
On collapsed representation of hierarchical Completely Random Measures

Appendix
Proof of proposition 3.1

Proof. Let N =
∑n
i=1Ni. Since, conditioned on Λ,

N1, . . . , Nn are independent Poisson process with mean
measure Λ, by the superposition proposition for Pois-
son processes, N is a Poisson process conditioned on Λ
with mean measure nΛ. Since, E[et1N(A)+t2N(B)|Λ] =
E[et1N(A)|Λ(A)]E[et2N(B)|Λ(B)], and Λ(A) and Λ(B)
are independent, hence, N(A) and N(B) are also inde-
pendent and therefore, N is a CRM. Hence, N(dx ) =∫
R+ sN̄(dz ,dx ), for a Poisson process N̄ on S × R+.

Moreover,

E[e−tN(A)]

= E
[
E[e−tN(A)|Λ]

]
= E

[
exp

(
−nΛ(A)(1− e−t)

)]
= exp

(
−µ(A)

∫
R+

(1− e−n(1−e−t)z)ρ(dz )

)
= exp

(
−µ(A)

∫
R+

( ∞∑
k=0

e−nz(nz)k

k!

−
∞∑
k=0

e−nze−kt(nz)k

k!

)
ρ(dz )

)

where, we have used the fact that 1 =
∑∞
k=0

e−nz(nz)k

k! .
Rearranging the terms in the above equation, we get

E[e−tN(A)]

= exp

(
−µ(A)

∞∑
k=1

(1− e−kt)
∫
R+

e−nz(nz)k

k!
ρ(dz )

)
.

Hence, the Poisson intensity measure of N , when viewed
as a CRM is given by

ν̄(dk ,dx ) = µ(dx )

∫
R+

e−nz(nz)k

k!
ρ(dz )

when k ∈ {1, 2, 3, . . . }, and 0 otherwise. The distinct
points of N can be obtained by projecting N on S. Hence,
by the mapping proposition for Poisson processes (King-
man, 1992), the distinct points ofN form a Poisson process
with mean measure µ∗(dx ) = ν̄(f−1(dx )), where f is the
projection map on S. Hence f−1(dx ) = (R+,dx ), and

µ∗(dx ) = ν̄(R+,dx )

= µ(dx )

∫
R+

∞∑
k=1

e−nz(nz)k

k!
ρ(dz )

= µ(dx )

∫
R+

(1− e−nz)ρ(dz ) .

Thus, the result follows.

Proof of proposition 3.2

Proof. The proof relies on the simple fact, that conditioned
on the number of points to be sampled, the points of a
Poisson process are independent (Kingman, 1992). Thus,
n point processes can be sampled from a measure Λ, by
first sampling the number of points in each point process
from a Poisson distribution with mean Λ(S), and then sam-
pling the points independently. Let Λ =

∑n
i=1 ∆iδXi . Let

(Xl1 , . . . , Xlk) be the features discovered by the n Pois-
son processes. Let the ith point process Ni consist of mi1

occurrences of Xl1 , mi2 occurrences of Xl2 and mik oc-
currences of Xlk . Then, the joint distribution of the n point
processes conditioned on Λ is given by

P(N1, . . . , Nn|Λ)

=

n∏
i=1

exp(−T )T
∑k
j=1 mij

(
∑k
j=1mij)!

k∏
j=1

(
∆lj

T

)mij
,

where T = Λ(S) =
∑∞
i=1 ∆iδXi(S) =

∑∞
i=1 ∆i. Read-

justing the outermost product in the above equation, we get,

P(N1, . . . , Nn|Λ) =
exp(−nT )∏n

i=1(
∑k
j=1mij)!

k∏
j=1

∆
∑n
i=1 mij

lj
.

Since, we are not interested in the actual points Xli ’s, but
only the number of occurrences of the different points in
the point processes, that is, [mij ](n,k), we can sum over
every k-tuple of distinct atoms in the random measure Λ.
Hence,

P ([mij ](n,k)|Λ)

=
exp(−nT )∏n

i=1(
∑k
j=1mij)!

∑
∆l1
6=∆l2

6=···6=∆lk

k∏
j=1

∆
∑n
i=1 mij

lj
,

where the sum is over all subsets of length k of the set
{∆1,∆2, . . . }. Finally, in order to compute the result, we
need to take expectation with respect to the distribution of
Λ. Towards that end, we note that only the weights of Λ
appear in the above equation. From section 2.2, we know
that the weights of a CRM with Poisson intensity mea-
sure ρ(dz )µ(dx )form a Poisson process with mean mea-
sure µ(S)ρ(dz ). Hence, it is enough to take the expectation
with respect to the Poisson process.

P ([mij ](n,k)) (32)

=
1∏n

i=1(
∑k
j=1mij)!

E

[
exp (−nT ) (33)

∑
∆l1
6=∆l2

6=···6=∆lk

k∏
j=1

∆
∑n
i=1 mij

lj

 , (34)
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The expectation can further be simplified by applying
Proposition 2.1 of (James, 2005).

Proposition 6.1 ((James, 2005)). Let N be the space of
all σ−finite counting measures on R+, equipped with an
appropriate σ-field. Let f : R+ → R+ and g : N → R+

be measurable with respect to their σ-fields. Then, for a
Poisson processN with mean measure E[N(dx )] = ρ(dx ),

E
[
g(N)e−

∑
∆∈N f(∆)

]
= E

[
e−

∑
∆∈N f(∆)

]
E[g(N̄)]

where N̄ is a Poisson process with mean measure
E[N(dx )] = e−f(x)ρ(dx ).

Applying the above proposition to (??), we get

P ([mij ](n,k)) =
E
[
e−

∑∞
i=1 n∆i

]∏n
i=1(

∑k
j=1mij)!

× E

 ∑
∆l1
6=∆l2

6=···6=∆lk
∈N̄

k∏
j=1

∆
∑n
i=1 mij

lj


where N̄ is a Poisson process with mean measure
E[N(dz )] = e−nzρ(dz )θ. The first expectation can be
evaluated using Campbell’s proposition and is given by
exp

(
−θ
∫
R+(1− e−nz)ρ(dz )

)
. In order to evaluate the

second expectation, we construct a new point process from
N∗ on R+k by concatenating every set of k distinct points
in N̄ . The expression in the second expectation can then be
rewritten as

∑
(∆l1

,...,∆lk
)∈N∗

k∏
j=1

∆
∑n
i=1 mij

lj

By Campbell’s proposition for point processes,

E

[∑
∆∈N

f(∆)

]
=

∫
z∈R+

f(z)ρ(dz ) ,

where ρ(dz ) = E[N(dz )]. Moreover, since the point
process N∗ is obtained by concatenating distinct points
in N , E[N∗(dz 1, . . . ,dzk)] =

∏k
j=1 E[N̄(dz j)] =∏k

j=1 θe
−nzρ(dz j), whenever zj’s are distinct. Hence,

E

 ∑
∆l1
6=∆l2

6=···6=∆lk
∈N̄

k∏
j=1

∆
∑n
i=1 mij

lj


=

k∏
j=1

∫
z∈R+

θe−nzz
∑n
i=1 mijρ(dz ) .

Hence, the final expression for the marginal distribution of
the set of counts for each latent feature is given by

P ([mij ](n,k)) =
exp

(
−θ
∫
R+(1− e−nz)ρ(dz )

)∏n
i=1(

∑k
j=1mij)!

×
k∏
j=1

∫
z∈R+

θe−nzz
∑n
i=1 mijρ(dz )

The above expression can be simplified by letting
ψ(t) = θ

∫
R+(1 − e−tz)ρ(dz ). Hence, ψ(l)(t) =

(−1)l−1
∫
R+ θe

−tzzlρ(dz ). Hence, the above expression
can be rewritten as

P ([mij ](n,k)) =(−1)
∑n
i=1

∑k
j=1 mij−k θke−θψ(n)∏n

i=1(
∑k
j=1mij)!

×
k∏
j=1

ψ(
∑n
i=1 mij)(n)

Proof of Corollary 3.3

Proof. From proposition 3.1, the distinct points in the point
processes Ni, 1 ≤ i ≤ n, form a Poisson process with
mean measure µ(dx)

µ(S) ψ(n). Hence, the total number of dis-
tinct points k is distributed as Poisson(ψ(n)). Hence, con-
ditioning equation (5) with respect to k, we get the desired
result.

Proof of Proposition 3.4

Proof. Let N =
∑n
i=1Ni. From the arguments of propo-

sition 3.1, N is a CRM, and hence, can be written as
N(dx ) =

∫
R+ zN̄(dz ,dx ) for some Poisson process N̄ .

Let Π be the random collection of points corrsponding to
N̄ . Now define a map f : R+ × S → S as the projec-
tion map on S, that is, f(x, y) = y and M = f(Π) =
{{f(x, y) : (x, y) ∈ Π}}, where the double brackets indi-
cate that M is a multiset. The rest of the arguments remain
same as in proposition 3.1 and proposition 3.2.

Proof of Lemma 4.1

Proof. Using Proposition 3.4 to marginalize Λi from 8,
we get that [mij ]1≤j≤ri· is distributed as CRM-
Poisson(Φ(S), ρ, 1), that is,

P ([mij ]1≤j≤ri·|Φ(S))

=
exp

(
−Φ(S)

∫
R+(1− e−z)ρ̄(dz )

)
(
∑ri·
j=1mij)!

×
ri·∏
j=1

∫
z∈R+

Φ(S)e−zzmij ρ̄(dz ) (35)
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Let mi· =
∑ri·
j=1mij . Taking expectation with respect

to Φ(S), we get the marginal distribution of [mij ]1≤j≤ri· ,
where ri· is also random.

P ([mij ]1≤j≤ri·)
= E

[
exp

(
−Φ(S)

∫
R+

(1− e−z)ρ̄(dz )

)
Φ(S)

ri·
]

×
∏ri·
j=1

∫
z∈R+ e

−zzmij ρ̄(dz )

mi·!
(36)

It is given that
h(u) = E[e−uΦ(S)]

ψ̄(u) =

∫
R+

(1− e−uz)ρ̄(dz ) ,

Hence

dri·
duri· h(u) = (−1)

ri·E
[
Φ(S)

ri·e−uΦ(S)
]

ψ̄(mij)(u) = (−1)mij−1

∫
R+

e−uzzmij ρ̄(dz )

Using the above results with u = ψ̄(1), equation (??) can
be rewritten as

P ([mij ]1≤j≤ri·)

= (−1)
mi·h(ri·)(ψ̄(1))

∏ri·
j=1 ψ̄

(mij)(1)

mi·!
(37)


