-size parameter, conver-
gence guarantees for the primal objective, and ability to
compute the duality gap as a stopping criterion.

Notably, the duality gap obtained by BCFW can be writ-
ten as a sum of block gaps, where each block of dual vari-
ables corresponds to one training example. In this paper,
we exploit this property and improve the BCFW algorithm
in multiple ways. First, we substitute the standard uniform
sampling of objects at each iteration with an adaptive non-
uniform sampling. Our procedure consists in sampling ob-
jects with probabilities proportional to the values of their
block gaps, giving one of the first fully adaptive sampling
approaches in the optimization literature that we are aware
of. This choice of sampling probabilities is motivated by
the intuition that objects with higher block gaps potentially
can provide more improvement to the objective. We ana-
lyze the effects of the gap-based sampling on convergence
and discuss the practical trade-offs.

Second, we apply pairwise (Mitchell et al., 1974) and
away (Wolfe, 1970) steps of Frank-Wolfe to the block-
coordinate setting. This modification is motivated by the
fact that batch algorithms based on these steps have linear
convergence rates (Lacoste-Julien & Jaggi, 2015) whereas
convergence of standard Frank-Wolfe is sublinear.

Third, we cache oracle calls and propose a gap-based cri-
terion for calling the oracle (cache miss vs. cache hit).
Caching the oracle calls was shown do deliver significant
speed-ups when the oracle is expensive, e.g., in the case of

1Independently, Branson et al. (2013) proposed their SVM-IS
algorithm which is equivalent to BCFW in some scenarios.
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cutting-plane methods (Joachims et al., 2009).

Finally, we propose an algorithm to approximate the regu-
larization path of SSVM, i.e., solve the problem for all pos-
sible values of the regularization parameter. Our method
exploits block gaps to construct the breakpoints of the path
and leads to an ε-approximate path.

Contributions. Overall, we make the following contri-
butions: (i) adaptive non-uniform sampling of the train-
ing objects; (ii) pairwise and away steps in the block-
coordinate setting; (iii) gap-based criterion for caching the
oracle calls; (iv) regularization path for SSVM. The first
three contributions are general to BCFW and thus could
be applied to other block-separable optimization problems
where BCFW could or have been used such as video co-
localization (Joulin et al., 2014), multiple sequence align-
ment (Alayrac et al., 2016, App. B) or structured submod-
ular optimization (Jegelka et al., 2013), among others.

This paper is organized as follows. In Section 2, we
describe the setup and review the BCFW algorithm. In
Section 3, we describe our contributions: adaptive sam-
pling (Section 3.1), pairwise and away steps (Section 3.2),
caching (Section 3.3). In Section 4, we explain our algo-
rithm to compute the regularization path. We discuss the
related work in the relevant sections of the paper. Section 5
contains the experimental study of the methods. The code
and datasets are available at our project webpage.2

2. Background
2.1. Structured Support Vector Machine (SSVM)
In structured prediction, we are given an input x ∈ X , and
the goal is to predict a structured object y ∈ Y(x) (such
as a sequence of tags). In the standard setup for structured
SVM (SSVM) (Taskar et al., 2003; Tsochantaridis et al.,
2005), we assume that prediction is performed with a lin-
ear model hw(x) = argmaxy∈Y(x)〈w,φ(x,y)〉 parame-
terized by the weight vectorw where the structured feature
map φ(x,y) ∈ Rd encodes the relevant information for
input/output pairs. We reuse below the notation and setup
from Lacoste-Julien et al. (2013). Given a labeled training
set D = {(xi,yi)}ni=1, the parameters w are estimated by
solving a convex non-smooth optimization problem

min
w

λ
2 ‖w‖

2
+ 1

n

n∑
i=1

H̃i(w) (1)

where λ is the regularization parameter and H̃i(w) is the
structured hinge loss defined using the loss-augmented de-
coding subproblem (or maximization oracle):

‘max
oracle’

H̃i(w) := max
y∈Yi

Li(y)− 〈w,ψi(y)〉︸ ︷︷ ︸
=:Hi(y;w)

. (2)

Here ψi(y) := φ(xi,yi) − φ(xi,y), Yi := Y(xi), and
Li(y) := L(yi,y) denotes the task-dependent structured

2 http://www.di.ens.fr/sierra/research/gapBCFW/

Algorithm 1 Block-Coordinate Frank-Wolfe (BCFW) al-
gorithm for structured SVM

1: Let w(0) :=wi
(0) :=0; `(0) :=`i

(0) :=0
2: for k := 0, . . . ,∞ dos
3: Pick i at random in {1, . . . , n}
4: Solve y∗i := argmax

y∈Yi

Hi(y;w(k))

5: Let ws := 1
λnψi(y

∗
i ) and `s := 1

nLi(y
∗
i )

6: Let g(k)
i := λ(w

(k)
i −ws)Tw(k) − `(k)

i + `s

7: Let γ :=
g
(k)
i

λ‖w(k)
i −ws‖2

and clip to [0, 1]

8: Update wi(k+1) := (1− γ)wi
(k) + γws

9: and `i
(k+1) := (1− γ)`i(k) + γ `s

10: Update w(k+1) := w(k) +wi
(k+1) −wi(k)

11: and `(k+1) := `(k) + `i
(k+1) − `i(k)

12: end for

error of predicting an output y instead of the observed out-
put yi (e.g., a Hamming distance between two sequences).

Dual formulation. The negative of a Fenchel dual for ob-
jective (1) can be written as

min
α∈Rm

α<0

f(α) := λ
2

∥∥Aα∥∥2 − bTα (3)

s.t.
∑
y∈Yi

αi(y) = 1 ∀i ∈ [n]

where αi(y), i ∈ [n] := {1, . . . , n}, y ∈ Yi
are the dual variables. The matrix A ∈ Rd×m con-
sists of the m :=

∑
imi =

∑
i |Yi| columns A :={

1
λnψi(y) ∈ Rd

∣∣ i ∈ [n],y ∈ Yi
}

, and the vector b ∈
Rm is given by b :=

(
1
nLi(y)

)
i∈[n],y∈Yi

.

In SSVM (as for the standard SVM), the Karush-Kuhn-
Tucker (KKT) optimality conditions can give the pri-
mal variables w(α) = Aα =

∑
i,y∈Yi

αi(y)ψi(y)
λn corre-

sponding to the dual variables α (see, e.g., (Lacoste-Julien
et al., 2013, App. E)). The gradient of f then takes a simple
form ∇f(α) = λATAα − b = λATw − b; its (i,y)-th
component equals − 1

nHi(y;w).

2.2. Block Coordinate Frank-Wolfe method (BCFW)
We give in Alg. 1 the BCFW algorithm from Lacoste-Julien
et al. (2013) applied to problem (3). It exploits the block-
separability of the domainM := ∆|Y1| × . . . ×∆|Yn| for
problem (3) and sequentially applies the Frank-Wolfe steps
to the blocks of the dual variables α(i) ∈M(i) := ∆|Yi|.

While BCFW works on the dual (3) of SSVM, it only
maintains explicitly the primal variables via the relation-
ship w(α). Most importantly, the Frank-Wolfe linear ora-
cle on block i at iterate α(k) is equivalent to the max ora-
cle (2) at the corresponding weight vector w(k) := Aα(k)

(Lacoste-Julien et al., 2013, App. B.1) (see line 4 of Alg. 1):

max
s(i)∈M(i)

〈
s(i),−∇(i)f(α(k))

〉
= 1

n max
y∈Yi

Hi(y;w(k)). (4)

http://www.di.ens.fr/sierra/research/gapBCFW/
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Here, the operator ∇(i) denotes the partial gradient corre-
sponding to the block i, i.e., ∇f = (∇(i)f)ni=1. Note that
each argmax of the r.h.s. of (4), y∗(i), corresponds to a cor-
ner s∗(i) of the polytopeM(i) maximizing the l.h.s. of (4).

As the objective (3) is quadratic, the optimal step size that
yields the maximal improvement in the chosen direction
s∗(i) −α

(k)
(i) can be found analytically (Line 7 of Alg. 1).

2.3. Duality gap
At each iteration, the batch Frank-Wolfe algorithm (Frank
& Wolfe, 1956), (Lacoste-Julien et al., 2013, Section 3)
computes the following quantity, known as the lineariza-
tion duality gap or Frank-Wolfe gap:

g(α) := max
s∈M

〈α− s,∇f(α)〉 = 〈α− s∗,∇f(α)〉. (5)

It turns out that this Frank-Wolfe gap exactly equals the
Lagrange duality gap between the dual objective (3) at a
point α and the primal objective (1) at the point w(α) =
Aα (Lacoste-Julien et al., 2013, App. B.2).

Because of the separability ofM, the Frank-Wolfe gap (5)
can be represented here as a sum of block gaps gi(α),
g(α) =

∑n
i=1 gi(α), where

gi(α) := max
s(i)∈M(i)

〈
α(i) − s(i),∇(i)f(α)

〉
. (6)

Block gaps can be easily computed using the quantities
maintained by Alg. 1 (see line 6).

Finally, we can rewrite the block gap in the form

gi(α)= 1
n

(
max
y∈Yi

Hi(y;w)−
∑
y∈Yi

αi(y)Hi(y;w)

)
(7)

providing understandable intuition of when the block gap
equals zero. This is the case when all the support vectors,
i.e., labelings corresponding to αi(y) > 0, are tied solu-
tions of the max oracle (4).

2.4. Convergence of BCFW
Lacoste-Julien et al. (2013) prove the convergence of the
BCFW algorithm at a rate O( 1

k ).
Theorem 1 (Lacoste-Julien et al. (2013), Theorem 2).
For each k ≥ 0, the iterate3 α(k) of Alg. 1 satisfies
IE
[
f(α(k))

]
− f(α∗) ≤ 2n

k+2n

(
C⊗f +h0

)
, where α∗ ∈M

is a solution of the problem (3), h0 := f(α(0)) − f(α∗)
is the suboptimality at the starting point of the algorithm,
C⊗f :=

∑n
i=1 C

(i)
f is the sum of the curvature constants4 of

f with respect to the domains M(i) of individual blocks.
The expectation is taken over the random choice of the
block i at iterations 1, . . . , k of the algorithm.

3Note that Alg. 1 does not maintain iterates α(k) explicitly.
They are stored in the form ofw(k) = Aα(k).

4For the definition of curvature constant, see Definition 2 in
App. B or (Lacoste-Julien & Jaggi, 2015, App. A)

The proof of Theorem 1 crucially depends on a standard de-
scent lemma applied to a block, stating that at each iteration
of BCFW, for any picked block i and any scalar γ ∈ [0, 1],
the following inequality holds:

f(α(k+1)) ≤ f(α(k))− γgi(α(k)) + γ2

2 C
(i)
f . (8)

We rederive inequality (8) as Lemma 3 in App. B. Note
that α(k+1) ∈M is defined by a line search, which is why
the bound (8) holds for any scalar γ ∈ [0, 1].

Taking the expectation of (8) w.r.t. the random choice of
block i (sampled uniformly on [n]), we get the inequality

IE
[
f(α(k+1)) |α(k)

]
≤ f(α(k))− γ

ng(α(k)) + γ2

2nC
⊗
f (9)

which can be used to get the convergence theorem.

3. Block gaps in BCFW
In this section, we propose three ways to improve the
BCFW algorithm: adaptive sampling (Sec. 3.1), pairwise
and away steps (Sec. 3.2) and caching (Sec. 3.3).

3.1. Adaptive non-uniform sampling
Motivation. When optimizing finite sums such as (1), it
is often the case that processing some summands does not
lead to significant progress of the algorithm. At each it-
eration, the BCFW algorithm selects a training object and
performs the block-coordinate step w.r.t. the corresponding
dual variables. If these variables are already close to being
optimal, then BCFW does not make significant progress at
this iteration. Usually, it is hard to identify whether pro-
cessing the summand would lead to an improvement with-
out actually doing computations on it. The BCFW algo-
rithm obtains at each iteration the block gap (6) quantify-
ing the suboptimality on the block. In what follows, we use
the block gaps to randomly choose a block (an object of the
training set) at each iteration in such a way that the blocks
with larger suboptimality are sampled more often (the sam-
pling probability of a block is proportional to the value of
the current gap estimate).

Convergence. Assume that at iteration k of Alg. 1, we
have the probability p(k)

i of sampling block i. By minimiz-
ing the descent lemma bound (8) w.r.t. γ for each i inde-
pendently under the assumption that gi(α(k)) ≤ C

(i)
f , and

then taking the conditional expectation w.r.t. i, we get

IE
[
f(α(k+1)) |α(k)

]
≤ f(α(k))− 1

2

n∑
i=1

p
(k)
i

g2i (α(k))

C
(i)
f

. (10)

Intuitively, by adapting the probabilities p(k)
i , we can ob-

tain a better bound on the expected improvement of f . In
the ideal scenario, one would choose deterministically the
block i with the maximal value of g2

i (α(k))/C
(i)
f .
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(a) Convergence plots
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(b) Quality of gap estimates
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Figure 1. Plot (a) shows exploitation/staleness trade-off for the gap sampling approach. We report the duality gap against the number of
effective passes over the data for uniform sampling and for gap sampling with the different frequencies of batch passes updating the gap
estimates (every pass over data, every 5, 10, 100 passes, no batch updates). Plot (b) shows the quality of heuristic gap estimates obtained
by the same methods. We report the ratio of the heuristic gap estimate to the true gap value. Plot (c) shows the factor of improvement of
exact gap sampling predicted by Theorem 2 for real gaps appearing during a run of BCFW with either uniform or gap sampling.

In practice, the curvature C(i)
f is unknown, and having ac-

cess to all gi(α(k))’s at each step is prohibitively expensive.
However, the values of the block gaps obtained at the pre-
vious iterations can serve as estimates of the block gaps at
the current iteration. We use them in the following non-
uniform gap sampling scheme: p(k)

i ∝ gi(α
(ki)). where ki

records the last iteration at which the gap i was computed.
Alg. 2 in App. D summarizes the method.

We also motivate this choice by Theorem 2 below which
shows that BCFW with (exact) gap sampling converges
with a better constant in the rate than BCFW with uniform
sampling when the gaps are non-uniform enough (and is
always better when the curvatures C(i)

f ’s are uniform). See
the proof and discussion in App. E.

Theorem 2. Consider the same notation as in Theorem 1.
Assume that at each iterate α(k), BCFW with gap sam-
pling (Alg. 2) has access to the exact values of the block
gaps. Then, at each iteration, it holds that IE

[
f(α(k))

]
−

f(α∗) ≤ 2n
k+2n

(
C⊗f χ

⊗ + h0

)
where the constant χ⊗ is

an upper bound on IE
[

χ(C
(:)
f )

χ(g:(α(k)))3

]
. The non-uniformity

measure χ(x) of a vector x ∈ Rn+ is defined as χ(x) :=√
1 + n2 Var

[
p
]

where p := x
‖x‖1 is the probability vec-

tor obtained by normalizing x.

Adaptive procedure. Note that this procedure is adap-
tive, meaning that the criterion for choosing an object to
optimize changes during the optimization process. Our
adaptive approach differs from more standard techniques
that sample proportional to the Lipschitz constants, as e.g.,
in Nesterov (2012). In App. C, we illustrate the advan-
tage of this property by constructing an example where the
convergence of gap sampling can be shown tightly to be n
times faster than when using Lipschitz sampling.

Exploitation versus staleness trade-off. In practice,
having access to the exact block gaps is intractable because
it requires a full pass over the dataset after every block up-
date. However, we have access to the estimates of the block
gaps computed from past oracle calls on each block. No-

tice that such estimates are outdated, i.e., might be quite
far from the current values of the block gaps. We call this
effect “staleness”. One way to compensate staleness is to
refresh the block gaps by doing a full gap computation (a
pass over the dataset) after several block-coordinate passes.
These gap computations were often already done during the
optimization process, e.g., to monitor convergence.

We demonstrate the exploitation/staleness trade-off in our
exploratory experiment reported in Figure 1. On the OCR
dataset (Taskar et al., 2003), we run the gap sampling al-
gorithm with a gap computation pass after 1, 5, 10 and
100 block-coordinate passes (Gap 1, Gap 5, Gap 10, Gap
100) and without any gap computation passes (Gap Inf).
As a baseline, we use BCFW with uniform sampling (Uni-
form). Figure 1a reports the duality gap after each num-
ber of effective passes over the data.5 Figure 1b shows the
ratio of the exact value of the duality gap to the heuris-
tic gap estimate defined as the sum of the current gap esti-
mates. We observe that when the gap computation is never
run, the gap becomes significantly underestimated and the
algorithm does not converge. On another extreme, when
performing the gap computation after each pass of BCFW,
the algorithm wastes too many computations and converges
slowly. Between the two extremes, the method is not very
sensitive to the parameter (we have tried 5, 10, 20, 50) al-
lowing us to always use the value of 10.

Comparing adaptive methods to BCFW with uniform sam-
pling, we observe a faster convergence. Figure 1c reports
the improvement of gap sampling at each iteration w.r.t.
uniform sampling that is predicted by Theorem 2. Specif-
ically, we report the quantity χ(g:(α

(k)))3/χ(C
(:)
f ) with the

block gaps estimated at the runs of BCFW with both uni-
form and gap sampling schemes. To estimate the curva-
ture constants C(i)

f , we use the upper bounds proposed

by Lacoste-Julien et al. (2013, App. A): 4R2
i

λn2 where Ri :=
maxy∈Yi

‖ψi(y)‖2. We approximate Ri by picking the
largest value ‖ψi(y)‖2 corresponding to a labeling y ob-
served within the run of BCFW.

5An effective pass consists in n calls to the max oracle.



Minding the Gaps for Block Frank-Wolfe Optimization of Structured SVMs

Related work. Non-uniform sampling schemes have
been used over the last few years to improve the conver-
gence rates of well known randomized algorithms (Nes-
terov, 2012; Needell et al., 2014; Zhao & Zhang, 2015).
Most of these approaches use the Lipschitz constants of
the gradients to sample more often functions for which
gradient changes quickly. This approach has two main
drawbacks. First, Lipschitz constants are often unknown
and heuristics are needed to estimate them. Second, such
schemes are not adaptive to the current progress of the al-
gorithm. To the best of our knowledge, the only other ap-
proach that uses an adaptive sampling scheme to guide
the optimization with convergence guarantees is the one
from Csiba et al. (2015), in the context of the stochastic
dual coordinate ascent (SDCA) algorithm. A cyclic ver-
sion of BCFW has been analyzed by Beck et al. (2015)
while Wang et al. (2014) analyzed its mini-batch form.

3.2. Pairwise and away steps
Motivation. In the batch setting, the convergence rate of
the Frank-Wolfe algorithm is known to be sublinear when
the solution is on the boundary (Wolfe, 1970), as is the
case for SSVM. Several modifications have been proposed
in the literature to address this issue. All these meth-
ods replace (or complement) the FW step with a step of
another type: pairwise step (Mitchell et al., 1974), away
step (Wolfe, 1970), fully-corrective step (Holloway, 1974)
(see Lacoste-Julien & Jaggi (2015) for a recent review and
the proof that all these methods have a linear rate on the ob-
jective (3) despite not being strongly convex). A common
feature of these methods is the ability to remove elements
of the active set (support vectors in the case of SSVM)
in order to reach the boundary, unlike FW which oscil-
lates while never completely reaching the boundary. As we
expect the solution of SSVM to be sparse, these variants
seem natural in our setting. In the rest of this section, we
present the pairwise steps in the block-coordinate setting
(the away-step version is described in Alg. 4 of App. 4).

Pairwise steps. A (block) pairwise step consists in re-
moving mass from the away corner on block i and trans-
ferring it to the FW corner obtained by the max ora-
cle (4). The away corner is the element of the active
set Si := {y ∈ Yi | αi(y) > 0} ⊆ Yi worst aligned
with the current descent direction, which can be found
by solving yai := argminy∈Si Hi(y;w). This does not
require solving a combinatorial optimization problem be-
cause the size of the active set is typically small, e.g.,
bounded by the number of iterations performed on the
block i. Analogously to the case of BCFW, the opti-
mal step size γ for the pairwise step can be computed
explicitly by clipping λ(wa−ws)Tw(k)+`s−`a

λ‖wa−ws‖2 to the seg-

ment [0, α
(k)
i (yai )] where the upper bound α(k)

i (yai ) cor-
responds to the mass of the away corner before the step
and the quantities ws := 1

λnψi(y
∗
i ), `s := 1

nLi(y
∗
i ) and

wa := 1
λnψi(y

a
i ), `a := 1

nLi(y
a
i ) represent the FW and

away corners. Alg. 3 in App. D summarizes the block-
coordinate pairwise Frank-Wolfe (BCPFW) algorithm.

In contrast to BCFW, the steps of BCPFW cannot be ex-
pressed in terms of the primal variables w only, thus it is
required to explicitly store the dual variables αi. Storing
the dual variables is feasible, because they are extremely
sparse, but still can lead to computational overheads caused
by the maintenance of the data structure.

The standard convergence analysis for pairwise and away-
step FW cannot be easily extended to BCFW. We show the
geometric decrease of the objective in Theorem 4 of App. G
only when no block would have a drop step (a.k.a. ‘bad
step’); a condition that cannot be easily analyzed due to
the randomization of the algorithm. We believe that novel
proof techniques are required here, even though we did ob-
serve empirically a linear convergence rate when λ is big
enough.

Related work. Ñanculef et al. (2014, Alg. 4) used the
pairwise FW algorithm on the dual of binary SVM (in
batch mode, however). It is related to classical work-
ing set algorithms, such as the SMO algorithm used to
train SVMs (Platt, 1999), also already applied on SSVMs
in Taskar (2004, Ch. 6). Franc (2014) recently proposed
a version of pairwise FW for the block-coordinate setting.
Their SDA-WSS2 algorithm uses a different criterion for
choosing the away corner than BCPFW: instead of min-
imizing Hi over the active set Si, they compute the im-
provement for all possible away corners and pick the best
one. Their FASOLE algorithm also contains a version of
gap sampling in the form of variable shrinking: if a block
gap becomes small enough, the block is not visited again,
until all the counters are reset.

3.3. Caching
Motivation. At each step, the BCFW and BCPFW algo-
rithms call the max oracle to find the Frank-Wolfe corner.
In cases where the max oracle is expensive, this step be-
comes a computational bottleneck. A natural idea to over-
come this problem consists in using a “cheaper oracle”
most of the time hoping that the resulting corner would be
good enough. Caching the results of the max oracle im-
plements this idea by reusing the previous calls of the max
oracle to store potentially promising corners.

Caching. The main principle of caching consists in main-
taining a working set Ci ⊂ Yi of labelings/corners for
each block i, where |Ci| � |Yi|. A cache oracle ob-
tains the cache corner defined as a corner from the work-
ing set best aligned with the descent direction, i.e., yci :=
argmaxy∈Ci Hi(y;w). If the obtained cache corner
passes a cache hit criterion, i.e., there is a cache hit, we do
a Frank-Wolfe (or pairwise) step based on the cache corner.
A step defined this way is equivalent to the corresponding
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step on the convex hull of the working set, which is a subset
of the block domain Yi. If a cache hit criterion is not satis-
fied, i.e., there is a cache miss, we call the (possibly expen-
sive) max oracle to obtain a Frank-Wolfe corner over the
full domain Yi. Alg. 5 in App. D summarizes the BCFW
method with caching.

Note that, in the case of BCPFW, the working set Ci is
closely related to the active set Si. On the implementa-
tion side, we maintain both sets in the same data structure
and keep Si ⊆ Ci.

Cache hit criterion. An important part of a caching
scheme is the criterion deciding whether the cache look
up is sufficient or the max oracle needs to be called. In-
tuitively, we want to use the cache whenever it allows op-
timization to make large enough progress. We use as mea-
sure of potential progress the inner product between the
candidate direction and the negative gradient (which would
give the block gap gi (6) if the FW corner is used). For a
cache step, it gives ĝ(k)

i := λ(w
(k)
i −wc)Tw(k)−`i(k)+`c,

which is defined by quantitieswc =
ψi(y

c
i )

λn , `c = 1
nLi(y

c
i )

similar to the ones defining the block gap. The quan-
tity ĝ(k)

i is then compared to a cache hit threshold defined
as max(Fg

(ki)
i , νng

(k0)) where ki identifies the iteration
when the max oracle was last called for the block i, k0

is the index of the iteration when the full batch gap was
computed, F > 0 and ν > 0 are cache parameters.

The following theorem gives a safety convergence result
for BCFW with caching (see App. F for the proof).
Theorem 3. Consider the same notation as in Theorem 1.
Let ν̃ := 1

nν ≤ 1. The iterate α(k) of Alg. 5 satisfies
IE
[
f(α(k))

]
− f(α∗) ≤ 2n

ν̃k+2n

(
1
ν̃C
⊗
f + h0

)
for k ≥ 0.

Note that the convergence rate of Theorem 3 differs from
the original rate of BCFW (Theorem 1) by the constant ν̃.
If ν̃ equals one the rate is the same, but the criterion effec-
tively prohibits cache hits. If ν̃ < 1 then the convergence is
slower, meaning that the method with cache needs more it-
erations to converge, but the oracles calls might be cheaper
because of the cache hits.

Effect of F and ν. The parameter ν controls the global
component and acts as a safety parameter to ensure con-
vergence (Theorem 3). The parameter F controls, instead,
the local (block-dependent) component of the criterion.
Figure 2 illustrates the effect of the parameters on OCR
dataset (Taskar et al., 2003) and motivates their choice. At
one extreme, if either F or ν are too large the cache is al-
most never hit. At another extreme, if both values are small
the cache is hit almost always, thus the method almost stops
calling the oracle and does not converge. Between the two
extremes, one of the components usually dominates. We
observe empirically that the regime with the local compo-
nent dominating leads to faster convergence. Our exper-
iments show that the method is not very sensitive to the
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Figure 2. Plot (a) illustrates different regimes induced by the
cache parameters F and ν. Plot (b) shows the evolution of the
duality gap within BCFW with gap sampling and with cache pa-
rameters in different regimes.

choice of the parameters, so, in what follows, we use val-
ues F = 0.25 and ν = 0.01.

Related work. In the context of SSVM, the idea of
caching was successfully applied to the cutting plane meth-
ods by Joachims et al. (2009), and, recently, to BCFW
by Shah et al. (2015). In contrast to Shah et al. (2015),
our method chooses whether to call the oracle or to use the
cache in an adaptive way by looking at the gap estimates
of the current blocks. In the extreme case, when just one
block is hard and requires computation and all the rest are
easy, our method would be able to call an oracle on the hard
block and to use the cache everywhere else. This will result
to n times less oracle calls, compared to their strategy.

4. Regularization path
According to the definition of Efron et al. (2004), a regular-
ization path is a set of minimizers of a regularized objective
in the form of (1) for all possible values of the regulariza-
tion parameter λ. Similarly to LASSO and binary SVM,
the general result of Rosset & Zhu (2007, Proposition 1) is
applicable to the case of SSVM and implies that the exact
regularization path is piecewise linear in 1/λ. However, re-
covering the exact path is, up to our knowledge, intractable
in the case of SSVM. In this paper, we construct an ε-
approximate regularization path, meaning that, for each
feasible λ, we have a corresponding primal variables w
which is ε-approximate, i.e., the suboptimality fλ(w)−f∗λ
does not exceed ε. We use a piecewise constant approxima-
tion except for the first piece which is linear. The approx-
imation is represented by a set of breakpoints {λj}J+1

j=0 ,
λ0 = +∞, λJ+1 = 0, λj+1 ≤ λj , and a set of parameter
vectors {wj}Jj=1 with the following properties: for each
λ ∈ [λj+1, λj ], j ≥ 1, the vector wj is ε-approximate; for
λ ≥ λ1, the vector λ1

λ w
1 is ε-approximate.

Our algorithm consists of two steps: (1) at the initializa-
tion step, we find the maximal finite breakpoint λ∞ := λ1

and the vector w∞ := w1; (2) at the induction step, we
compute a value λj+1 and a vector wj+1 given quanti-
ties λj and wj . At both steps of our algorithm, we explic-
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itly maintain dual variables α that correspond tow. Alg. 7
in App. D presents the complete procedure.

Initialization of the regularization path. First, note
that, for λ = ∞, the KKT conditions for (1) and (3) im-
ply that w = 0 is a solution of the problem (1). In what
follows, we provide a finite value for λ∞ and explicitly
construct α∞ and w∞ such that λ

∞

λ w
∞ is ε-approximate

for λ ≥ λ∞.

Let ỹi = argmaxy∈Yi
Hi(y;0) = argmaxy∈Yi

Li(y) be
the output of the max oracle forw = 0. First, we construct
a dual point α∞ ∈ M by setting α∞i (ỹi) = 1. For any
value of λ∞, the corresponding weight vector can be
easily computed: w∞ = 1

λ∞n

∑n
i=1ψi(ỹi). Identity (7)

provides the duality gap:

g(α∞, λ∞,w∞) = 1
n

n∑
i=1

(
max
y∈Yi

(
Li(y)− 〈w∞,ψ(y)〉

)
− Li(ỹi) + 〈(w∞,ψ(ỹi)〉

)
.

The inequality maxx(f(x) + g(x)) ≤ maxx f(x) +
maxx g(x) and the equality maxy∈Yi

Li(y) = Li(ỹi)
bound the gap:

g(α∞, λ∞,w∞) ≤ 1
n

∑
i

(
max
y∈Yi

(−〈w∞,ψ(y)〉)+

〈w∞,ψ(ỹi)〉
)

= 1
nλ∞

n∑
i=1

θi + 1
λ∞

∥∥∥ψ̃∥∥∥2

where the quantities θi = maxy∈Yi

(
− 〈ψ̃,ψ(y)〉

)
and

ψ̃ := 1
n

∑
iψi(ỹi) are easily computable. To ensure that

g(α∞, λ, λ
∞

λ w
∞) ≤ ε for λ ≥ λ∞, we can now set

λ∞ := 1
ε

(
‖ψ̃‖2 + 1

n

n∑
i=1

θi

)
.

Induction step. We utilize the intuition that the expres-
sion (7) provides control on the Frank-Wolfe gap for differ-
ent values of λ if the primal variablesw and, consequently,
the results of the max oracles stay unchanged. Proposi-
tion 1 formalizes this intuition.
Proposition 1. Assume that Li(yi) = 0, i = 1, . . . , n, i.e.,
the loss on the ground truth equals zero. Let ρ := λnew

λold < 1.
Then, setting αi(y) := ραold

i (y), y 6= yi, and αi(yi) :=
1−

∑
y 6=yi

αi(y), we then have wnew = wold and

g(α, λnew) = g(αold, λold) + (1− ρ)∆(αold, λold) (11)

where

∆(αold, λold) := 1
n

n∑
i=1

∑
y∈Yi

αold
i (y)Hi(y;wold).

Proof. Consider the problem (3) for both λnew and λold.
Since ψi(yi) = 0 and Anew = 1

ρA
old, we have that wold =

Aoldαold = Anewα = wnew. The assumption Li(yi) = 0
implies equalities Hi(yi;w

old) = 0. Under these condi-
tions, the equation (11) directly follows from the computa-
tion of g(α, λnew)− g(αold, λold) and the equality (7).

Assume that for the regularization parameter λold the
primal-dual pair αold, wold is κε-approximate, 0 < κ < 1,
i.e., g(αold, λold) ≤ κε. Proposition 1 ensures that
g(α, λnew) ≤ ε whenever

ρ = 1− ε−g(αold, λold)
∆(αold, λold)

≤ 1− ε(1−κ)
∆(αold, λold)

. (12)

Having κ < 1 ensures that ρ < 1, i.e., we get a new break
point λnew < λold. If the equation (12) results in ρ ≤ 0
then we reach the end of the regularization path, i.e., wold

is ε-approximate for all 0 ≤ λ < λold.

To be able to iterate the induction step, we apply one of
the algorithms for the minimization of the SSVM objective
for λnew to obtain κε-approximate pair αnew, wnew. Initial-
izing from α, wold provides fast convergence in practice.

Related work. Due to space constraints, see App. A.

5. Experiments
The experimental evaluation consists of two parts: Sec-
tion 5.1 compares the different algorithms presented in Sec-
tion 3; Section 5.2 evaluates our approach on the regular-
ization path estimation.

Datasets. We evaluate our methods on four datasets
for different structured prediction tasks: OCR (Taskar
et al., 2003) for handwritten character recognition,
CoNLL (Tjong Kim Sang & Buchholz, 2000) for text
chunking, HorseSeg (Kolesnikov et al., 2014) for binary
image segmentation and LSP (Johnson & Everingham,
2010) for pose estimation. The models for OCR and
CoNLL were provided by Lacoste-Julien et al. (2013). We
build our model based on the one by Kolesnikov et al.
(2014) for HorseSeg, and the one by Chen & Yuille (2014)
for LSP. For OCR and CoNLL, the max oracle consists
of the Viterbi algorithm (Viterbi, 1967); for HorseSeg –
in graph cut (Boykov & Kolmogorov, 2004), for LSP – in
belief propagation on a tree with messages passed by a gen-
eralized distance transform (Felzenszwalb & Huttenlocher,
2005). Note that the oracles of HorseSeg and LSP require
positivity constraints on a subset of the weights in order
to be tractable. The BCFW algorithm with positivity con-
straints is derived in App. H. We provide a detailed descrip-
tion of the datasets in App. I with a summary in Table 1.

The problems included in our experimental study vary in
the number of objects n (from 100 to 25,000), in the num-
ber of features d (from 102 to 106), and in the computa-
tional cost of the max oracle (from 10−4 to 2 seconds).

5.1. Comparing the variants of BCFW
In this section, we evaluate the three modifications of
BCFW presented in Section 3. We compare 8 methods
obtained by all the combinations of three binary dimen-
sions: gap-based vs. uniform sampling of objects, BCFW
vs. BCPFW, caching oracle calls vs. no caching.
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Figure 3. Summary of the results of Section 5.1: the duality gap against the number of effective passes over data (top) and time (bottom).

We report the results of each method on 6 datasets (includ-
ing 3 sizes of HorseSeg) for three values of the regulariza-
tion parameter λ: the value leading to the best test perfor-
mance, a smaller and a larger value. For each setup, we
report the duality gap against both number of oracle calls
and elapsed time. We run each method 5 times with differ-
ent random seeds influencing the order of sampled objects
and report the median (bold line), minimum and maximum
values (shaded region). We summarize the results in Fig-
ure 3 and report the rest in App. J.

First, we observe that, aligned with our theoretical re-
sults, gap sampling always leads to faster convergence
(both in terms of time and the number of effective passes).
The effect is stronger when n is large (Figure 3b). Sec-
ond, caching always helps in terms of number of effective
passes, but an overhead caused by maintaining the cache is
significant when the max oracle is fast (Figure 3a). In the
case of expensive oracle (Figure 3c), the cache overhead
is negligible. Third, the pairwise steps (BCPFW) lead to
an improvement to get smaller values of duality gaps. The
effect is stronger when the problem is more strongly con-
vex, i.e., λ is bigger. However, maintaining the active sets
results in computational overheads, which sometimes are
significant. Note that the overhead of cache and active sets
are shared, because they are maintained in the same data
structure. Using a cache also greatly limits the memory re-
quirements of BCPFW, because, when the cache is hit, the
active set is guaranteed not to grow.

Recommendation. For off-the-shelf usage, we recom-
mend to use the BCPFW + gap sampling + cache method
when oracle calls are expensive, and the BCFW + gap sam-
pling method when oracle calls are cheap.
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Figure 4. On HorseSeg-small, we compare ε-approximate regu-
larization path against grid search with/without warm start. We
report the cumulative running time (left) and the cumulative ef-
fective number of passes (right) required to get to each value of
the regularization parameter λ.

5.2. Regularization path
In this section, we evaluate our regularization path al-
gorithm presented in Section 4. We compare an ε-
approximate regularization path with ε = 0.1 against the
standard grid search approach with/without warm start (we
use a grid of 31 values of λ: 215, 214, . . . , 2−15). In Fig-
ure 4, we report the cumulative elapsed time and cumu-
lative number of effective passes over the data required
by the three methods to reach a certain value of λ on
the HorseSeg-small dataset (starting from the initialization
value for the path method and the maximum values of the
grid for the grid search methods). The methods and addi-
tional experiments are detailed in App. K.

Interpretation. First, we observe that warm start speeds
up the grid search. Second, the cost of computing the
full regularization path is comparable with the cost of grid
search. However, the regularization path algorithm finds
solutions for all values of λ without the need to predefine
the grid.
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