## Supplementary Material: Representational Similarity Learning

## 1. Extending methods to matrices that are not Positive Semi-Definite

For any symmetric $S$ we have an eigendecomposition $\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{T}$, where the eigenvalues may be negative. We can think of $\boldsymbol{W}$ as having the form $\boldsymbol{B} \boldsymbol{D} \boldsymbol{B}^{T}$ for some $\boldsymbol{B}$ and using the $\boldsymbol{D}$ from $\boldsymbol{S}$.

So we consider the following optimizations instead.

$$
\min _{\boldsymbol{B}}\left\|\boldsymbol{S}-\boldsymbol{X} \boldsymbol{B} \boldsymbol{D} \boldsymbol{B} \boldsymbol{X}^{T}\right\|_{F}^{2},
$$

and

$$
\min _{\boldsymbol{B}}\|\boldsymbol{U}-\boldsymbol{X} \boldsymbol{B}\|_{F}^{2}
$$

Then given a $\boldsymbol{B}$ construct $\boldsymbol{W}=\boldsymbol{B} \boldsymbol{D} \boldsymbol{B}^{T}$. The rest remains the same.

## 2. Clustering properties of GrOWL with absolute error loss function

## Proof of Theorem 3.1

Proof. The proof is divided into two steps. First, we show $\left\|\widehat{\boldsymbol{\beta}}_{j}.\right\|=\left\|\widehat{\boldsymbol{\beta}}_{k}.\right\|$ and then we further show that the rows are equal. We proceed by contradiction. Assume $\left\|\widehat{\boldsymbol{\beta}}_{j}.\right\| \neq\left\|\widehat{\boldsymbol{\beta}}_{k}.\right\|$ and, without loss of generality, suppose $\left\|\widehat{\boldsymbol{\beta}}_{j} \cdot\right\|>\left\|\widehat{\boldsymbol{\beta}}_{k} \cdot\right\|$. We see that there exists a modification of the solution with a smaller GrOWL norm and same data-fitting term, and thus smaller overall objective value which contradicts our assumption that $\widehat{\boldsymbol{B}}$ is the minimizer of $L(\boldsymbol{B})+G(\boldsymbol{B})$.

Consider the modification, $\boldsymbol{V}=\widehat{\boldsymbol{B}}$ except $\widehat{\boldsymbol{v}}_{j} .=\widehat{\boldsymbol{\beta}}_{j} .-\boldsymbol{\varepsilon}$ and $\widehat{\boldsymbol{v}}_{k}=\widehat{\boldsymbol{\beta}}_{k}$. $+\boldsymbol{\varepsilon}$ where $\boldsymbol{\varepsilon}=\delta \widehat{\boldsymbol{\beta}}_{j}$. and $\delta$ is chosen such that $\|\varepsilon\| \in\left(0, \frac{\left\|\widehat{\boldsymbol{\beta}}_{j} \cdot\right\|-\left\|\widehat{\boldsymbol{\beta}}_{k} \cdot\right\|}{2}\right]$
Let $L(\boldsymbol{B})=\|\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{B}\|_{1}=\left\|\boldsymbol{Y}^{\prime}-\boldsymbol{x}_{\cdot j} \widehat{\boldsymbol{\beta}}_{j}-\boldsymbol{x} \cdot k \widehat{\boldsymbol{\beta}}_{k \cdot}\right\|_{1}$ where $\boldsymbol{Y}^{\prime}$ is the residual term given by $\boldsymbol{Y}^{\prime}=\boldsymbol{Y}-$ $\sum_{i \neq j, k} \boldsymbol{x}_{\cdot i} \widehat{\boldsymbol{\beta}}_{i .}$. Since $\boldsymbol{x}_{\cdot j}=\boldsymbol{x}_{\cdot k}, L$ is invariant under this transformation, i.e., $L(\boldsymbol{V})=L(\widehat{\boldsymbol{B}})$. Same is true for $L(\boldsymbol{B})=\|\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{B}\|_{F}^{2}$.
Observe that the GrOWL norm of $\boldsymbol{B}$ is equal to the OWL norm of the vector of euclidean norms of rows of $\boldsymbol{B}$. Since $\left\|\boldsymbol{v}_{k \cdot}\right\|=\left\|\boldsymbol{\beta}_{k}+\varepsilon\right\| \leq\left\|\boldsymbol{\beta}_{k} \cdot\right\|+\|\varepsilon\|$, this transformation is equivalent to that defined in Lemma 3.1 and we have

$$
G(\widehat{\boldsymbol{B}})-G(\boldsymbol{V}) \geq \Delta\|\varepsilon\|
$$

This leads to a contradiction to our assumption that $\widehat{\boldsymbol{B}}$ is the minimizer of $L(\boldsymbol{B})+G(\boldsymbol{B})$ and completes the proof that $\left\|\widehat{\boldsymbol{\beta}}_{j}.\right\|=\left\|\widehat{\boldsymbol{\beta}}_{k .}\right\|$. Now, let $\widehat{\boldsymbol{\beta}}_{j} .+\widehat{\boldsymbol{\beta}}_{k} .=\boldsymbol{z}$, then the minimizer satisfies

$$
\min _{\widehat{\boldsymbol{\beta}}_{j} ., \widehat{\boldsymbol{\beta}}_{k}} w_{j}\left\|\widehat{\boldsymbol{\beta}}_{j} \cdot\right\|+w_{k}\left\|\widehat{\boldsymbol{\beta}}_{k \cdot}\right\|
$$

such that $\widehat{\boldsymbol{\beta}}_{j} .+\widehat{\boldsymbol{\beta}}_{k}=\boldsymbol{z}$ and $\left\|\widehat{\boldsymbol{\beta}}_{j}.\right\|=\left\|\widehat{\boldsymbol{\beta}}_{k}.\right\|$
It is easy to see that the solution to this optimization is $\widehat{\boldsymbol{\beta}}_{j} .=\widehat{\boldsymbol{\beta}}_{k}=\boldsymbol{z} / 2$

## Proof of Theorem 3.2

Proof. The proof is similar to the identical columns theorem. By contradiction and without loss of generality, suppose $\left\|\widehat{\boldsymbol{\beta}}_{j}.\right\|>\left\|\widehat{\boldsymbol{\beta}}_{k}.\right\|$. We show that there exists a transformation of $\widehat{\boldsymbol{B}}$ such that the increase in the data fitting term is smaller than the decrease in the GrOWL norm.

Consider the modification, $\boldsymbol{V}$, as defined in the proof of Theorem 3.1. By triangle inequality, the difference in loss function $L$ that results from this modification satisfies

$$
L(\boldsymbol{V})-L(\widehat{\boldsymbol{B}}) \leq\left\|\boldsymbol{x}_{\cdot j}-\boldsymbol{x}_{\cdot k}\right\|_{1}\|\boldsymbol{\varepsilon}\|_{1}
$$

Invoking Lemma 3.1 as in the previous theorem and $\|\varepsilon\|_{1} \leq \sqrt{r}\|\varepsilon\|$, we get

$$
\begin{aligned}
L(\boldsymbol{V})+G(\boldsymbol{V})- & (L(\widehat{\boldsymbol{B}})+G(\widehat{\boldsymbol{B}})) \\
& \leq \sqrt{r}\left(\left\|\boldsymbol{x}_{\cdot j}-\boldsymbol{x}_{\cdot k}\right\|_{1}-\frac{\Delta}{\sqrt{r}}\right)\|\boldsymbol{\varepsilon}\|<0
\end{aligned}
$$

This contradicts our assumption that $\widehat{\boldsymbol{B}}$ is the minimizer of $L(\boldsymbol{B})+G(\boldsymbol{B})$ and completes the proof for absolute loss. The proof with squared Frobenius loss can easily be extended using the inequality derived in Appendix B.

## Proof of Theorem 3.3

Proof. The proof is similar to the identical columns theorem. By contradiction, suppose $\| \widehat{\boldsymbol{\beta}}_{j}$. $-\widehat{\boldsymbol{\beta}}_{k} \cdot \| \geq \frac{8 \phi\left\|\widehat{\boldsymbol{\beta}}_{k} \cdot\right\|}{4 \phi^{2}+1} \geq$ $\frac{2\left\|\widehat{\boldsymbol{\beta}}_{k} \cdot\right\|}{\phi}$. We show that there exists a transformation of $\widehat{\boldsymbol{B}}$ such that the increase in the data fitting term is smaller than the decrease in the GrOWL norm.

Consider the modification, $\boldsymbol{V}$, as defined in the proof of Theorem 3.1 with $\varepsilon=\frac{\widehat{\boldsymbol{\beta}}_{j} \cdot-\widehat{\boldsymbol{\beta}}_{k}}{2}$. By triangle inequality, the difference in loss function $L$ that results from this modification satisfies

$$
L(\boldsymbol{V})-L(\widehat{\boldsymbol{B}}) \leq\left\|\boldsymbol{x}_{\cdot j}-\boldsymbol{x}_{\cdot k}\right\|_{1}\|\boldsymbol{\varepsilon}\|_{1}
$$

We now bound the decrease in the GrOWL norm. Note by parallelogram law,

$$
\begin{aligned}
& \left\|\widehat{\boldsymbol{\beta}}_{j \cdot}+\widehat{\boldsymbol{\beta}}_{k \cdot}\right\|^{2} \\
& =2\left\|\widehat{\boldsymbol{\beta}}_{j \cdot}\right\|^{2}+2\left\|\widehat{\boldsymbol{\beta}}_{k \cdot}\right\|^{2}-\left\|\widehat{\boldsymbol{\beta}}_{j \cdot}-\widehat{\boldsymbol{\beta}}_{k \cdot}\right\|^{2} \\
& \leq 2\left\|\widehat{\boldsymbol{\beta}}_{j \cdot}\right\|^{2}+2\left\|\widehat{\boldsymbol{\beta}}_{k \cdot}\right\|^{2}+\left(\frac{1}{4 \phi^{2}}-\frac{1}{4 \phi^{2}}-1\right)\left\|\widehat{\boldsymbol{\beta}}_{j \cdot}-\widehat{\boldsymbol{\beta}}_{k \cdot}\right\|^{2} \\
& \leq 4\left\|\widehat{\boldsymbol{\beta}}_{j \cdot}\right\|^{2}+\left(\frac{\left\|\widehat{\boldsymbol{\beta}}_{j \cdot}-\widehat{\boldsymbol{\beta}}_{k \cdot}\right\|}{2 \phi}\right)^{2}-\frac{1+4 \phi^{2}}{4 \phi^{2}}\left\|\widehat{\boldsymbol{\beta}}_{j \cdot}-\widehat{\boldsymbol{\beta}}_{k \cdot}\right\|^{2} \\
& \leq 4\left\|\widehat{\boldsymbol{\beta}}_{j \cdot}\right\|^{2}+\left(\frac{\left\|\widehat{\boldsymbol{\beta}}_{j \cdot}-\widehat{\boldsymbol{\beta}}_{k} \cdot\right\|}{2 \phi}\right)^{2}-2 \frac{\left\|\widehat{\boldsymbol{\beta}}_{j \cdot} \cdot\right\|\left\|\widehat{\boldsymbol{\beta}}_{j} \cdot-\widehat{\boldsymbol{\beta}}_{k} \cdot\right\|}{\phi} \\
& \leq\left(\left\|\widehat{\boldsymbol{\beta}}_{j \cdot}\right\|+\left\|\widehat{\boldsymbol{\beta}}_{k \cdot}\right\|-\frac{\left\|\widehat{\boldsymbol{\beta}}_{j} \cdot-\widehat{\boldsymbol{\beta}}_{k \cdot}\right\|}{2 \phi}\right)^{2} \\
& \leq(1)
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
G(\widehat{\boldsymbol{B}})-G(\boldsymbol{V}) & \geq \Delta\left(\left\|\widehat{\boldsymbol{\beta}}_{j} \cdot\right\|+\left\|\widehat{\boldsymbol{\beta}}_{k \cdot}\right\|-\left\|\widehat{\boldsymbol{\beta}}_{j} .+\widehat{\boldsymbol{\beta}}_{k \cdot}\right\|\right) \\
& \geq \frac{\Delta\left\|\widehat{\boldsymbol{\beta}}_{j} \cdot-\widehat{\boldsymbol{\beta}}_{k} \cdot\right\|}{2 \phi}=\frac{\Delta\|\boldsymbol{\varepsilon}\|}{\phi}
\end{aligned}
$$

Combining this with $\|\varepsilon\|_{1} \leq \sqrt{r}\|\varepsilon\|$, we get

$$
\begin{aligned}
L(\boldsymbol{V})+G(\boldsymbol{V})- & (L(\widehat{\boldsymbol{B}})+G(\widehat{\boldsymbol{B}})) \\
& \leq\left(\sqrt{r}\left\|\boldsymbol{x}_{\cdot j}-\boldsymbol{x}_{\cdot k}\right\|_{1}-\frac{\Delta}{\phi}\right)\|\boldsymbol{\varepsilon}\|<0
\end{aligned}
$$

This contradicts our assumption that $\widehat{\boldsymbol{B}}$ is the minimizer of $L(\boldsymbol{B})+G(\boldsymbol{B})$ and completes the proof for absolute loss. The proof with squared Frobenius loss can easily be extended using the inequality derived in Appendix B.

## 3. Clustering properties of GrOWL with squared Frobenius loss function

In this section, we consider the optimization

$$
\begin{equation*}
\min _{\boldsymbol{X}}\|\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{B}\|_{F}^{2}+G(\boldsymbol{B}) \tag{1}
\end{equation*}
$$

Here we derive an upper bound on the increase in the squared loss term after applying the transformation, $\boldsymbol{V}$. We assume that the columns of the matrix, $\boldsymbol{X}$, are normalized
to a common norm, i.e., $\left(\left\|\boldsymbol{x}_{. i}\right\|=c\right.$ for $\left.i=1, \cdots, p\right)$. Define $L(\boldsymbol{X})=\|\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{B}\|_{F}^{2}=\left\|\boldsymbol{Y}^{\prime}-\boldsymbol{x}_{\cdot j} \boldsymbol{\beta}_{j}-\boldsymbol{x}_{\cdot k} \boldsymbol{\beta}_{k \cdot}\right\|_{F}^{2}$ where $\boldsymbol{Y}^{\prime}$ is again the residual term.
Lemma 1. Let $\widehat{\boldsymbol{B}} \in \mathbb{R}^{p \times r}$ and if $\boldsymbol{V}$ is as defined in the respective theorems, then we have

$$
L(\boldsymbol{V})-L(\widehat{\boldsymbol{B}}) \leq\|\boldsymbol{\varepsilon}\|\left\|\boldsymbol{Y}^{\prime}\right\|_{F}\left\|\boldsymbol{x}_{\cdot j}-\boldsymbol{x}_{\cdot k}\right\|
$$

Proof.

$$
\begin{aligned}
L(\boldsymbol{V})-L(\widehat{\boldsymbol{B}}) & =\frac{1}{2}\left\|\boldsymbol{Y}^{\prime}-\boldsymbol{x}_{\cdot j}\left(\widehat{\boldsymbol{\beta}}_{j \cdot}-\boldsymbol{\varepsilon}\right)-\boldsymbol{x}_{\cdot k}\left(\widehat{\boldsymbol{\beta}}_{k}+\boldsymbol{\varepsilon}\right)\right\|_{F}^{2} \\
& -\frac{1}{2}\left\|\boldsymbol{Y}^{\prime}-\boldsymbol{x}_{\cdot j} \widehat{\boldsymbol{\beta}}_{j \cdot}-\boldsymbol{x}_{\cdot k} \widehat{\boldsymbol{\beta}}_{k \cdot}\right\|_{F}^{2}
\end{aligned}
$$

Expanding the Frobenius norm terms, canceling the common $\frac{1}{2}\left\|\boldsymbol{Y}^{\prime}\right\|_{F}^{2}$ terms and using the common norm of columns $\left(\left\|\boldsymbol{x}_{\cdot i}\right\|=c\right.$ for $\left.i=1, \cdots, p\right)$ we get

$$
\begin{aligned}
& L(\boldsymbol{V})-L(\widehat{\boldsymbol{B}}) \\
& =\frac{c^{2}}{2} \operatorname{tr}\left(\left(\widehat{\boldsymbol{\beta}}_{j \cdot}-\boldsymbol{\varepsilon}\right)\left(\widehat{\boldsymbol{\beta}}_{j} \cdot-\boldsymbol{\varepsilon}\right)^{T}+\left(\widehat{\boldsymbol{\beta}}_{k}+\boldsymbol{\varepsilon}\right)\left(\widehat{\boldsymbol{\beta}}_{k}+\boldsymbol{\varepsilon}\right)^{T}\right. \\
& \left.-\widehat{\boldsymbol{\beta}}_{j} \cdot \widehat{\boldsymbol{\beta}}_{j \cdot}^{T}-\widehat{\boldsymbol{\beta}}_{k} \cdot \widehat{\boldsymbol{\beta}}_{k}^{T}\right)+\operatorname{tr}\left(\boldsymbol{Y}^{\prime T}\left(\boldsymbol{x}_{\cdot j}-\boldsymbol{x}_{\cdot k}\right) \boldsymbol{\varepsilon}\right) \\
& +\operatorname{tr}\left(\left(\widehat{\boldsymbol{\beta}}_{j \cdot}-\boldsymbol{\varepsilon}\right) \boldsymbol{x}_{\cdot j}^{T} \boldsymbol{x}_{\cdot k}\left(\widehat{\boldsymbol{\beta}}_{k \cdot}+\boldsymbol{\varepsilon}\right)^{T}-\widehat{\boldsymbol{\beta}}_{j} \cdot \boldsymbol{x}_{\cdot j}^{T} \boldsymbol{x} \cdot k \widehat{\boldsymbol{\beta}}_{k \cdot}^{T}\right)
\end{aligned}
$$

Expanding terms and making further cancellations gives

$$
\begin{aligned}
& L(\boldsymbol{V})-L(\widehat{\boldsymbol{B}}) \\
& =\operatorname{tr}\left(\boldsymbol{Y}^{\prime T}\left(\boldsymbol{x}_{\cdot j}-\boldsymbol{x}_{\cdot k}\right) \boldsymbol{\varepsilon}\right)-\left(c^{2}-\boldsymbol{x}_{\cdot j}^{T} \boldsymbol{x}_{\cdot k}\right) \operatorname{tr}\left(\left(\widehat{\boldsymbol{\beta}}_{j \cdot}-\widehat{\boldsymbol{\beta}}_{k \cdot}-\boldsymbol{\varepsilon}\right) \varepsilon^{T}\right) \\
& \leq \operatorname{tr}\left(\boldsymbol{Y}^{\prime T}\left(\boldsymbol{x}_{\cdot j}-\boldsymbol{x}_{\cdot k}\right) \boldsymbol{\varepsilon}\right) \\
& -\left(c^{2}-\boldsymbol{x}_{\cdot j}^{T} \boldsymbol{x}_{\cdot k}\right)\|\boldsymbol{\varepsilon}\|\left(\left\|\widehat{\boldsymbol{\beta}}_{j \cdot}\right\|-\left\|\widehat{\boldsymbol{\beta}}_{k \cdot}\right\|-\|\boldsymbol{\varepsilon}\|\right) \\
& \leq \operatorname{tr}\left(\boldsymbol{Y}^{\prime T}\left(\boldsymbol{x}_{\cdot j}-\boldsymbol{x}_{\cdot k}\right) \varepsilon^{T}\right) \\
& \leq\left\|\boldsymbol{Y}^{\prime}\right\|{ }_{F}\left\|\left(\boldsymbol{x}_{\cdot j}-\boldsymbol{x}_{\cdot k}\right) \boldsymbol{\varepsilon}\right\|_{F} \\
& =\|\boldsymbol{\varepsilon}\|\left\|\boldsymbol{Y}^{\prime}\right\|_{F}\left\|\boldsymbol{x}_{\cdot j}-\boldsymbol{x}_{\cdot k}\right\|
\end{aligned}
$$

where the first inequality follows from simplification and Cauchy-Schwarz inequality. The second inequality follows from $c^{2}>\boldsymbol{x}_{\cdot j}^{T} \boldsymbol{x}_{\cdot k}$ and $\left\|\widehat{\boldsymbol{\beta}}_{j \cdot}\right\|_{2}-\left\|\widehat{\boldsymbol{\beta}}_{k \cdot}\right\|_{2}-\|\boldsymbol{\varepsilon}\|>0$ (by assumption). The third inequality follows, again, by CauchySchwarz inequality.

Using this Lemma one can easily extend the clustering properties of GrOWL to the optimization in (1).

## 4. Proximal algorithms for GrOWL

Proof. Outline: the proof proceeds by finding a lower bound for the objective function in (5) and then we show that the proposed solution achieves this lower bound.

First, note that the following is true for any $\boldsymbol{B}$ and $\boldsymbol{V}$,

$$
\begin{aligned}
\| \boldsymbol{B}- & \boldsymbol{V}\left\|_{F}^{2}=\sum_{i=1}^{p}\right\| \boldsymbol{\beta}_{i} \cdot-\boldsymbol{v}_{i} \cdot \|^{2} \\
& \geq \sum_{i=1}^{p}\left(\left\|\boldsymbol{\beta}_{i \cdot}\right\|-\left\|\boldsymbol{v}_{i \cdot} .\right\|\right)^{2}=\|\tilde{\boldsymbol{\beta}}-\tilde{\boldsymbol{v}}\|^{2}
\end{aligned}
$$

where the inequality follows from reverse triangle inequality.
Combining this with $G(\boldsymbol{B})=\Omega_{\boldsymbol{w}}(\tilde{\boldsymbol{\beta}})$, we have a lower bound on the objective function in (5). For all $\boldsymbol{B} \in \mathbb{R}^{p \times r}$
$\frac{1}{2}\|\boldsymbol{B}-\boldsymbol{V}\|_{F}^{2}+G(\boldsymbol{B}) \geq \frac{1}{2}\left\|\operatorname{prox}_{\Omega_{\boldsymbol{w}}}(\tilde{\boldsymbol{v}})-\tilde{\boldsymbol{v}}\right\|^{2}+\Omega_{\boldsymbol{w}}\left(\operatorname{prox}_{\Omega_{\boldsymbol{w}}}(\tilde{\boldsymbol{v}})\right)$

Finally, we show that $\boldsymbol{B}=\widehat{\boldsymbol{V}}$ achieves this lower bound,

$$
\begin{aligned}
& \frac{1}{2}\|\widehat{\boldsymbol{V}}-\boldsymbol{V}\|_{F}^{2}+G(\widehat{\boldsymbol{V}}) \\
& =\frac{1}{2} \sum_{i=1}^{p}\left\|\left(\operatorname{prox}_{\Omega_{\boldsymbol{w}}}(\tilde{\boldsymbol{v}})\right)_{i} \frac{\boldsymbol{v}_{i}}{\left\|\boldsymbol{v}_{i \cdot}\right\|}-\boldsymbol{v}_{i \cdot}\right\|_{2}^{2}+\Omega_{\boldsymbol{w}}\left(\operatorname{prox}_{\Omega_{\boldsymbol{w}}}(\tilde{\boldsymbol{v}})\right) \\
& =\frac{1}{2}\left\|\operatorname{prox}_{\Omega_{\boldsymbol{w}}}(\tilde{\boldsymbol{v}})-\tilde{\boldsymbol{v}}\right\|_{2}^{2}+\Omega_{\boldsymbol{w}}\left(\operatorname{prox}_{\Omega_{\boldsymbol{w}}}(\tilde{\boldsymbol{v}})\right)
\end{aligned}
$$

