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1 Roadmap to the Proofs

The cylindric example is listed on Section 3 of the main paper. This example
is artificial but more accessible than the natural settings in Section 2 and
Section 3. In this example, we assert that a selector C constructed with
merely metric information is always be worse than an optimal one.

Section 2 contains the bounds for the hamming space (GF[2]n, `1), which
is a previously very well-studied metric structure. In this setting we also
achieve a lower bound for the generaliztion error of the selector C. Section 2.1
considers the extension when the input is not exactly uniformly distributed,
and Section 2.2 extends to the case when the target concept is arbitrarily
chosen and the learner uses random queries to construct the selector C.
Lower bounds for C are proved in both extensions.

Then, we investigate more involved metric structures equipped with edit
distance. A similar lower bound as in Section 2 is given as well as the
extension to arbitrary target concept and the leaner with random queries.
Section 3.3 contains the proof of Lemma 7 which is used in Section 3.1 and
Section 3.2.

Finally, we support the naturalness of our setting with experimental
evidence in Section 4. We put the experimental results only in the appendix
because we want to stay focus on our in-depth results on lower bounds.

2 Choosing between two in the Hamming Cube

The previous cylindric example is mainly for expository reasons. In this
section, we investigate the hamming cube example defined over (GF[2]n, `1),
where the metric structure is more natural and well-studied.

Theorem 1. For every ρ ∈ Z≥0 and q(n), there is a concept class C, two
experts A0,A1 : X → Y, where X = Y = ({0, 1}2n, `1), such that for A0,A1

and for every r ∈ C the bi-Lipschitz condition holds with constant 2, and

• for every r ∈ C, R(A0) +R(A1) = ρ,

• if the input follows uniform distribution D = U2n, then for every
generic selector C = CA0,A1,[r] constructed from q queries, there is a

target concept r ∈ C satisfying R(C) >
(
1
2 −

nρ+1q(n)
2n+1

)
ρ.

Corollary 2. Given the conditions of Theorem 1 and ρ =
⌊
n−log q(n)

logn − 3
⌋

,

there is nρ+1q(n)
2n ≤ 1

n2 , and hence R(C) >
(
1
2 −

1
2n2

)
ρ ≈ ρ/2. For example,

q(n) can be poly(n) or even nlogn.
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Proof of Theorem 1. We first introduce the example and then verify the bi-
Lipschitz conditions. Finally, we analyze the generalization error of the
experts and the generic selector.

Construction (hamming space example) For x ∈ {0, 1}n, y ∈ {0, 1}n,
let A0 and A1 be defined as

A0(x, y) = (x, y)
A1(x, y) =

(
x, y +m(ρ)

) (1)

wherem : {0, 1, · · · , n} → {0, 1}n is a mask defined asm(t) = (0, · · · , 0︸ ︷︷ ︸
n−t

, 1, 1, · · · , 1︸ ︷︷ ︸
t

),

and the computation of y +m(ρ) is bitwise over {0, 1}n.
Note that q(n) upper bounds the number of queries used to construct the

selector C. Let Q =
{
qi
∣∣1 ≤ i ≤ q(n)

}
denote the set of all queries, where

qi = (q′i, q
′′
i ) ∈ {0, 1}2n for every qi ∈ Q and q′i, q

′′
i ∈ {0, 1}

n. For complete-
ness, letQ′ =

{
q′i
∣∣∃qi ∈ Q, qi = (q′i, q

′′
i )
}

andQ′′ =
{
q′′i
∣∣∃qi ∈ Q, qi = (q′i, q

′′
i )
}

.

We also construct the concept class C = {r0}
⋃{

rQ
∣∣Q ⊆ {0, 1}2n, |Q| ≤ q(n)

}
,

where r0 denotes the identity mapping, and for every Q, rQ is defined as

rQ(x, y) = (x, y +m(wQ(x)))

wherem(t) = (0, · · · , 0︸ ︷︷ ︸
n−t

, 1, 1, · · · , 1︸ ︷︷ ︸
t

) as in (1), and wQ(x) = min
{

minq′i∈Q′
{
d
(
x, q′i

)}
, ρ
}

for q′i being the first half of qi as before. By definition, rQ(x, y) = r0(x, y)
immediately holds if x ∈ Q′, and in particular for every (x, y) ∈ Q.

Metric properties of A0,A1 and C Bi-Lipschitz condition is trivial for
A0,A1 and r0, since both their contraction and expansion are exactly 1. For
rQ ∈ C, the expansion of rQ is bounded as follows,

d
(
rQ(x, y), rQ(x′, y′)

)
=|x− x′|+ |y +m(wQ(x))− y′ −m(wQ(x′))|
≤|x− x′|+ |y − y′|+ |wQ(x)− wQ(x′)|
≤|x− x′|+ |y − y′|+ |x− x′|
≤2d

(
(x, y), (x′, y′)

)
On the other hand, noticing rQ

(
rQ(x, y)

)
= (x, y), the contraction is also

bounded by 2 since d
(
(x, y), (x′, y′)

)
≤ 2d

(
rQ(x, y), rQ(x′, y′)

)
. Therefore,

rQ has bi-Lipschitz constant at most 2.
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Generalization error of A0,A1 For r = r0, trivially R(A0) = 0, R(A1) =
ρ, and the conclusion follows. We prove that for arbitrary input distribution
and every rQ ∈ C, R(A0) +R(A1) = ρ.

R(A0) +R(A1) = E
[
d
(
A0(x, y), rQ(x, y)

)
+ d
(
A1(x, y), rQ(x, y)

)]
= E

[
d
(

(x, y),
(
x, y +m

(
wQ(x)

)) )
+ d
((
x, y +m(ρ)

)
,
(
x, y +m(wQ(x))

))]
= E

[∥∥m(wQ(x))
∥∥
1

+
∥∥m(ρ)−m(wQ(x))

∥∥
1

]
= E

[
wQ(x) +

(
ρ− wQ(x)

)]
= E[ρ] = ρ

Lower bound for R(C) We lower bound the generalization error R(C).
The intuition is that as long as Q contains all the queries used to construct
C, C cannot distinguish two concepts r0 and rQ, neither can it be close to
both of them. Thus, R(C) is lower bounded.

The generalization distance of r0 and rQ, under uniform distribution, is
bounded as

d(r0, rQ) = E
(x,y)∼U2n

[
d
(
r0(x, y), rQ(x, y)

)]
=

1

22n

∑
(x,y)∈{0,1}2n

‖m(wQ(x))‖1

=
1

22n

∑
(x,y)∈{0,1}2n

wQ(x)

=
1

2n

∑
x∈{0,1}n

wQ(x) = E
x∼Un

[wQ(x)]

Recalling that Bz(ρ)
def
= {x | d(x, z) ≤ ρ} denotes the closed ball of radius

ρ centered at z, if x /∈
⋃
q′i∈Q′ Bq′i(ρ), then by definition of wQ, it follows

wQ(x) = min

{
min
q′i∈Q′

{
d
(
x, q′i

)}
, ρ

}
= ρ

and hence rQ(x, y) =
(
x, y + m(wQ(x))

)
= (x, y + m(ρ)) = A1(x, y) when

x /∈
⋃
q′i∈Q′ Bq′i(ρ). Since |Q′| ≤ |Q| ≤ q(n) and

∣∣∣Bq′i(ρ)
∣∣∣ ≤∑bρcj=0

(
n
j

)
< nρ+1,
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the volume of
⋃
q′i∈Q′ Bq′i(ρ) can be upper bounded by∣∣∣∣∣∣

⋃
q′i∈Q′

Bq′i(ρ)

∣∣∣∣∣∣ < nρ+1q(n), (2)

Consequentially, we have∣∣{x ∈ {0, 1}n∣∣wQ(x) = ρ
}∣∣ =2n −

∣∣∣∣{x ∈ {0, 1}n∣∣ min
q′i∈Q′

{
d(x, q′i)

}
< ρ

}∣∣∣∣
≥2n −

∣∣∣∣∣∣
⋃
q′i∈Q′

Bq′i(ρ)

∣∣∣∣∣∣ > 2n − nρ+1q(n)

Therefore,

E
x∼Un

[wQ(x)] ≥
∣∣{x ∈ {0, 1}n∣∣wQ(x) = ρ

}∣∣
2n

· ρ

>
(2n − nρ+1q(n))ρ

2n
=

(
1− nρ+1q(n)

2n

)
ρ

Plugging the above inequality into the bound for d(r0, rQ), there is

d(r0, rQ) = E
x∼Un

[wQ(x)] >

(
1− nρ+1q(n)

2n

)
ρ (3)

For A0,A1 as in (1), recalling that Q contains all queries made by C,
then the selector C cannot distinguish the concept r0 from rQ, since these
two concepts coincide on every query in Q. Therefore, there is r ∈ C (in
particular, r ∈ {r0, rQ}) such that

R(C) ≥ d(r0, rQ)/2 >

(
1

2
− nρ+1q(n)

2n+1

)
ρ

2.1 Extending to sparse almost uniform distribution.

In Theorem 1 and Theorem 1, the generalization errors are studied under the
uniform distribution. Formally, to prove a PAC lower bound it is sufficient
to exhibit a single example of a distribution. However, we would like to
obtain even stronger bounds, aiming to understand better more realistic
situations. We consider the following sparse almost uniform distribution as
an extension.
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Definition 3 (sparse almost uniform distribution). A distribution D over
{0, 1}2n is called a k-sparse almost uniform distribution if for every (x, y) ∼
D where |x| = |y|, y is independent from x and distributes uniformly,
maxs∈{0,1}n Pr(x,y)∼D[x = s] ≤ 2−k.

Theorem 4. For every ρ ∈ Z≥0 and q(n), there is a concept class C and
two experts A0,A1 : X → Y where X = Y = ({0, 1}2n, `1) for A0,A1 and for
every r ∈ C the bi-Lipschitz condition holds with constant 2, such that for
every k-sparse almost uniform distribution D,

• for every r ∈ C, R(A0) +R(A1) = ρ,

• for every selector C = CA0,A1,[r] constructed from q queries, there is a

target concept r ∈ C satisfying R(C) >
(
1
2 −

nρ+1q(n)
2k+1

)
ρ.

Proof. Let us consider exactly the same construction as in Theorem 1 (and
the bi-Lipschitz condition automatically follows). For x ∈ {0, 1}n, y ∈
{0, 1}n,

A0(x, y) = (x, y)
A1(x, y) =

(
x, y +m(ρ)

)
The concept class is C = {r0}

⋃{
rQ
∣∣Q ⊆ {0, 1}2n, |Q| ≤ q(n)

}
, where r0

denotes the identity mapping, and for every Q, rQ is defined as

rQ(x, y) = (x, y +m(wQ(x)))

The masking function m : {0, 1, · · · , n} → {0, 1}n is defined as before,
m(t) = (0, · · · , 0︸ ︷︷ ︸

n−t

, 1, 1, · · · , 1︸ ︷︷ ︸
t

). Q =
{
qi
∣∣1 ≤ i ≤ q(n)

}
andQ′ =

{
q′i
∣∣∃qi ∈ Q, qi = (q′i, q

′′
i )
}

,

Q′′ =
{
q′′i
∣∣∃qi ∈ Q, qi = (q′i, q

′′
i )
}

. And wQ(x) = min
{

minq′i∈Q′
{
d
(
x, q′i

)}
, ρ
}

for q′i being the first half of qi ∈ Q. In particular, w0(x) = 0 for every
x ∈ {0, 1}n.

Generalization error of A0,A1. When r = r0, it turns outR(A0) = 0 and
R(A1) = ρ, and the conclusion follows. For every rQ ∈ C,R(A0)+R(A1) = ρ,
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with exactly the same argument as in Theorem 1.

R(A0) +R(A1) = E
(x,y)∼D

[
d
(
A0(x, y), rQ(x, y)

)
+ d
(
A1(x, y), rQ(x, y)

)]
= E

(x,y)∼D

[
d
(

(x, y),
(
x, y +m

(
wQ(x)

)) )
+ d
((
x, y +m(ρ)

)
,
(
x, y +m(wQ(x))

))]
= E

(x,y)∼D

[∥∥m(wQ(x))
∥∥
1

+
∥∥m(ρ)−m(wQ(x))

∥∥
1

]
= E

(x,y)∼D

[
wQ(x) +

(
ρ− wQ(x)

)]
= E

(x,y)∼D
[ρ] = ρ

Upper bound for the influence of “Beacons”. It is clear that the set
Q affects the value of rQ(x, y) only when x ∈

⋃
q′∈Q′ Bq′(ρ), since otherwise

wQ(x) = ρ and rQ = A1. Let B = B(Q, ρ)
def
=
⋃
q′∈Q′ Bq′(ρ). We bound the

probability that x ∈ B, when (x, y) ∼ D. Recalling that |B| < nρ+1q(n) as
in (2) and D is k-sparse almost uniform distribution,

Pr
(x,y)∼D

[x ∈ B] ≤ |B| ·max
s∈B

Pr
(x,y)∼D

[x = s] ≤ nρ+1q(n) · 2−k (4)

Lower bound for R(C) Note that wQ(x) = ρ for x /∈ B, thus we lower
bound the distance of r0 and rQ as follows:

d(r0, rQ) = E
(x,y)∼D

[
d
(
r0(x, y), rQ(x, y)

)]
= E

(x,y)∼D
[wQ(x)]

≥ρ · Pr
(x,y)∼D

[x /∈ B] ≥ (1− nρ+1q(n) · 2−k)ρ

Therefore, there exists r ∈ C (in particular, r ∈ {r0, rQ}) such that

R(C) ≥ d(r0, rQ)/2 >

(
1

2
− nρ+1q(n)

2k+1

)
ρ

2.2 Strong bounds for all target concepts and random queries

In Theorem 1 we fix the two experts and consider a target concept chosen in
an adversarial way with respect to the q queries from which C is constructed.
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Now, we consider the extension when C is constructed from random queries.
The following theorem can be realized as a dual to Theorem 1.

Theorem 5. For every ρ ∈ Z≥0, polynomial q(n), and every target concept
r with bi-Lipschitz constant c, there exists a set A of experts defined over
X → Y where X = Y = ({0, 1}2n, `1) and all experts in A have bi-Lipschitz
constant ≤ 2c, such that when the instances follow the uniform distribution
D = U2n, then for every q-queries generic selector C = CA0,A1,[r], there are
two experts A0,A1 ∈ A such that min {R(A0),R(A1)} = 0 but

R(C) >

(
1

2
− nρ+1q(n)

2n+1

)
ρ

c

Proof. We begin with the construction of A with respect to r. Then, we
verify its metric properies, and finally we will analyze the lower bound.

Construction Recalling that q(n) upper bounds the number of queries
used to construct the selector C, let Q =

{
qi
∣∣1 ≤ i ≤ q(n)

}
denote the set

of all queries, where qi = (q′i, q
′′
i ) ∈ {0, 1}2n for every qi ∈ Q and q′i, q

′′
i ∈

{0, 1}n. For completeness, let Q′ =
{
q′i
∣∣∃qi ∈ Q, qi = (q′i, q

′′
i )
}

and Q′′ ={
q′′i
∣∣∃qi ∈ Q, qi = (q′i, q

′′
i )
}

.
For x ∈ {0, 1}n, y ∈ {0, 1}n, define AQ as

AQ(x, y) =r
(
x, y +m(wQ(x))

)
(5)

wherem : {0, 1, · · · , n} → {0, 1}n is a mask defined asm(t) = (0, · · · , 0︸ ︷︷ ︸
n−t

, 1, 1, · · · , 1︸ ︷︷ ︸
t

),

and wQ(x) = min {d(x,Q′), ρ} = min
{

minq′i∈Q′
{
d
(
x, q′i

)}
, ρ
}

, and the ad-

dition is bitwise over {0, 1}n.
By definition, wQ(x) = 0 and immediately AQ(x, y) = r(x, y) holds

if x ∈ Q′, and in particular when (x, y) ∈ Q. Intuitively, AQ is close
to r on input (x, y) only when x is close to some element in the set Q′.
When x is far away from Q′, i.e. wQ(x) = ρ, the distance of AQ and r is
bounded by d(AQ(x, y), r(x, y)) ≥ d(y+m(wQ(x)), y)/c = ρ/c and similarly
d(AQ(x, y), r(x, y)) ≤ ρc.

Then, we construct the class A = {r}
⋃{

AQ
∣∣Q ⊆ {0, 1}2n, |Q| ≤ q(n)

}
Metric properties of A Recalling that r has bi-Lipschitz constant c, we
consider the bi-Lipschitz condition of AQ ∈ A. For the expansion of AQ, we

9



have

d
(
AQ(x, y),AQ(x′, y′)

)
=d
(
r
(
x, y +m(wQ(x))

)
, r
(
x′, y′ +m(wQ(x′))

))
≤c · d

((
x, y +m(wQ(x))

)
,
(
x′, y′ +m(wQ(x′))

))
=c
(
‖x− x′‖1 + ‖y +m(wQ(x))− y′ −m(wQ(x′))‖1

)
≤c ·

(
d
(
(x, y), (x′, y′)

)
+ ‖wQ(x)− wQ(x′)‖1

)
≤c · d

(
(x, y), (x′, y′)

)
+ c · d(x, x′)

≤2c · d
(
(x, y), (x′, y′)

)
On the other hand, the contraction of AQ is also bounded by 2c,

d
(
AQ(x, y),AQ(x′, y′)

)
=d
(
r
(
x, y +m(wQ(x))

)
, r
(
x′, y′ +m(wQ(x′))

))
≥c−1 · d

((
x, y +m(wQ(x))

)
,
(
x′, y′ +m(wQ(x′))

))
=c−1

(
‖x− x′‖1 + ‖y +m(wQ(x))− y′ −m(wQ(x′))‖1

)
≥c−1 ·max

{
‖x− x′‖1, ‖x− x′‖1 + ‖y − y′‖1 − ‖wQ(x)− wQ(x′)‖1

}
≥c−1 ·max

{
‖x− x′‖1, ‖y − y′‖1

}
≥c−1 · ‖x− x

′‖1 + ‖y − y′‖1
2

=
d
(
(x, y), (x′, y′)

)
2c

Thus, the bi-Lipschitz condition follows and AQ has bi-Lipschitz constant
2c.

Lower bound for R(C) Let Q be the set of all queried points made
in the construction of C. Randomly set b ∈ {0, 1}, then let Ab = r and
A1−b = AQ. Since Ab(x, y) = A1−b(x, y) for every (x, y) ∈ Q, and moreover
Ab(x, y) = A1−b

(
x, y + m(wQ(x))

)
, A0 and A1 are symmetric and hence

indistinguishable to C. Therefore R(C) ≥ (R(A0) +R(A1))/2 = R(AQ)/2.
By the same calculation as in the proof of Theorem 1, we get the lower

bound R(AQ) >
(

1− nρ+1q(n)
2n

)
ρ/c and as a result,

R(C) >

(
1

2
− nρ+1q(n)

2n+1

)
ρ

c
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3 Choosing between two in Edit Spaces

Natural metric spaces lack the nice properties of the previous cylindric ex-
ample. Our main result regards edit spaces. The technical obstacle is to
give an explicit construction which deals with isoperimetric phenomena on
spaces whose underlying graphs have high expansion. Roughly speaking
this prevents constructing examples by simply gluing together independent
copies (as we did for the cylinders).

In this section, we first introduce Theorem 6 and Theorem 9. We aslo
exposit Corollary 8 for a better understanding of the theorem. Then, we
provide the proof of Theorem 6 in Section 3.1. Section 3.2 contains the proof
of Theorem 9 and Section 3.3 provides the proof to Lemma 7.

Theorem 6. For every integer ρ ≤ n and q, there is a concept class
C, two experts A0,A1 : X → Y (same experts for every concept), where
X = Y = ({0, 1}2n, ed), such that the following holds true for uniform
D = U2n. For every learner with expert advice that makes q many queries
there exists r ∈ C such that for the constructed selector C we have R(C) >(
1
2 −

(4n+4ρ)ρq(n)
2n+1

)
Ω
(√
ρ
)
, while the optimal selector has generalization er-

ror ≤ (4n+4ρ)ρq(n)
2n · ρ. Furthermore, for A0,A1 and for every r ∈ C the

bi-Lipschitz condition holds with constant less than 5.

Proof sketch of Theorem 6. Consider two experts A0, A1 and the concept
class C:

For x ∈ {0, 1}n, y ∈ {0, 1}n,

A0(x, y) = (x, y)
A1(x, y) =

(
x, y +m(ρ)

) (6)

where the computation of y+m(ρ) is bitwise over {0, 1}n, andm : {0, 1, · · · , n} →
{0, 1}n is a mask defined as m(t) = (0, · · · , 0︸ ︷︷ ︸

n−t

, 1, 1, · · · , 1︸ ︷︷ ︸
t

). Let

C = {r0}
⋃{

rQ
∣∣Q ⊆ {0, 1}2n, |Q| ≤ q(n)

}
where r0 = A0 is identity and rQ(x, y) = (x, y +m(wQ(x))), where wQ(x) =

min
{

minq′i∈Q′
{
ed
(
x, q′i

)}
, ρ
}

, for Q′ =
{
q′i
∣∣∃qi ∈ Q, qi = (q′i, q

′′
i )
}

.

Generalization error of A0,A1. For every r ∈ C, R(A0) + R(A1) ≥
E
[
ed
(
y, y +m(ρ)

)]
= Ω

(√
ρ
)

by the following lemma. This lemma is proved
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by calculating the probability that ρ uniformly chosen bits have at least
(ρ+

√
ρ)/2 many 0’s, and the full proof is defered to Section 3.3.

Lemma 7. For every ρ ≤ n, and function m as in (6) we have

E
y∼Un

[
ed
(
y, y +m(ρ)

)]
≥ Ω (

√
ρ)

Upper bound for the influence of “Beacons”. Suppose Q consists
of all queries instances, which are the “beacons”. By definition, rQ(x, y) =
r0(x, y) only when x ∈ Q′, and the distance of r0 and rQ gradually grows to
ρ as the input moves away from “beacons”. Since each beacon influences
a ball of radius ρ which has size at most (4(n+ ρ))ρ, the influence of all
beacons can be upper bounded by the union of balls.∣∣∣∣∣∣

⋃
q′i∈Q′

Bq′i(ρ)

∣∣∣∣∣∣ < (4n+ 4ρ)ρ q(n) (7)

Lower bound for R(C) By inequality (7) and Lemma 7,

ed(r0, rQ) = E
(x,y)∼U2n

[
ed
(
r0(x, y), rQ(x, y)

)]
=

1

22n

∑
(x,y)∈{0,1}2n

ed
(

(x, y),
(
x, y +m(wQ(x))

))

≥ 1

2n

∑
x∈{0,1}n

wQ(x)=ρ

 1

2n

∑
y∈{0,1}n

ed
(

(x, y),
(
x, y +m(wQ(x))

))
>

2n − (4n+ 4ρ)ρ q(n)

2n
· E
y∼Un

[
ed
(
y, y +m(ρ)

)]
≥
(

1− (4n+ 4ρ)ρ q(n)

2n

)
Ω (
√
ρ)

Since C cannot distinguish r0 from rQ, there exists r ∈ C (in particular,
r ∈ {r0, rQ}) such that

R(C) ≥ ed(r0, rQ)/2 >

(
1

2
− (4n+ 4ρ)ρ q(n)

2n+1

)
Ω (
√
ρ)

The proof for the bi-Lipschitz condition (see the appendix) is technical
but not difficult, which can be obtained by analyzing the optimal matching
function.
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Corollary 8. Given the conditions of Theorem 6 for q = q(n) ≤ nlogn

and ρ ≤
⌊
n−log q(n)
3+logn − 3

⌋
= n

3+logn − log n − O (1), then (4n+4ρ)ρq(n)
2n < 1

n3 .

Thus, the optimal selector has generalization error min {R(A0),R(A1)} ≤
(4n+4ρ)ρq(n)

2n ·ρ < ρ
n3 , while the generalization error R(C) >

(
1
2 −

1
2n3

)
Ω
(√
ρ
)

=
Ω
(√
ρ
)

for every generic selector from q queries.

Theorem 9 shares significant parts in its proof from that of Theorem 6.
It also has a similar statement as the above one, where instead of a generic
selector we have a random samples generic selector and the lower bound for
R(C) holds for every concept r ∈ C.

Theorem 9. For every ρ≥ 0, q(n) ≥ 0, and target concept r with distortion
constant c, there exists a set A of bi-Lipschitz experts defined over X → Y
for the edit space X = Y = ({0, 1}2n, ed), such that for uniformly chosen
input (x, y) ∼ D = U2n the following holds true. For every learner with
black-box access that makes q-many queries to r and q-many queries to the
two experts, there exist two experts A0,A1 ∈ A with distortion ≤ 5c and the
optimal selector has 0 generalization error. Then, such a learner constructs

C where R(C) ≥
(
1
2 −

(4n+4ρ)ρq(n)
2n+1

)
·Ω
(√

ρ
c

)
. In particular, R(C) ≥ Ω

(√
ρ
c

)
when ρ ≤

⌊
n−log q(n)
3+logn − 1

⌋
.

3.1 Proof of Theorem 2

Proof of Theorem 6. Similar to the proof of Theorem 1, we first introduce
the example, then analyze the generalization error of the experts and the
generic selector, and finally verify the bi-Lipschitz conditions.

Construction (family of examples) For x ∈ {0, 1}n, y ∈ {0, 1}n, let A0

and A1 be defined as follows

A0(x, y) = (x, y)
A1(x, y) =

(
x, y +m(ρ)

) (8)

where m : {0, 1, · · · , n} → {0, 1}n is a mask m(t) = (0, · · · , 0︸ ︷︷ ︸
n−t

, 1, 1, · · · , 1︸ ︷︷ ︸
t

),

and the computation of y +m(ρ) is bitwise over {0, 1}n.
Note that q(n) upper bounds the number of queries made in the con-

struction of the selector C. Let Q =
{
qi
∣∣1 ≤ i ≤ q(n)

}
denote the set of

all queries, where qi = (q′i, q
′′
i ) ∈ {0, 1}2n for every qi ∈ Q and q′i, q

′′
i ∈

13



{0, 1}n. For completeness, let Q′ =
{
q′i
∣∣∃qi ∈ Q, qi = (q′i, q

′′
i )
}

and Q′′ ={
q′′i
∣∣∃qi ∈ Q, qi = (q′i, q

′′
i )
}

.

Then we construct the concept class C = {r0}
⋃{

rQ
∣∣Q ⊆ {0, 1}2n, |Q| ≤ q(n)

}
.

r0 denotes the identity mapping, and for every Q, rQ is defined as

rQ(x, y) = (x, y +m(wQ(x)))

wherem(t) = (0, · · · , 0︸ ︷︷ ︸
n−t

, 1, 1, · · · , 1︸ ︷︷ ︸
t

) and wQ(x) = min
{

minq′i∈Q′
{
ed
(
x, q′i

)}
, ρ
}

as before. By definition, rQ(x, y) = r0(x, y) if and only if x ∈ Q′, which holds
in particular for every (x, y) ∈ Q.

Upper bounding the volume of
⋃
q′i∈Q′ Bq′i(ρ). Let Bz(ρ)

def
= {x | ed(x, z) ≤

ρ} denote the closed ball of radius ρ centered at z. For x /∈
⋃
q′i∈Q′ Bq′i(ρ),

by definition of wQ, it follows

wQ(x) = min

{
min
q′i∈Q′

{
ed
(
x, q′i

)}
, ρ

}
= ρ

To upper bound the volume of Bz(ρ), we calculate the number of distinct
ρ-step operation sequences from z ∈ {0, 1}n. For each of the ρ steps, we can
perform either insertion 0/1 to one of at most n+ρ positions, or deletion and
substitution in one of at most n+ ρ− 1 positions, or no operation. Totally,
we have less than 4(n+ ρ) choices in each step. Thus, we bound Bq′i(ρ) as∣∣∣Bq′i(ρ)

∣∣∣ < (4(n+ ρ))ρ

By union bound, the volume of the union of q(n) balls is upper bounded
by ∣∣∣∣∣∣

⋃
q′i∈Q′

Bq′i(ρ)

∣∣∣∣∣∣ < (4n+ 4ρ)ρ q(n)

As a consequence,∣∣{x ∈ {0, 1}n∣∣wQ(x) = ρ
}∣∣ =2n −

∣∣∣∣{x ∈ {0, 1}n∣∣ min
q′i∈Q′

{
d(x, q′i)

}
< ρ

}∣∣∣∣
≥2n −

∣∣∣∣∣∣
⋃
q′i∈Q′

Bq′i(ρ)

∣∣∣∣∣∣ > 2n − (4n+ 4ρ)ρ q(n)

14



Generalization error of A0,A1 We consider the generalization error of
an optimal selector for the concept class C . If r = r0, then the generalization
error is 0 since A0 = r0. Otherwise, if r = rQ,

R(A1) = E
[
ed
(
A1(x, y), r(x, y)

)]
= E

[
ed
((
x, y +m(ρ)

)
,
(
x, y +m(wQ(x))

))]
≤ E

[
ed
(
y +m(ρ), y +m

(
wQ(x)

))]
≤ Pr

x∼D
[wQ(x) < ρ]E

[
ed
(
y +m(ρ), y +m

(
wQ(x)

))∣∣∣wQ(x) < ρ
]

≤ (4n+ 4ρ)ρ q(n)

2n
· ρ

Thus, we conclude

min {R(A0),R(A1)} ≤
(4n+ 4ρ)ρ q(n)

2n
· ρ

Lower bound for R(C) The lower bound of R(C) follows the same intu-
ition that C cannot distinguish two concepts which are far away from each
other and on the other hand C can never be close to both of them.

To lower bounding the generalization distance of r0 and rQ, we first recall
that ∣∣{x ∈ {0, 1}n∣∣wQ(x) = ρ

}∣∣ > 2n − (4n+ 4ρ)ρ q(n)

Then using Lemma 7,

ed(r0, rQ) = E
(x,y)∼U2n

[
ed
(
r0(x, y), rQ(x, y)

)]
=

1

22n

∑
(x,y)∈{0,1}2n

ed
(
(x, y),

(
x, y +m(wQ(x))

))

≥ 1

2n

∑
x∈{0,1}n

wQ(x)=ρ

 1

2n

∑
y∈{0,1}n

ed
(
(x, y),

(
x, y +m(wQ(x))

))
>

2n − (4n+ 4ρ)ρ q(n)

2n
E

y∼Un

[
ed
(
y, y +m(ρ)

)]
≥
(

1− (4n+ 4ρ)ρ q(n)

2n

)
Ω (
√
ρ)

For A0,A1 as in (6), reacalling that Q consists of all queries made by C,
then C cannot distinguish the concept r0 from rQ, since these two concepts
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coincide on every query in Q. Therefore, there exists r ∈ C (in particular,
r ∈ {r0, rQ}) such that

R(C) ≥ ed(r0, rQ)/2 >

(
1

2
− (4n+ 4ρ)ρ q(n)

2n+1

)
Ω (
√
ρ)

Metric properties of A0,A1 and C The bi-Lipschitz condition is triv-
ial for A0 and r0 since they are identity. Then, we prove the bi-Lipschitz
constant is at most 3 for A1 and no more than 5 for every rQ ∈ C\{r0}.

Firstly, we bound ed
(
A1(x, y),A1(x

′, y′)
)

= ed
((
x, y +m(ρ)

)
,
(
x′, y′ +m(ρ)

))
with ed

(
(x, y), (x′, y′)

)
. Let us consider the optimal matchingM

(
(x, y), (x′, y′)

)
between (x, y) and (x′, y′), which maps every pair of unchanged bits when
editing1 (x, y) to (x′, y′). Denote by

∣∣M((x, y), (x′, y′)
)∣∣ the number of

matched pairs defined by the matching, then (note the input length is 2n),

2n−
∣∣M((x, y), (x′, y′)

)∣∣ ≤ ed
(
(x, y), (x′, y′)

)
≤ 4n− 2

∣∣M((x, y), (x′, y′)
)∣∣

Similarly,

2n−
∣∣M(A1(x, y),A1(x

′, y′)
)∣∣ ≤ ed

(
A1(x, y),A1(x

′, y′)
)
≤ 4n−2

∣∣M(A1(x, y),A1(x
′, y′)

)∣∣
Therefore, it suffices to compare

∣∣M((x, y), (x′, y′)
)∣∣ and

∣∣M(A1(x, y),A1(x
′, y′)

)∣∣.
Realizing the matchings as graphs with each edge corresponding to a pair of
matched bits, we let Γ denote the cut in M

(
(x, y), (x′, y′)

)
at the position

2n − ρ, i.e. Γ consists of all pairs containing one bit from the first 2n − ρ
positions and the other from the last ρ positions.

On one hand, we assert that Γ only contains edges in either of the follow-
ing two cases: from the first 2n−ρ positions of (x, y) to the last ρ of (x′, y′),
or from the last ρ positions of (x, y) to the first 2n− ρ positions of (x′, y′).
Because in the process of editing, the relative order of remaining bits can
never be changed. Then, it trivially follows that 2|Γ| ≤ ed

(
(x, y), (x′, y′)

)
,

since each single edge in Γ will cause at least two insertion/deletion opera-
tions.

On the other hand, we notice that if a pair inM
(
(x, y), (x′, y′)

)
is not in

Γ, it can also appear in the matching between A1(x, y) and A1(x
′, y′). Thus,∣∣M((x, y), (x′, y′)

)∣∣− ∣∣M(A1(x, y),A1(x
′, y′)

)∣∣ ≤ |Γ|.
Combining above two parts,∣∣M((x, y), (x′, y′)

)∣∣− ∣∣M(A1(x, y),A1(x
′, y′)

)∣∣ ≤ |Γ| ≤ ed
(
(x, y), (x′, y′)

)
/2

1In case there are multiple ways to edit (x, y) to (x′, y′) with the same number of
operations, fix M to any of them.
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Then, recalling the lower and upper bound for ed
(
(x, y), (x′, y′)

)
and ed

(
A1(x, y),A1(x

′, y′)
)
,

the expansion of A1 is at most 3.

ed
(
A1(x, y),A1(x

′, y′)
)

≤4n− 2
∣∣M(A1(x, y),A1(x

′, y′)
)∣∣

≤4n− 2
∣∣M((x, y), (x′, y′)

)∣∣+ ed
(
(x, y), (x′, y′)

)
≤3ed

(
(x, y), (x′, y′)

)
Since A1

(
A1(x, y)

)
= (x, y), the contraction of A1 follows the same

bound, i.e. ed
(
(x, y), (x′, y′)

)
≤ 3ed

(
A1(x, y),A1(x

′, y′)
)
. To conclude, A1

has bi-Lipschitz constant 3.
For rQ, we verify its bi-Lipschitz constnat is at most 5.
By definition of rQ, we have

ed
(
rQ(x, y), rQ(x′, y′)

)
= ed

((
x, y +m(wQ(x))

)
,
(
x′, y′ +m(wQ(x′))

))
Again, letM

(
(x, y), (x′, y′)

)
be the optimal matching between (x, y) and

(x′, y′). And similarly define M
(
rQ(x, y), rQ(x′, y′)

)
, then,

ed
(
rQ(x, y), rQ(x′, y′)

)
≤ 4n− 2

∣∣M(rQ(x, y), rQ(x′, y′)
)∣∣

Let Γ denote the cut inM
(
(x, y), (x′, y′)

)
at the position 2n−wQ(x) of

(x, y) and the position 2n− wQ(x′) of (x′, y′), i.e. Γ consists of all edges in
the matching M

(
(x, y), (x′, y′)

)
that

• either from the first 2n − wQ(x) positions of (x, y) to the last wQ(x′)
positions of (x′, y′),

• or from the last wQ(x) positions of (x, y) to the first 2n−wQ(x′) positions
of (x′, y′).

Moreover, all edges in Γ must be in the same case. By counting the number
of unmatched bits on both sides of the cut, we can get ed

(
(x, y), (x′, y′)

)
≥

2
(
|Γ| − |wQ(x)− wQ(x′)|

)
.

On the other hand,
∣∣M((x, y), (x′, y′)

)∣∣− ∣∣M(rQ(x, y), rQ(x′, y′)
)∣∣ ≤ |Γ|

since all edges in M
(
(x, y), (x′, y′)

)
\Γ can be simultaneously reserved in a

matching from rQ(x, y) to rQ(x′, y′).
As a result,∣∣M((x, y), (x′, y′)

)∣∣−∣∣M(rQ(x, y), rQ(x′, y′)
)∣∣ ≤ |Γ| ≤ ed

(
(x, y), (x′, y′)

)
/2+

∣∣wQ(x)− wQ(x′)
∣∣

Plugging it into previous lower and upper bound for ed
(
(x, y), (x′, y′)

)
and
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ed
(
rQ(x, y), rQ(x′, y′)

)
, the expansion of rQ is at most 5.

ed
(
rQ(x, y), rQ(x′, y′)

)
≤4n− 2

∣∣M(rQ(x, y), rQ(x′, y′)
)∣∣

≤4n− 2
∣∣M((x, y), (x′, y′)

)∣∣+ ed
(
(x, y), (x′, y′)

)
+ 2

∣∣wQ(x)− wQ(x′)
∣∣

≤3ed
(
(x, y), (x′, y′)

)
+ 2

∣∣wQ(x)− wQ(x′)
∣∣

≤3ed
(
(x, y), (x′, y′)

)
+ 2ed(x, x′)

≤5ed
(
(x, y), (x′, y′)

)
Since rQ

(
rQ(x, y)

)
= (x, y), the contraction of rQ is also bounded by 5. Thus,

rQ has bi-Lipschitz constant 5.

3.2 Proof of Theorem 3: extending to all target concepts
and random queries

Similarly as with the extension in Section 2.2, we consider the case where
the target concept is a fixed mapping with low distortion in edit space. We
show that for the fixed target concept there exists a pair of experts such that
from which no selector with small generalization error can be constructed.

Theorem 9 (informally stated). For every ρ≥ 0, q(n) ≥ 0, and target
concept r with distortion constant c, there exists a set A of bi-Lipschitz
experts defined over X → Y for the edit space X = Y = ({0, 1}2n, ed), such
that for uniformly chosen input (x, y) ∼ D = U2n the following holds true.
For every learner with black-box access that makes q-many queries to r and
q-many queries to the two experts, there exist two experts A0,A1 ∈ A with
distortion ≤ 5c and the optimal selector has 0 generalization error. Then,

such a learner constructs C where R(C) ≥
(
1
2 −

(4n+4ρ)ρq(n)
2n+1

)
· Ω
(√

ρ
c

)
. In

particular, R(C) ≥ Ω
(√

ρ
c

)
when ρ ≤

⌊
n−log q(n)
3+logn − 1

⌋
.

Proof. We begin with the construction of A. Then, we disucss the metric
property and the generalization error of experts AQ ∈ A\{r}. Finally, we
prove the lower bound for R(C).

Construction Recalling that q(n) upper bounds the number of queries
made by the selector C, let Q =

{
qi
∣∣1 ≤ i ≤ q(n)

}
⊆ {0, 1}2n denote the set

of all queries, and define Q′ =
{
q′i
∣∣∃qi ∈ Q, qi = (q′i, q

′′
i )
}
⊆ {0, 1}n to be the

set of first half of elements in Q.
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For x ∈ {0, 1}n, y ∈ {0, 1}n, define AQ as in (5)

AQ(x, y) =r
(
x, y +m(wQ(x))

)
wherem : {0, 1, · · · , n} → {0, 1}n is a mask defined asm(t) = (0, · · · , 0︸ ︷︷ ︸

n−t

, 1, 1, · · · , 1︸ ︷︷ ︸
t

),

and wQ(x) = min {d(x,Q′), ρ} = min
{

minq′i∈Q′
{
d
(
x, q′i

)}
, ρ
}

. When x ∈
Q′, in particular when (x, y) ∈ Q, wQ(x) = 0 and immediately AQ(x, y) =
r(x, y) follows by definition.

The expert class is constructed asA = {r}
⋃{

AQ
∣∣Q ⊆ {0, 1}2n, |Q| ≤ q(n)

}
Metric properties of AQ ∈ A For the bi-Lipschitz condition of elements
in A, we need to bound ed

(
AQ(x, y),AQ(x′, y′)

)
, with ed

(
(x, y), (x′, y′)

)
.

Recalling that r has bi-Lipschitz constant c and ed
(
AQ(x, y),AQ(x′, y′)

)
=

ed
(
r
(
x, y +m(wQ(x))

)
, r
(
x′, y′ +m(wQ(x′))

))
,

1

c
≤

ed
(
r
(
x, y +m(wQ(x))

)
, r
(
x′, y′ +m(wQ(x′))

))
ed
((
x, y +m(wQ(x))

)
,
(
x′, y′ +m(wQ(x′))

)) ≤ c

Following the bi-Lipschitz proof of rQ in Theorem 6, we get the upper
bound for expansion

ed
((
x, y +m(wQ(x))

)
,
(
x′, y′ +m(wQ(x′))

))
≤ 5ed

(
(x, y), (x′, y′)

)
and symmetrically for contraction

ed
(
(x, y), (x′, y′)

)
≤ 5ed

((
x, y +m(wQ(x))

)
,
(
x′, y′ +m(wQ(x′))

))
Therefore, the bi-Lipschitz constant of AQ is at most 5c.

Generalization error of AQ ∈ A Before lower bounding the generaliza-
tion error R(AQ), we upper bound the fraction of elements close to Q′. Let
B =

{
x ∈ {0, 1}n

∣∣d(x,Q′) < ρ
}

be the set of all elements close to Q′, then
B =

⋃
q′i∈Q′ Bq′i(ρ) as in (7) and the volume is upper bounded by

|B| =

∣∣∣∣∣∣
⋃
q′i∈Q′

Bq′i(ρ)

∣∣∣∣∣∣ < (4n+ 4ρ)ρ q(n)
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The generalization error of AQ is Ω
(√

ρ
c

)
as long as (x, y) ∼ U2n. Re-

calling Lemma 7 that E
[
ed
(
y, y +m(ρ)

)]
= Ω

(√
ρ
)
, we have

R(AQ) = E
[
ed
(
AQ(x, y), r(x, y)

)]
= E

[
ed
(
r
(
x, y +m(wQ(x))

)
, r(x, y)

)]
> E

[
ed
(
r
(
x, y +m(ρ)

)
, r(x, y)

)∣∣∣x /∈ B] · Pr
x∼Un

[x /∈ B]

≥ E
[

1

c
· ed
((
x, y +m(ρ)

)
, (x, y)

)]
·
(

1− (4n+ 4ρ)ρ q(n)

2n

)
≥ 1

c
· E
[
ed
(
y, y +m(ρ)

)]
·
(

1− (4n+ 4ρ)ρ q(n)

2n

)
≥
(

1− (4n+ 4ρ)ρ q(n)

2n

)
·

Ω
(√
ρ
)

c

and when ρ ≤
⌊
n−log q(n)
3+logn − 1

⌋
,

R(AQ) = Ω

(√
ρ

c

)
Lower bound for R(C) Let Q be the set of all queried points made by
C. Uniformly at random select b ∈ {0, 1}, then let Ab = r and A1−b = AQ.
Trivially we have

min {R(A0),R(A1)} = 0

Note that Ab(x, y) = A1−b(x, y) when (x, y) ∈ Q, and moreover Ab(x, y) =
A1−b

(
x, y + +m(wQ(x))

)
. Therefore, A0 and A1 are indistinguishable to C,

and hence

R(C) ≥ R(A0) +R(A1)

2
= R(AQ)/2 =

(
1− (4n+ 4ρ)ρ q(n)

2n

)
· Ω
(√

ρ

c

)

3.3 Proof of Main Lemma

Lemma 10. For every ρ ≤ n, we have the following lower bound for the
expected edit distance between a random string and its complement.

E
y∼Un

[
ed
(
y, y +m(ρ)

)]
≥ Ω (

√
ρ)
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Proof of Lemma 10. We lower bound the expected edit distance by calcu-
lating the probability the y has

√
ρ more 0’s than 1’s in its last ρ bits.

Consider the case when y has at least (ρ+
√
ρ)/2 bits equal to 0 in the

last ρ bits, then the number of 0’s in last ρ bits of y + m(ρ) is at most
(ρ−√ρ)/2. As a result,

ed
(
y, y +m(ρ)

)
≥ |# of 0’s in y −# of 0’s in y +m(ρ)| ≥ √ρ

Then, we bound the probability of the above case. In particular, we
lower bound it by the probability that in the last ρ bits of y there are at
least (ρ+

√
ρ)/2 but at most ρ/2 +

√
ρ bits equal to 0.

Pr
y∼Un

[
(ρ+

√
ρ)/2 ≤ (# of 0’s in last ρ bits of y) ≤ ρ/2 +

√
ρ
]

=

ρ/2+
√
ρ∑

i=ρ/2+
√
ρ/2

(
ρ
i

)
· 2n−ρ

2n

≥ 1

2ρ
· (
√
ρ

2
+ 1) ·

(
ρ

ρ/2 +
√
ρ

)
≥
√
ρ

2ρ+1
· ρ!

(ρ/2 +
√
ρ)!(ρ/2−√ρ)!

(9)

Recalling that by Stirling’s Formula (the version due to Robbins 1955),

√
2πnn+1/2 exp(−n+

1

12n+ 1
) ≤ n! ≤

√
2πnn+1/2 exp(−n+

1

12n
)
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we derive the lower bound for
( ρ
ρ/2+

√
ρ

)
as(

ρ

ρ/2 +
√
ρ

)
=

ρ!

(ρ/2 +
√
ρ)!(ρ/2−√ρ)!

≥
√

2πρρ+1/2 exp(−ρ+ 1
12ρ+1)(√

2π(ρ/2 +
√
ρ)ρ/2+

√
ρ+1/2 exp(−(ρ/2 +

√
ρ) + 1)

) ·
1(√

2π(ρ/2−√ρ)ρ/2−
√
ρ+1/2 exp(−(ρ/2−√ρ) + 1)

)
=
ρρ+1/2 exp

(
−ρ+ 1

12ρ+1 + (ρ/2 +
√
ρ) + (ρ/2−√ρ)− 2

)
√

2π(ρ/2 +
√
ρ)ρ/2+

√
ρ+1/2(ρ/2−√ρ)ρ/2−

√
ρ+1/2

≥
ρρ+1/2 exp

(
1

12ρ+1 − 2
)

√
2π(ρ2 + 2ρ

ρ+1)ρ+1
(10)

≥
ρρ+1/2 exp

(
1

12ρ+1 − 2
)

√
2π(ρ/2 + 2)ρ+1

=
1√
2πρ
·
(

ρ

ρ/2 + 2

)ρ+1

exp

(
1

12ρ+ 1
− 2

)
≥ 2ρ+1

√
2πρ · e2

·
(

ρ/2

ρ/2 + 2

)ρ+1

=
2ρ+1

√
2πρ · e2

·
(

1− 1

ρ/4 + 1

)ρ+1

≥ 2ρ+1

√
2πρ · e2

·
(

1− 1

ρ/4 + 1

)4(ρ/4+1)

>
2ρ+1

√
2πρ · e2

·
(

1

5

)5

(11)

The inequality (10) holds since

(ρ/2 +
√
ρ)ρ/2+

√
ρ+1/2 · (ρ/2−√ρ)ρ/2−

√
ρ+1/2

≤
(

(ρ/2 +
√
ρ)(ρ/2 +

√
ρ+ 1/2) + (ρ/2−√ρ)(ρ/2−√ρ+ 1/2)

ρ/2 +
√
ρ+ 1/2 + ρ/2−√ρ+ 1/2

)ρ/2+√ρ+1/2+ρ/2−√ρ+1/2

=

(
ρ2/2 + 5ρ/2

ρ+ 1

)ρ+1

= (
ρ

2
+

2ρ

ρ+ 1
)ρ+1
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And the inequality (11) holds for ρ ≥ 1, since the function
(
1− 1

x

)x
is

monotonically increasing and converges to e−1 when x > 1, therefore(
1− 1

ρ/4 + 1

)ρ/4+1

≥
(

1

5

)5/4

To conclude, we have the lower bound of
( ρ
ρ/2+

√
ρ

)
,(

ρ

ρ/2 +
√
ρ

)
>

2ρ+1

√
2πρ · e2 · 55

(12)

In fact, this lower bound can be further improved to 2ρ+1
√
2πρ·e6 when ρ is

sufficiently large.
Then, plugging (12) into (9),

Pr
y∼Un

[
ρ/2 +

√
ρ/2 ≤ (# of 0’s in last ρ bits of y) ≤ ρ/2 +

√
ρ
]

≥
√
ρ

2ρ+1
·
(

ρ

ρ/2 +
√
ρ

)
≥
√
ρ

2ρ+1
· 2ρ+1

√
2πρ · e2 · 55

=
1√

2π · e2 · 55
= Ω (1) (13)

Therefore,

E
y∼Un

[
ed
(
y, y +m(ρ)

)]
≥ E
y∼Un

[
ed
(
y, y +m(ρ)

) ∣∣∣ ρ/2 +
√
ρ/2 ≤ (# of 0’s in last ρ bits of y) ≤ ρ/2 +

√
ρ
]

· Pr
y∼Un

[
ρ/2 +

√
ρ/2 ≤ (# of 0’s in last ρ bits of y) ≤ ρ/2 +

√
ρ
]

≥√ρ · Ω (1) = Ω (
√
ρ)

The expected edit distance between y and y +m(ρ) is Ω
(√
ρ
)
.

4 Experimental results

This work presents analytical results. This is the first theoretical study
on metric embeddings between metric spaces of combinatorial nature. The
hope is that it will provide machinery in areas such as in image processing,
speech recognition, data mining, and natural language processing (NLP).
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In this section, we take one of the mainstream applications nowadays in
NLP, machine translation, and verify that the setting where our theoretical
developments happen are consistent with this setting.

We consider all sentences of bounded length in one human language as a
finite metric space. We impose metric structure by choosing edit (or Leven-
shtein) distance [Lev66] to measure the distance between sentences. Other
scoring functions commonly used in machine translation won’t be appropri-
ate because they fail to satisfy the symmetry and triangle inequality. We
find rather intriguing the fact that edit distance is able to reveal very non-
trivial geometry in human and machine translations. This human language
can be a natural (perfect) human language such as French, English, but
can also be a machine generated language, such as translations of a natural
language by a translation engine, e.g. Google translate. The translation of
sentences between two languages now becomes a metric embedding.

In our setting, the source metric space is Chinese language and the target
metric space is English. The mapping is translating from a Chinese sentence
into an English sentence. The experts are Bing translate [Bin] (A0) from
Chinese to English and Google translate [Goo] (A1). Therefore, we have
three metric mappings: (i) from Chinese natural language to English natural
language; (ii) from Chinese natural language to Google translation; (iii) from
Chinese natural language to Bing translation.

4.1 Data sets

Experiment Data Original Words Words Vocabulary

Natural Chinese 2752 2624 479
Language English Reference 2755 2748 481

Google Chinese 2752 2747 480
Google Translation 2542 2536 444

Bing Chinese 2752 2746 480
Bing Translation 2554 2548 369

Table 1: IWSLT 2011 corpus statistics in three experimental settings: nat-
ural language, Google and Bing translations, on running words before and
after filtering as well as vocabulary size in thousand units [K].

The data is provided from IWSLT [IWS] competition with 139K sen-
tence pairs in Chinese and English. The details of this corpus can be found
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in Table 1. We used Google and Bing online translation engine application
to obtain the English machine translation results. To eliminate the effect of
noise in data, such as incomplete sentences, and other sporadic translation
anomalies (distortion is a worst-case quantity), we show the distortion value
on selected subsets of the data disregarding sentences triggering high dis-
tortion. This happens either due to errors in the original corpus, or due to
large difference in the sentence length between two languages. For filtering,
we use simple greedy heuristics to compute these sets which in reality could
be enough larger (finding these sets can be somewhat easily shown to be
NP-hard by a reduction from Independent Set and it is not clear if any
reasonable approximation exists – recall that independent set itself is vastly
inapproximable). We remove the sentence pair with the highest value on
contraction or expansion and re-calculate the distortion iteratively.

4.1.1 Bi-Lipschitz condition (low-distortion)

Our metric embeddings in learning developments in the main paper is based
on the Bi-Lipschitz condition only. In this subsection, we show that transla-
tion within our setting satisfies this condition (at least within some relaxed
notion of locality), thus our theory is very naturally related to language
translation. The term bi-Lipschitz is used informally to refer to small dis-
tortion. The distortion is the product of expansion and contraction, where
the contraction is the maximum value among each distance of two Chinese
sentences divided by the distance their English translations; and the ex-
pansion is the maximum value among each distance of the two translated
English sentences divided by the distance of the corresponding sentences
in Chinese. Here, bi-Lipschitz means that for every two Chinese sentences,
which are close in edit distance their English translations are also close, and
vice-versa.

Figure 1 depicts the expansion, contraction, and distortion on the subsets
of sentences selected based on their lengths, ranging from 1 to 100. Each
subset is composed of 1000 sentence pairs (sampled uniformly random) with
no more or less than two of the given length in average, when filtering out
10% of the sentences (which includes noise).

Shorter sentences tend to have higher distortion, because of the sensi-
tivity of distortion on the number of words. For instance, two far related
single-word Chinese idioms (”众说纷纭” and ”接下来”) are translated into
an English sentence with eight and six words (“many things have been said
about this .” and “now follow me , ok ? ”) , respectively, their distance is
two in Chinese and fourteen in English.
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Figure 1: Distortion in sentence length range for the natural language. The
x-axis depicts the window position x for sentence length in the window
[x − 2, x + 2]. The y-axis is the distortion occuring in the corresponding
window.

Our empirical study revealed two more conditions satisfied in transla-
tion setting: Metric Separability and Dense Neighboring. These
conditions are not used in the statements of our theorems. However, we
remark that all of our constructions of the concept classes and the experts
in our theorems do satisfy these conditions as well. Further understanding
in the geometry of human translation maps can lead to new classification
techniques.

4.1.2 Metric separability condition

We partition the translation output in Table 1 into two sets: one that con-
tains the translated sentences generated using Bing that has smaller edit
distance than those generated using Google (this is the set: “Bing-better”);
the other contains all translations generated using Google which has smaller
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Figure 2: Frequency of sentences in Google or Bing better performed set
given the mininum Levenshtein distance of this sentence from the other.
Google-better: the set where Google does better than Bing; Bing-better:
the set where Bing does better than Google. The x-axis is the minimum
distance of Bing-better (Google-better) to Google-better (Bing-better). The
y-axis is the number of sentences in the Bing-better (Google-better) set with
the corresponding minimum distance from Google-better (Bing-better).

distance than the Bing one (Google-better).
There is a large subset of Bing-better that has significant distance from

Google-better set (where distance between two sets is the min-distance of a
point in one and a point in the other). This means that for every sentence
in Bing-better, its minimum distance to all sentences in Google-better set is
greater than a threshold, i.e. there is a certain distance from each sentence in
Bing-better to the Google-better. Therefore Bing-better and Google-better
set can be separated in a metric/geometric sense.

Figure 2 depicts the histogram of the number of sentences given its min-
imum distance to the target set. An important experimental finding is that
the better performed translations are concentrated close to the area that has
the minimum distance of 10 to the other set. The curve for Bing as in Fig-
ure 2 is greater than that for the Google, and is pushed slightly to the area
with longer distances. This result indicates a strong geometric property: it
is not only the case that there are large sets where Bing outperforms Google
and vice-versa, but also when they do so they do it for sentences that are
far away in an edit distance sense.
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4.1.3 Dense neighboring condition

Consider one of the two systems performing better and the other performing
worse for each sentence in a maximum subset of source sentences. For this
subset if we translate a sentence with the worse system, then we can always
find another sentence in the same subset whose translation is close to the
first translation.

In our experiments, for each source sentence better translated with Google,
we apply Bing to translate it as well. For this translation, we look for the
closest translation generated by Google, whose source sentence is trans-
lated better by Google than by Bing with the respect to the edit distance.
The results show that 10% of the worse translated sentences by Bing has a
neighborhood with less than or equal to 5 in edit distance, where as a neigh-
borhood we take a good translated sentence by Google. For edit distance 10
the ; and 50% of sentences with a edit distance of 10. Google versus Bing
shows analogous result. We believe (and the tendency of the graph is such)
that the percentage of sentences fulfilling this assumption will increase by
increasing the corpus size.
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