
Supplementary Material: Representational Similarity Learning

1. Extending methods to matrices that are not
Positive Semi-Definite

For any symmetric S we have an eigendecomposition
UDUT , where the eigenvalues may be negative. We can
think of W as having the form BDBT for some B and
using theD from S.

So we consider the following optimizations instead.

min
B
‖S −XBDBXT ‖2F ,

and
min
B
‖U −XB‖2F .

Then given aB constructW = BDBT . The rest remains
the same.

2. Clustering properties of GrOWL with
absolute error loss function

Proof of Theorem 3.1

Proof. The proof is divided into two steps. First, we
show ‖β̂j·‖ = ‖β̂k·‖ and then we further show that the
rows are equal. We proceed by contradiction. Assume
‖β̂j·‖ 6= ‖β̂k·‖ and, without loss of generality, suppose
‖β̂j·‖ > ‖β̂k·‖. We see that there exists a modification
of the solution with a smaller GrOWL norm and same
data-fitting term, and thus smaller overall objective value
which contradicts our assumption that B̂ is the minimizer
of L(B) +G(B).

Consider the modification, V = B̂ except v̂j· = β̂j· − ε
and v̂k· = β̂k· + ε where ε = δβ̂j· and δ is chosen such

that ‖ε‖ ∈
(
0,
‖β̂j·‖−‖β̂k·‖

2

]
Let L(B) = ‖Y −XB‖1 = ‖Y ′ − x·jβ̂j· − x·kβ̂k·‖1
where Y ′ is the residual term given by Y ′ = Y −∑
i 6=j,k x·iβ̂i·. Since x·j = x·k, L is invariant under

this transformation, i.e., L(V ) = L(B̂). Same is true for
L(B) = ‖Y −XB‖2F .

Observe that the GrOWL norm of B is equal to the OWL
norm of the vector of euclidean norms of rows ofB. Since
‖vk·‖ = ‖βk· + ε‖ ≤ ‖βk·‖ + ‖ε‖, this transformation is
equivalent to that defined in Lemma 3.1 and we have

G(B̂)−G(V ) ≥ ∆‖ε‖

This leads to a contradiction to our assumption that B̂ is
the minimizer of L(B) + G(B) and completes the proof
that ‖β̂j·‖ = ‖β̂k·‖. Now, let β̂j· + β̂k· = z, then the
minimizer satisfies

min
β̂j·,β̂k·

wj‖β̂j·‖+ wk‖β̂k·‖

such that β̂j· + β̂k· = z and ‖β̂j·‖ = ‖β̂k·‖

It is easy to see that the solution to this optimization is
β̂j· = β̂k· = z/2

Proof of Theorem 3.2

Proof. The proof is similar to the identical columns theo-
rem. By contradiction and without loss of generality, sup-
pose ‖β̂j·‖ > ‖β̂k·‖. We show that there exists a transfor-
mation of B̂ such that the increase in the data fitting term
is smaller than the decrease in the GrOWL norm.

Consider the modification, V , as defined in the proof of
Theorem 3.1. By triangle inequality, the difference in loss
function L that results from this modification satisfies

L(V )− L(B̂) ≤
∥∥x·j − x·k∥∥1

‖ε‖1

Invoking Lemma 3.1 as in the previous theorem and
‖ε‖1 ≤

√
r‖ε‖, we get

L(V ) +G(V )−(L(B̂) +G(B̂))

≤
√
r(
∥∥x·j − x·k∥∥1

− ∆√
r

)‖ε‖ < 0

This contradicts our assumption that B̂ is the minimizer of
L(B) + G(B) and completes the proof for absolute loss.
The proof with squared Frobenius loss can easily be ex-
tended using the inequality derived in Appendix B.

Proof of Theorem 3.3

Proof. The proof is similar to the identical columns theo-
rem. By contradiction, suppose ‖β̂j· − β̂k·‖ ≥ 8φ‖β̂k·‖

4φ2+1 ≥
2‖β̂k·‖
φ . We show that there exists a transformation of B̂

such that the increase in the data fitting term is smaller than
the decrease in the GrOWL norm.
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Consider the modification, V , as defined in the proof of

Theorem 3.1 with ε =
β̂j·−β̂k·

2 . By triangle inequality, the
difference in loss function L that results from this modifi-
cation satisfies

L(V )− L(B̂) ≤
∥∥x·j − x·k∥∥1

‖ε‖1

We now bound the decrease in the GrOWL norm. Note by
parallelogram law,

‖β̂j· + β̂k·‖2

= 2‖β̂j·‖2 + 2‖β̂k·‖2 − ‖β̂j· − β̂k·‖2

≤ 2‖β̂j·‖2 + 2‖β̂k·‖2 +

(
1

4φ2
− 1

4φ2
− 1

)
‖β̂j· − β̂k·‖2

≤ 4‖β̂j·‖2 +

(
‖β̂j· − β̂k·‖

2φ

)2

− 1 + 4φ2

4φ2
‖β̂j· − β̂k·‖2

≤ 4‖β̂j·‖2 +

(
‖β̂j· − β̂k·‖

2φ

)2

− 2
‖β̂j·‖‖β̂j· − β̂k·‖

φ

≤

(
‖β̂j·‖+ ‖β̂k·‖ −

‖β̂j· − β̂k·‖
2φ

)2

Thus, we have

G(B̂)−G(V ) ≥ ∆
(
‖β̂j·‖+ ‖β̂k·‖ − ‖β̂j· + β̂k·‖

)
≥ ∆‖β̂j· − β̂k·‖

2φ
=

∆‖ε‖
φ

Combining this with ‖ε‖1 ≤
√
r‖ε‖, we get

L(V ) +G(V )−(L(B̂) +G(B̂))

≤
(√

r
∥∥x·j − x·k∥∥1

− ∆

φ

)
‖ε‖ < 0

This contradicts our assumption that B̂ is the minimizer of
L(B) + G(B) and completes the proof for absolute loss.
The proof with squared Frobenius loss can easily be ex-
tended using the inequality derived in Appendix B.

3. Clustering properties of GrOWL with
squared Frobenius loss function

In this section, we consider the optimization

min
X
‖Y −XB‖2F + G(B) (1)

Here we derive an upper bound on the increase in the
squared loss term after applying the transformation, V . We
assume that the columns of the matrix, X , are normalized

to a common norm, i.e., (‖x·i‖ = c for i = 1, · · · , p). De-
fine L(X) = ‖Y −XB‖2F = ‖Y ′ − x·jβj· − x·kβk·‖2F
where Y ′ is again the residual term.

Lemma 1. Let B̂ ∈ Rp×r and if V is as defined in the
respective theorems, then we have

L(V )− L(B̂) ≤ ‖ε‖‖Y ′‖F ‖x·j − x·k‖

Proof.

L(V )− L(B̂) =
1

2
‖Y ′ − x·j(β̂j· − ε)− x·k(β̂k· + ε)‖2F

− 1

2
‖Y ′ − x·jβ̂j· − x·kβ̂k·‖2F

Expanding the Frobenius norm terms, canceling the com-
mon 1

2‖Y
′‖2F terms and using the common norm of

columns (‖x·i‖ = c for i = 1, · · · , p) we get

L(V )− L(B̂)

=
c2

2
tr((β̂j· − ε)(β̂j· − ε)T + (β̂k· + ε)(β̂k· + ε)

T

− β̂j·β̂Tj· − β̂k·β̂Tk·) + tr(Y ′T (x·j − x·k)ε)

+ tr((β̂j· − ε)xT·jx·k(β̂k· + ε)
T − β̂j·xT·jx·kβ̂Tk·)

Expanding terms and making further cancellations gives

L(V )− L(B̂)

= tr(Y ′T (x·j − x·k)ε)− (c2 − xT·jx·k) tr((β̂j· − β̂k· − ε)εT )

≤ tr(Y ′T (x·j − x·k)ε)

− (c2 − xT·jx·k)‖ε‖(‖β̂j·‖ − ‖β̂k·‖ − ‖ε‖)
≤ tr(Y ′T (x·j − x·k)εT )

≤ ‖Y ′‖F ‖(x·j − x·k)ε‖F
= ‖ε‖‖Y ′‖F ‖x·j − x·k‖

where the first inequality follows from simplification and
Cauchy-Schwarz inequality. The second inequality follows
from c2 > xT·jx·k and ‖β̂j·‖2 − ‖β̂k·‖2 − ‖ε‖ > 0 (by as-
sumption). The third inequality follows, again, by Cauchy-
Schwarz inequality.

Using this Lemma one can easily extend the clustering
properties of GrOWL to the optimization in (1).

4. Proximal algorithms for GrOWL
Proof. Outline: the proof proceeds by finding a lower
bound for the objective function in (5) and then we show
that the proposed solution achieves this lower bound.
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First, note that the following is true for anyB and V ,

‖B − V ‖2F =

p∑
i=1

‖βi· − vi·‖2

≥
p∑
i=1

(‖βi·‖ − ‖vi·‖)2 = ‖β̃ − ṽ‖2

where the inequality follows from reverse triangle inequal-
ity.

Combining this with G(B) = Ωw(β̃), we have a lower
bound on the objective function in (5). For allB ∈ Rp×r

1

2
‖B − V ‖2F +G(B) ≥ 1

2
‖proxΩw

(ṽ)− ṽ‖2 + Ωw(proxΩw
(ṽ))

Finally, we show thatB = V̂ achieves this lower bound,

1

2
‖V̂ − V ‖2F +G(V̂ )

=
1

2

p∑
i=1

‖(proxΩw
(ṽ))i

vi·
‖vi·‖

− vi·‖22 + Ωw(proxΩw
(ṽ))

=
1

2
‖proxΩw

(ṽ)− ṽ‖22 + Ωw(proxΩw
(ṽ))


