On collapsed representation of hierarchical Completely Random Measures

Appendix

Proof of proposition 3.1

Proof. Let N = > " | N;. Since, conditioned on A,
Ny, ..., N, are independent Poisson process with mean
measure A, by the superposition proposition for Pois-
son processes, IV is a Poisson process conditioned on A
with mean measure nA. Since, E[eltN(A)+2N(B)|A) —
E[ett N |A(A)|E[et2NB)|A(B)], and A(A) and A(B)
are independent, hence, N(A) and N(B) are also inde-
pendent and therefore, N is a CRM. Hence, N(dz) =
Jg+ sN(dz,dz), for a Poisson process N on S x RT.
Moreover
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Rearranging the terms in the above equation, we get
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Hence, the Poisson intensity measure of N, when viewed
as a CRM is given by
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when k € {1,2,3,...}, and O otherwise. The distinct
points of N can be obtained by projecting N on S. Hence,
by the mapping proposition for Poisson processes (King-
man, 1992), the distinct points of N form a Poisson process
with mean measure p*(dz) = v(f~!(dz)), where f is the
projection map on S. Hence f~!(dz) = (R*,dx), and

p*(dr) = o(R*, dr)
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Thus, the result follows. O]

Proof of proposition 3.2

Proof. The proof relies on the simple fact, that conditioned
on the number of points to be sampled, the points of a
Poisson process are independent (Kingman, 1992). Thus,
n point processes can be sampled from a measure A, by
first sampling the number of points in each point process
from a Poisson distribution with mean A(.S), and then sam-
pling the points independently. Let A = >~ | A;dx,. Let
(Xi1,,...,X),) be the features discovered by the n Pois-
son processes. Let the i*" point process N; consist of m,;;
occurrences of X;,, m;2 occurrences of X;, and m; oc-
currences of X;, . Then, the joint distribution of the n point
processes conditioned on A is given by
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where T = A(S) = 3020, Aidx, (S) = Yoi2, A;. Read-

justing the outermost product in the above equation, we get,
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Since, we are not interested in the actual points X;,’s, but
only the number of occurrences of the different points in
the point processes, that is, [mij](n,k), we can sum over
every k-tuple of distinct atoms in the random measure A.
Hence,
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where the sum is over all subsets of length £ of the set
{A1,As,...}. Finally, in order to compute the result, we
need to take expectation with respect to the distribution of
A. Towards that end, we note that only the weights of A
appear in the above equation. From section 2.2, we know
that the weights of a CRM with Poisson intensity mea-
sure p(dz)p(dz)form a Poisson process with mean mea-
sure (4(S)p(dz). Hence, it is enough to take the expectation
with respect to the Poisson process.
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The expectation can further be simplified by applying
Proposition 2.1 of (James, 2005).

Proposition 6.1 ((James, 2005)). Let N be the space of
all c—finite counting measures on RT, equipped with an
appropriate o-field. Let f : Rt — RT and g : N’ — R*
be measurable with respect to their o-fields. Then, for a
Poisson process N with mean measure E[N (dz)] = p(dx),

E |g(N)e™ Xaen f(A)} =E {e_ Laen f(A)} Elg(N)]

where N is a Poisson process with mean measure
E[N(dz)] = e~ 7®) p(dx).

Applying the above proposition to (??), we get
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where N is a Poisson process with mean measure
E[N(dz)] = e ™ p(dz)f. The first expectation can be
evaluated using Campbell’s proposition and is given by
exp (=0 [z4 (1 — e "*)p(dz)). In order to evaluate the
second expectation, we construct a new point process from
N* on R+" by concatenating every set of k distinct points
in V. The expression in the second expectation can then be
rewritten as
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By Campbell’s proposition for point processes,
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where p(dz) = E[N(dz)]. Moreover, since the point
process IN* is obtained by concatenating distinct points
in N, E[N*(dz1,...,dz)] = [[}_,E[N(dz;)] =

k _ ..
szl fe~"?p(dz;), whenever z;’s are distinct. Hence,
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Hence, the final expression for the marginal distribution of
the set of counts for each latent feature is given by
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The above expression can be simplified by letting
P(t) = 0 [ (1 — e *¥)p(dz). Hence, pV(t) =
1)1 [o, 0e7'#2!p(dz). Hence, the above expression
can be rewritten as
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Proof of Corollary 3.3
Proof. From proposition 3.1, the distinct points in the point

processes N;;1 < ¢ < n, form a Poisson process with
mean measure £ (dx)w( ). Hence, the total number of dis-

tinct points k is dlstrlbuted as Poisson(v(n)). Hence, con-
ditioning equation (5) with respect to k, we get the desired
result. O

Proof of Proposition 3.4

Proof. Let N = 3.7 | N;. From the arguments of propo-
sition 3.1, N is a CRM, and hence, can be written as

N(dz) = [, 2N(dz,dz) for some Poisson process N.
Let II be the random collection of points corrsponding to
N. Now define amap f : Rt x S — S as the projec-
tion map on S, that is, f(z,y) = y and M = f(II) =
{{f(z,y) : (z,y) € II}}, where the double brackets indi-
cate that M is a multiset. The rest of the arguments remain
same as in proposition 3.1 and proposition 3.2. [

Proof of Lemma 4.1

Proof. Using Proposition 3.4 to marginalize A; from 8§,
we get that [mgjli<j<,,, is distributed as CRM-

Poisson(®(5), p, 1), that is,
P([mij]1<y‘<r- |®(5))
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T

Let m;. = > j=1mij;. Taking expectation with respect
to ®(S), we get the marginal distribution of [m;;]1<;<r,. .
where r;, is also random.

P([mijhi<j<r,.)
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It is given that

Hence
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Using the above results with u = (1), equation (2?) can
be rewritten as
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