Appendix

Proof of proposition 3.1

Proof. Let $N = \sum_{i=1}^{n} N_i$. Since, conditioned on Λ , N_1, \ldots, N_n are independent Poisson process with mean measure Λ , by the superposition proposition for Poisson processes, N is a Poisson process conditioned on Λ with mean measure $n\Lambda$. Since, $\mathbb{E}[e^{t_1N(A)+t_2N(B)}|\Lambda] = \mathbb{E}[e^{t_1N(A)}|\Lambda(A)]\mathbb{E}[e^{t_2N(B)}|\Lambda(B)]$, and $\Lambda(A)$ and $\Lambda(B)$ are independent, hence, N(A) and N(B) are also independent and therefore, N is a CRM. Hence, $N(dx) = \int_{\mathbb{R}^+} s\bar{N}(dz, dx)$, for a Poisson process \bar{N} on $S \times \mathbb{R}^+$. Moreover,

$$\begin{split} \mathbb{E}[e^{-tN(A)}] \\ &= \mathbb{E}\left[\mathbb{E}[e^{-tN(A)}|\Lambda]\right] \\ &= \mathbb{E}\left[\exp\left(-n\Lambda(A)(1-e^{-t})\right)\right] \\ &= \exp\left(-\mu(A)\int_{\mathbb{R}^+} \left(1-e^{-n(1-e^{-t})z})\rho(\mathrm{d}z)\right) \\ &= \exp\left(-\mu(A)\int_{\mathbb{R}^+} \left(\sum_{k=0}^{\infty} \frac{e^{-nz}(nz)^k}{k!} -\sum_{k=0}^{\infty} \frac{e^{-nz}e^{-kt}(nz)^k}{k!}\right)\rho(\mathrm{d}z)\right) \end{split}$$

where, we have used the fact that $1 = \sum_{k=0}^{\infty} \frac{e^{-nz} (nz)^k}{k!}$. Rearranging the terms in the above equation, we get

$$\mathbb{E}[e^{-tN(A)}] = \exp\left(-\mu(A)\sum_{k=1}^{\infty}(1-e^{-kt})\int_{\mathbb{R}^+}\frac{e^{-nz}(nz)^k}{k!}\rho(\mathrm{d}z)\right)\,.$$

Hence, the Poisson intensity measure of N, when viewed as a CRM is given by

$$\bar{\nu}(\mathrm{d}k,\mathrm{d}x) = \mu(\mathrm{d}x) \int_{\mathbb{R}^+} \frac{e^{-nz}(nz)^k}{k!} \rho(\mathrm{d}z)$$

when $k \in \{1, 2, 3, ...\}$, and 0 otherwise. The distinct points of N can be obtained by projecting N on S. Hence, by the mapping proposition for Poisson processes (Kingman, 1992), the distinct points of N form a Poisson process with mean measure $\mu^*(dx) = \bar{\nu}(f^{-1}(dx))$, where f is the projection map on S. Hence $f^{-1}(dx) = (\mathbb{R}^+, dx)$, and

$$\begin{split} \mu^*(\mathrm{d}x) &= \bar{\nu}(\mathbb{R}^+, \mathrm{d}x) \\ &= \mu(\mathrm{d}x) \int_{\mathbb{R}^+} \sum_{k=1}^\infty \frac{e^{-nz}(nz)^k}{k!} \rho(\mathrm{d}z) \\ &= \mu(\mathrm{d}x) \int_{\mathbb{R}^+} (1 - e^{-nz}) \rho(\mathrm{d}z) \,. \end{split}$$

Thus, the result follows.

......

Proof of proposition 3.2

Proof. The proof relies on the simple fact, that conditioned on the number of points to be sampled, the points of a Poisson process are independent (Kingman, 1992). Thus, n point processes can be sampled from a measure Λ , by first sampling the number of points in each point process from a Poisson distribution with mean $\Lambda(S)$, and then sampling the points independently. Let $\Lambda = \sum_{i=1}^{n} \Delta_i \delta_{X_i}$. Let $(X_{l_1}, \ldots, X_{l_k})$ be the features discovered by the n Poisson processes. Let the i^{th} point process N_i consist of m_{i1} occurrences of X_{l_1} . Then, the joint distribution of the n point processes conditioned on Λ is given by

$$\mathbb{P}(N_1, \dots, N_n | \Lambda) = \prod_{i=1}^n \frac{\exp(-T) T^{\sum_{j=1}^k m_{ij}}}{(\sum_{j=1}^k m_{ij})!} \prod_{j=1}^k \left(\frac{\Delta_{l_j}}{T}\right)^{m_{ij}},$$

where $T = \Lambda(S) = \sum_{i=1}^{\infty} \Delta_i \delta_{X_i}(S) = \sum_{i=1}^{\infty} \Delta_i$. Readjusting the outermost product in the above equation, we get,

$$\mathbb{P}(N_1, \dots, N_n | \Lambda) = \frac{\exp(-nT)}{\prod_{i=1}^n (\sum_{j=1}^k m_{ij})!} \prod_{j=1}^k \Delta_{l_j}^{\sum_{i=1}^n m_{ij}}$$

Since, we are not interested in the actual points X_{l_i} 's, but only the number of occurrences of the different points in the point processes, that is, $[m_{ij}]_{(n,k)}$, we can sum over every k-tuple of distinct atoms in the random measure Λ . Hence,

$$P([m_{ij}]_{(n,k)}|\Lambda) = \frac{\exp(-nT)}{\prod_{i=1}^{n} (\sum_{j=1}^{k} m_{ij})!} \sum_{\Delta_{l_1} \neq \Delta_{l_2} \neq \dots \neq \Delta_{l_k}} \prod_{j=1}^{k} \Delta_{l_j}^{\sum_{i=1}^{n} m_{ij}},$$

where the sum is over all subsets of length k of the set $\{\Delta_1, \Delta_2, \ldots\}$. Finally, in order to compute the result, we need to take expectation with respect to the distribution of Λ . Towards that end, we note that only the weights of Λ appear in the above equation. From section 2.2, we know that the weights of a CRM with Poisson intensity measure $\rho(dz)\mu(dx)$ form a Poisson process with mean measure $\mu(S)\rho(dz)$. Hence, it is enough to take the expectation with respect to the Poisson process.

$$P([m_{ij}]_{(n,k)}) \tag{32}$$

$$= \frac{1}{\prod_{i=1}^{n} (\sum_{j=1}^{k} m_{ij})!} \mathbb{E} \left[\exp\left(-nT\right)$$
(33)

$$\sum_{\Delta_{l_1} \neq \Delta_{l_2} \neq \dots \neq \Delta_{l_k}} \prod_{j=1}^{\kappa} \Delta_{l_j}^{\sum_{i=1}^{n} m_{ij}} \right] , \qquad (34)$$

The expectation can further be simplified by applying Proposition 2.1 of (James, 2005).

Proposition 6.1 ((James, 2005)). Let \mathcal{N} be the space of all σ -finite counting measures on \mathbb{R}^+ , equipped with an appropriate σ -field. Let $f : \mathbb{R}^+ \to \mathbb{R}^+$ and $g : \mathcal{N} \to \mathbb{R}^+$ be measurable with respect to their σ -fields. Then, for a Poisson process N with mean measure $\mathbb{E}[N(dx)] = \rho(dx)$,

$$\mathbb{E}\left[g(N)e^{-\sum_{\Delta\in N}f(\Delta)}\right] = \mathbb{E}\left[e^{-\sum_{\Delta\in N}f(\Delta)}\right]\mathbb{E}[g(\bar{N})]$$

where \bar{N} is a Poisson process with mean measure $\mathbb{E}[N(\mathrm{d}x)] = e^{-f(x)}\rho(\mathrm{d}x).$

Applying the above proposition to (??), we get

$$P([m_{ij}]_{(n,k)}) = \frac{\mathbb{E}\left[e^{-\sum_{i=1}^{m} n\Delta_i}\right]}{\prod_{i=1}^{n} (\sum_{j=1}^{k} m_{ij})!} \times \mathbb{E}\left[\sum_{\Delta_{l_1} \neq \Delta_{l_2} \neq \dots \neq \Delta_{l_k} \in \bar{N}} \prod_{j=1}^{k} \Delta_{l_j}^{\sum_{i=1}^{n} m_{ij}}\right]$$

where \bar{N} is a Poisson process with mean measure $\mathbb{E}[N(\mathrm{d}z)] = e^{-nz}\rho(\mathrm{d}z)\theta$. The first expectation can be evaluated using Campbell's proposition and is given by $\exp\left(-\theta \int_{\mathbb{R}^+} (1-e^{-nz})\rho(\mathrm{d}z)\right)$. In order to evaluate the second expectation, we construct a new point process from N^* on \mathbb{R}^{+k} by concatenating every set of k distinct points in \bar{N} . The expression in the second expectation can then be rewritten as

$$\sum_{(\Delta_{l_1},\ldots,\Delta_{l_k})\in N^*}\prod_{j=1}^k \Delta_{l_j}^{\sum_{i=1}^n m_{ij}}$$

By Campbell's proposition for point processes,

$$\mathbb{E}\left[\sum_{\Delta \in N} f(\Delta)\right] = \int_{z \in \mathbb{R}^+} f(z) \rho(\mathrm{d}z) \,,$$

where $\rho(dz) = \mathbb{E}[N(dz)]$. Moreover, since the point process N^* is obtained by concatenating distinct points in N, $\mathbb{E}[N^*(dz_1, \dots, dz_k)] = \prod_{j=1}^k \mathbb{E}[\bar{N}(dz_j)] =$ $\prod_{j=1}^k \theta e^{-nz} \rho(dz_j)$, whenever z_j 's are distinct. Hence,

$$\mathbb{E}\left[\sum_{\Delta_{l_1}\neq\Delta_{l_2}\neq\cdots\neq\Delta_{l_k}\in\bar{N}}\prod_{j=1}^k \Delta_{l_j}^{\sum_{i=1}^n m_{i_j}}\right]$$
$$=\prod_{j=1}^k \int_{z\in\mathbb{R}^+} \theta e^{-nz} z^{\sum_{i=1}^n m_{i_j}} \rho(\mathrm{d} z) \,.$$

Hence, the final expression for the marginal distribution of the set of counts for each latent feature is given by

$$P([m_{ij}]_{(n,k)}) = \frac{\exp\left(-\theta \int_{\mathbb{R}^+} (1 - e^{-nz})\rho(\mathrm{d}z)\right)}{\prod_{i=1}^n (\sum_{j=1}^k m_{ij})!}$$
$$\times \prod_{j=1}^k \int_{z \in \mathbb{R}^+} \theta e^{-nz} z^{\sum_{i=1}^n m_{ij}} \rho(\mathrm{d}z)$$

The above expression can be simplified by letting $\psi(t) = \theta \int_{\mathbb{R}^+} (1 - e^{-tz}) \rho(\mathrm{d}z)$. Hence, $\psi^{(l)}(t) = (-1)^{l-1} \int_{\mathbb{R}^+} \theta e^{-tz} z^l \rho(\mathrm{d}z)$. Hence, the above expression can be rewritten as

$$P([m_{ij}]_{(n,k)}) = (-1)^{\sum_{i=1}^{n} \sum_{j=1}^{k} m_{ij} - k} \frac{\theta^{k} e^{-\theta\psi(n)}}{\prod_{i=1}^{n} (\sum_{j=1}^{k} m_{ij})!} \times \prod_{j=1}^{k} \psi^{(\sum_{i=1}^{n} m_{ij})}(n)$$

Proof of Corollary 3.3

Proof. From proposition 3.1, the distinct points in the point processes N_i , $1 \le i \le n$, form a Poisson process with mean measure $\frac{\mu(\mathrm{d}x)}{\mu(S)}\psi(n)$. Hence, the total number of distinct points k is distributed as $\operatorname{Poisson}(\psi(n))$. Hence, conditioning equation (5) with respect to k, we get the desired result.

Proof of Proposition 3.4

Proof. Let $N = \sum_{i=1}^{n} N_i$. From the arguments of proposition 3.1, N is a CRM, and hence, can be written as $N(dx) = \int_{\mathbb{R}^+} z\bar{N}(dz, dx)$ for some Poisson process \bar{N} . Let Π be the random collection of points corresponding to \bar{N} . Now define a map $f : \mathbb{R}^+ \times S \to S$ as the projection map on S, that is, f(x,y) = y and $M = f(\Pi) = \{\{f(x,y) : (x,y) \in \Pi\}\}$, where the double brackets indicate that M is a multiset. The rest of the arguments remain same as in proposition 3.1 and proposition 3.2.

Proof of Lemma 4.1

Proof. Using Proposition 3.4 to marginalize Λ_i from 8, we get that $[m_{ij}]_{1 \le j \le r_i}$ is distributed as CRM-Poisson $(\Phi(S), \rho, 1)$, that is,

$$P([m_{ij}]_{1 \le j \le r_i} | \Phi(S))$$

$$= \frac{\exp\left(-\Phi(S) \int_{\mathbb{R}^+} (1 - e^{-z})\bar{\rho}(\mathrm{d}z)\right)}{(\sum_{j=1}^{r_i} m_{ij})!}$$

$$\times \prod_{j=1}^{r_i} \int_{z \in \mathbb{R}^+} \Phi(S) e^{-z} z^{m_{ij}} \bar{\rho}(\mathrm{d}z)$$
(35)

Let $m_{i.} = \sum_{j=1}^{r_{i.}} m_{ij}$. Taking expectation with respect to $\Phi(S)$, we get the marginal distribution of $[m_{ij}]_{1 \le j \le r_{i.}}$, where $r_{i.}$ is also random.

$$P([m_{ij}]_{1 \le j \le r_{i}})$$

$$= \mathbb{E}\left[\exp\left(-\Phi(S)\int_{\mathbb{R}^{+}}(1-e^{-z})\bar{\rho}(\mathrm{d}z)\right)\Phi(S)^{r_{i}}\right]$$

$$\times \frac{\prod_{j=1}^{r_{i}}\int_{z\in\mathbb{R}^{+}}e^{-z}z^{m_{ij}}\bar{\rho}(\mathrm{d}z)}{m_{i}!}$$
(36)

It is given that

$$h(u) = \mathbb{E}[e^{-u\Phi(S)}]$$
$$\bar{\psi}(u) = \int_{\mathbb{R}^+} (1 - e^{-uz})\bar{\rho}(\mathrm{d}z) \,,$$

Hence

$$\frac{d^{r_i} \cdot}{du^{r_i} \cdot} h(u) = (-1)^{r_i} \cdot \mathbb{E}\left[\Phi(S)^{r_i} \cdot e^{-u\Phi(S)}\right]$$
$$\bar{\psi}^{(m_{ij})}(u) = (-1)^{m_{ij}-1} \int_{\mathbb{R}^+} e^{-uz} z^{m_{ij}} \bar{\rho}(\mathrm{d}z)$$

Using the above results with $u = \bar{\psi}(1)$, equation (??) can be rewritten as

$$P([m_{ij}]_{1 \le j \le r_{i}})$$

$$= (-1)^{m_{i}} \cdot h^{(r_{i})}(\bar{\psi}(1)) \frac{\prod_{j=1}^{r_{i}} \bar{\psi}^{(m_{ij})}(1)}{m_{i}!} \qquad (37)$$