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Abstract
We initiate the study of low-distortion finite met-
ric embeddings in multi-class (and multi-label)
classification where (i) both the space of input
instances and the space of output classes have
combinatorial metric structure, and (ii) the con-
cepts we wish to learn are low-distortion embed-
dings. We develop new geometric techniques
and prove strong learning lower bounds. These
provable limits hold even when we allow learn-
ers and classifiers to get advice by one or more
experts. Our study overwhelmingly indicates
that post-geometry assumptions are necessary in
multi-class classification, as in natural language
processing (NLP). Technically, the mathemati-
cal tools we developed in this work could be of
independent interest to NLP. To the best of our
knowledge, this is the first work which formally
studies classification problems in combinatorial
spaces and where the concepts are low-distortion
embeddings.

1. Introduction
Multi-class and multi-label classification, especially when
the number of classes is very large, finds important appli-
cations in natural language processing, speech recognition,
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and image recognition. In machine translation, for exam-
ple, every translated sentence becomes a distinct class. The
mathematics of such multi-class settings are far less under-
stood compared to binary or moderate-class-size classifica-
tion. We put things in new context by introducing metric
structure both in the instance space and in the output classes
(label space), and we consider the geometry of the map
(concept) between them. We ask how to effectively com-
bine advice provided by experts in such multi-class tasks.

This is a particularly natural question for multi-class prob-
lems. Common, popular machine learning methods —
SVMs, kNN, and their variants — are distance-only based.
Furthermore, the fact that we have many classes, high-
dimensions in the output, and metric structure allows us
to study interesting geometric properties (contrast this with
binary or low-dimensional spaces of classes).

Can strong geometry help? Let us begin with the follow-
ing motivating example. Consider the cube, C3 = {0, 1}3,
equipped with the Hamming distance – e.g. the distance
dH ((0, 0, 1), (1, 0, 0)) = 2 measures the number of posi-
tions the two vectors differ. Now, consider the collection
of concepts (concept class) C = {r : C3 → C3} such
that every r ∈ C preserves the distances between every
two strings x, y ∈ C3, i.e. dH(x, y) = dH (r(x), r(y)).
Then, with the strong geometric property (i.e. that dis-
tances are preserved) r can be evaluated on every input
by knowing r(0, 0, 0), r(0, 0, 1), r(0, 1, 0), r(1, 0, 0), since
r(x1, x2, x3) = x1·r(1, 0, 0)+x2·r(0, 1, 0)+x3·r(0, 0, 1)+
(1−x1−x2−x3) · r(0, 0, 0), with all operations in GF(2).
More generally, if the cube is of size N , we can fully de-
scribe r with 1 + log2N queries.

In the above example, learning any target concept r is very
efficient despite the high dimension of the space. This
is because r is an isometry (preserves distances exactly),
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i.e. there is strong underlying geometry. Thus, the exam-
ple is compatible with the no-free-lunch theorem (Wolpert,
1996). It seems, therefore, plausible to consider what hap-
pens when we wish to learn a concept with slightly dis-
torted distances – here we consider bi-Lipschitz (formally
defined in Section 2) instead of 1-Lipschitz maps since the
latter in general is not learnable. Given such a “geometric
promise” it is conceivable that new learning methods could
be obtained, whereas at the same time lower bounds are
more challenging due to the added geometry.

In real-world problems, although distances are strongly
preserved this happens only approximately (see the full ver-
sion). For example, consider the two English sentences
“the cat sat on the mat” and “the dog sat on the mat” and
their translations to Chinese. These English sentences have
edit distance exactly 1; edit distance (Levenshtein, 1966)
is the smallest number of substitutions/insertions/deletions
needed to turn one sentence into the other. We can imag-
ine, even without knowing Chinese, that the Chinese trans-
lations also have very small edit distance. In particular, it is
smaller than the distance of each of those two translations
to the translation of “four centuries and twenty years ago”.
In other words, under edit distance, English and Chinese
become two metric spaces, and (after filtering out some
small parts) English-Chinese translation turns into a low-
distortion embedding. This means that edit distances in the
two languages are approximately preserved under human
translation. The difficulty of learning concepts that are low-
distortion embeddings is the topic this paper studies.

Our classification setting. The set X of instances and
the set Y of classes (labels) become metric spaces un-
der distance functions dX and dY . The goal is to learn
an unknown target concept r chosen from a known con-
cept class C consisting of low-distortion injective concepts
X ↪−→ Y . The above metric spaces are combinatorial in
nature, e.g. we consider Hamming and edit (Levenhstein)
spaces. These spaces also have very low-diameter induced
by strong “geometric connectivity” (aka high-expansion).
Roughly speaking, this means that close to any set of
points in the space there are many other close-by points
(this property makes lower bounds constructions challeng-
ing). Finally, we give access to any fixed number of ex-
perts A0,A1,A2, · · · : X → Y who themselves are low-
distortion embeddings. Thus, on one hand, this is weaker
than the perfect (no distortion) example we gave in the be-
ginning and, on the other hand, stronger since we allow
expert advice.

Remark (experiments justifying the setting): This
work is theoretical. It deals with general multi-class and
low-distortion learning questions. One motivation (in fact,
our original question) comes from NLP. In the full version
we list empirical results about the low-distortion of human

translation maps and expert maps (Google and Bing trans-
lation engines).

Given such strong geometric guarantees, is it possible to
combine (i.e. a task simpler than general learning) two or
more experts in a way that we get close to the target? Our
study yields the following conceptual message.

In multi-class tasks, such as machine translation
and speech recognition, just knowing distances
that quantify dissimilarity in the inputs and out-
puts does not suffice for building or even combin-
ing systems, even in the presence of strong under-
lying geometry. Thus, “post-geometry structure”
is required; e.g. language models and other con-
structs that make statistical assumptions about
the structure of the correct output.

Despite the above message, our work is still theoretical. It
addresses general questions about learning low-distortion
concepts. It is just one reading of our results that rigor-
ously formalizes and proves what before was only intu-
itively discussed in Statistical NLP (it is common practice
in machine learning to formalize intuitive/high-level con-
cepts and principles, as in e.g. the case of Occam’s razor).

Note that edit distance has been widely used in computa-
tional linguistics, e.g. WER (Word Error Rate is normalized
edit distance), to describe sentence similarity. See also in
the full version for further experiments on edit distance in
natural languages.

Low-distortion regression tasks and on-line experts
Before this work, similar problems were studied in the dif-
ferent and more restricted sense of regression. In regres-
sion, the problem is to learn a map from, say Rn to R,
with low distortion under a metric used as the loss func-
tion. There is a spade of important works in this topic, see
e.g. the seminal paper (Alon et al., 1997). Note however
that the notion of geometry we care about in this work (in-
herent in all technical developments of ours) becomes rel-
evant in high-dimensional combinatorial spaces; cf. Chap-
ter 13 of (Matoušek, 2002) for such metric embeddings.
Hence, given the structure of spaces and their dimensions,
our developments relate to the notion of structured predic-
tion that we discuss below. Finally, note that such regres-
sion questions have also been studied in the on-line set-
ting where one gets expert advice; cf. Chapter 11 of (Cesa-
Bianchi & Lugosi, 2006) for the most comprehensive to
date and in-depth treatment of the literature. This expert
advice is on-line, which means that it is not the same as
the experts we consider. Our learners have off-line access
to the experts. This means that it is (potentially) easier to
learn and at the same time lower bounds in our setting are
stronger.
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Structure in Multi-Class Classification In multi-class
classification, very little can be analytically done when
there is no structure. Generic existing techniques reduce
the problem to binary classification, as in e.g. (Allwein
et al., 2001; Rifkin & Klautau, 2004), and are very inef-
ficient. The typical approach in previous works was to
exploit structure in X or in Y alone. Formalizing the
notion of “structure” has received attention in a number
of works as in e.g. (Chapelle et al., 2009; Taskar et al.,
2004; 2009; Tsochantaridis et al., 2005) within the impor-
tant framework of structured prediction (Schölkopf et al.,
2007). There, structure corresponds to the combinatorial
structure of the outputs, identified by trees, lattices, and
other forms of combinatorial hierarchical schemes; with
the goal to find an embedding X → Y that has low loss on
the structured/combinatorial Y . Contrast this to learning a
low-distortion embedding; i.e. when both spaces are met-
ric spaces and related through a map r, where dX (x, x′)
is roughly the same (undistorted) as dY(r(x), r(x′)). To
make the difference more apparent, think of a structured
prediction problem where very similar instances in X have
very different labels in Y; i.e. no low risk classifier for this
problem can be a low-distortion embedding. For the same
reason, metric labelling (Kleinberg & Tardos, 2002) is dif-
ferent than learning low-distortion embeddings. In other
works, “structure” refers to e.g. sparsity properties of the
input instances (Hsu et al., 2009) where the number of fea-
tures/dimensions can be orders of magnitude bigger than in
our setting. Finally, there is an important line of work in
learning the structure itself. For example,“metric learning”
(not to be confused with our work) aims to learn the met-
ric underlying the instance space (Davis & Dhillon, 2008;
Jain et al., 2012; Lu et al., 2009). Our framework is very
different than all of the above. We consider a new type of
structure not merely on X or Y , but structure on their met-
ric relation under a concept r : X → Y connecting them.

Our Contribution Our technical contribution regards
two types of theorems – each stronger than the other in
different aspects. Here are details necessary to read our
theorems.

We give the learner (learning method) query access to (i)
the concept r (this gives us the training set) for which we
are constructing the classifier, and (ii) two experts A0,A1

(below we explain why the general case reduces to two ex-
perts). Query access to a function f : X → Y means that
by querying x we only get a label y = f(x) and nothing
about an implementation of f . Can the loss of the learner
be reduced if, instead of query access, it knows the entire
description of A0,A1? The full description of A0,A1 that
provide a random labeling is useless (A0,A1 are not related
to r). A more interesting example would have been one
where for every instance x either A0(x) or A1(x) is equal

to the correct label r(x), but still knowing everything about
A0,A1 cannot help classification. It turns out that such ex-
amples exist, though they are non-trivial to construct, and
our proofs provide such details.

In our framework, both the learner and the classifier make
queries to experts A0,A1. The learner queries A0,A1 when
specifying the classifier, and the classifier is given access
to A0,A1 when making decisions given an input instance.
We distinguish between two types of learners and classi-
fiers: (i) learners/classifiers that know the full description
of A0,A1 and (ii) learners/classifiers that make only (poly-
nomially many) queries to A0,A1. Note that the latter type,
with only partial knowledge of A0,A1, cannot be stronger
than the first one.

Our first theorem is a worst-case impossibility result, which
holds true even if the full description of the experts is given
to the learner. The second theorem holds for every concept
in the class, when the learner only has query access to the
experts. In what follows, a selector is a classifier that is
allowed to make polynomially many queries to two experts,
and an optimal selector always outputs the best of the labels
provided by the two experts.

Theorem 1 (informally stated). There is a concept class
C, and two experts A0,A1 : X → Y , for edit spaces
X = Y = ({0, 1}2n, ed), such that every learner which
(i) knows the full description of A0,A1 and (ii) uses expert
advice and polynomially many queries to the target, con-
structs a selector that has significantly higher loss com-
pared to the optimal selector, for some (worst-case) tar-
get concept r ∈ C. Furthermore, A0, A1, and r are low-
distortion embeddings.

Theorem 2 (informally stated). There is a concept class
C with the same metric properties as in Theorem 1, such
that for every target concept r, there exists a set A of low-
distortion experts with the following property. For every
selector C constructed by a learner which makes polynomi-
ally many queries both to (i) two experts and to (ii) the tar-
get concept r, there exist experts A0,A1 ∈ A under which
C has unbounded expected loss, while the optimal selector
has 0 error.

The Number of Experts and the Restricted Input
Length The above lower bounds would be stronger if we
had more than two experts. However, these bounds are not
weaker since we can also assume the existence of any fixed
number of “dummy” experts whose advice is useless for
classification. Note that we consider the case of a fixed
input length n, whereas in natural language processing ap-
plications n varies. We note that a fixed n only makes the
lower bound stronger – i.e. we show that algorithms fail
even for a fixed n .

These two theorems are impossibility results. However, a
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number of positive technical developments were discov-
ered in the process, and they are of independent interest
to theory and applications in machine learning. These in-
clude some probabilistic, local finite metric embedding of
the edit space to `p, which can be of independent interest
to natural language processing.

At a conceptual level, we initiate the study of low-
distortion metric embeddings between “combinatorial”
metric spaces. Our notion of embedding is not the same
as the informal use of the term in e.g. natural language
processing (note that for us, two metric spaces are neces-
sary just to be able to define an embedding). Let us fur-
ther remark that the embeddings of the edit distance into
`1 or `2, as one may consider for simplification, face in-
herent limitations (universal and regardless of dimension
of the host space) of non-embeddability (Krauthgamer &
Rabani, 2009), whereas the best algorithmic embeddings
(Ostrovsky & Rabani, 2007) are even worse. Thus, prov-
ing an impossibility result directly on combinatorial metric
spaces is much stronger because there is no “information
loss” incurred by first moving (extracting features) to Rn.

2. Preliminaries and notation
Algorithms and Resources In this work, lower bounds
are information theoretic (stronger than computational
lower bounds). Instead of time steps, we measure the num-
ber of queries made to various oracles, e.g. experts and
target concepts.

Finite Metric Embeddings We consider spaces X ,Y
which are sets of size N (exponential in n) where the de-
scription of each element is of length n. A metric space is
denoted by (X , d), for a spaceX and a distance function d :
X × X → R. The distance function is non-negative, sym-
metric, and obeys the triangular inequality, i.e. d(x, y) ≥ 0,
d(x, y) = d(y, x) and d(x, y) ≤ d(x, z) + d(z, y), for ev-
ery x, y, z ∈ X . For x ∈ X , we denote by Bx(ρ)

def
= {y ∈

X | d(x, y) ≤ ρ} the closed ball of radius ρ centered at x.
The edit distance ed(x, y) makes the set of strings {0, 1}∗
(or a bigger vocabulary V ) a metric space and is defined
for x, y ∈ {0, 1}∗ as the minimum number of insertions,
deletions, and symbol substitutions to edit x into y. The
other important metric to this paper is `1 defined through
the norm ‖ · ‖1, where ‖x − y‖1

def
=
∑n
i=1 |xi − yi|, for

every x, y ∈ Rn. We informally refer to edit and to Ham-
ming distance (i.e. `1 restricted on the cube {0, 1}n) as
combinatorial metrics, to distinguish from other real met-
ric spaces that typically appear in learning literature. Note
that edit distance is always a lower bound for Hamming
distance, but not the other way around since there are sim-
ple example strings with large Hamming but very small edit
distance.

For two metric spaces (X , dX ) and (Y, dY), an embedding
ofX into Y refers to an injective mapping φ : X → Y . The
Lipschitz constant (expansion) of φ is defined as ‖φ‖Lip

def
=

supa 6=b
dY(φ(a),φ(b))

dX (a,b) , and the distortion of φ is defined as

dist(φ)
def
= ‖φ‖Lip×‖φ−1‖Lip. For families of metric spaces

{(Xn,Yn)}n≥1 with size parameterized by n and a family
of embeddings {φn : Xn → Yn}n≥1, we say that φ is low-
distortion if dist(φ) is constant with respect to n, and φ
is bi-Lipschitz if both ‖φ‖Lip, ‖φ−1‖Lip are bounded by a
constant that we call bi-Lipschitz constant.

Our Learning Setting We denote by X the set of possi-
ble instances, by Y the set of possible labels (or classes),
and by r the true concept mapping X to Y , where r : X →
Y is also known as the target concept. A typical goal in
learning is to choose the classifier (or hypothesis), which is
an embedding X → Y that has small generalization error
(see below) compared to the target concept r ∈ C, where C
denotes the concept class that captures some kind of prior
knowledge about the problem. In PAC learning (Valiant,
1984), a learner is an algorithm guaranteed to work for ev-
ery concept r ∈ C and for every distribution D over X ;
the learner is given independent and identically distributed
(iid) poly(n) many observations (s, r(s)) sampled from D
and constructs the classifier h. In a stronger model (An-
gluin, 1988) the learner is allowed to make queries to r,
i.e. the learner can get correct labels under r for adaptively
chosen instances. We aim to construct h with small gen-
eralization error R which, for metric spaces, is defined
through a loss function L(s)

def
= d(r(s), h(s)), for every

s ∈ X and R(h)
def
= Es∼D[L(s)]. In our setting, we con-

sider bi-Lipschitz concepts and classifiers. For every target
concept r, we are given two experts A0 and A1, which are
also bi-Lipschitz classifiers. Thus, instead of a learner that
constructs a classifier only from observations/queries to r,
we consider a learner with expert advice and instead of a
classifier a selector defined below.

Learner with Expert Advice & Selector Given a target
concept r and two experts A0,A1, we generalize the notion
of learner by utilizing A0,A1 in addition to the observations
(s, r(s)) the learner gets. We distinguish between two types
of learners. (i) A learner with expert advice is given the full
description (all instance/label pairs) of the two experts, then
makes polynomially many q(n) = poly(n) queries to the
target concept r, and finally outputs the description of a se-
lector. The selector is a classifier that on every given input
instance outputs the label1 either of A0 or A1. A selector is
called optimal if on every input instance it always chooses

1In fact, our theorems, i.e. Theorem 1, 2 and 4, are much
stronger since we allow the selector not just to select the best but
also to arbitrarily combine the results of the labelings of A0,A1.
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the better result between A0 and A1. Note that if we merely
know the full description of experts this does not reveal any
information about their quality on the unknown target con-
cept. (ii) A learner with query access to expert advice is a
restriction of the previous learner where instead of know-
ing the full description of A0,A1, the learner is given query
access making at most q(n) queries to A0,A1.
Definition 3 (learner with expert advice). Let r : X → Y
be the target concept and D be a distribution on X . A
learner with expert advice (or learner for short) is a com-
putationally unbounded process which is given (i) q-many
observations in the form (s, r(s)) where s is sampled by
the learner, and (ii) the full description of two experts
A0,A1 : X → Y , which usually depend on r and D. The
learner then constructs a classifier C. We call C a selector
from q-queries and write CA0,A1 when emphasizing its de-
pendence on A0,A1. A learner with query access to expert
advice is given poly(n) queries to experts A0,A1, instead
of the full description.

3. Limits in learning low-distortion
embeddings

Our main and most general results are about edit spaces,
which is also motivated by applications to natural language
processing.2 Here, we present two impossibility results.
The first theorem is a strong lower bound that holds true
for learners with full knowledge of the two experts. In this
case, we show that there is always at least one concept from
the concept class C that cannot be learned (formally, this is
all we need for a PAC lower bound – suffices to exhibit one
concept and one distribution). Our second theorem shows
the same thing for every concept in C, but for learners with
query access to expert advice.
Theorem 1. For every positive integer ρ ≤ n and every
function q = q(n), there is a concept class C, two experts
A0,A1 : X → Y (same experts for every concept) where
X = Y = ({0, 1}2n, ed), such that the following holds true
for D = U2n. For every learner with expert advice, there
exists a target concept r ∈ C, such that for the constructed
selector C from q-queries we have

R(C) >

(
1

2
− (4n+ 4ρ)

ρ
q(n)

2n+1

)
Ω (
√
ρ)

while the optimal selector3 has generalization error at most
(4n+4ρ)ρq(n)

2n · ρ. Furthermore, for the given A0,A1 and
for every r ∈ C the bi-Lipschitz constant is less than 5.
In particular, for ρ ≤

⌊
n−log q(n)

2 logn − 1
⌋

, R(C) ≥ Ω
(√
ρ
)

2See the full version for details about NLP. In the full version
we also state and show the lower bound for the Hamming cubes,
which is a stronger result relying on different techniques.

3The bound for the optimal selector involves q(n) since the
experts A0,A1 depend on the number of queries as in Definition 3.

whereas the generalization error is bounded by 2−Ω(n).

Theorem 2. For every ρ≥ 0, q(n) ≥ 0, and target con-
cept r with distortion ≤ c, there exists a set A of bi-
Lipschitz experts defined over X → Y , where X = Y =
({0, 1}2n, ed), such that for input distribution D = U2n

the following holds true. For every learner that makes q(n)
queries to r and q(n) queries to the two experts, there are
two experts A0,A1 ∈ A with distortion ≤ 5c, from which
the optimal selector has zero error, whereas the learner
constructed C has error

R(C) ≥
(

1

2
− (4n+ 4ρ)ρq(n)

2n+1

)
Ω

(√
ρ

c

)
In particular, for ρ ≤

⌊
n−log q(n)

3+logn − 1
⌋

,R(C) ≥ Ω
(√

ρ

c

)
.

In all of our theorems the input length parameter n is lin-
early related to the length of each element in X ,Y . Theo-
rem 1 and 2 are stated as tradeoffs, while it remains open
for exactly zero generalization error in Theorem 1. For any
polynomial in n number of queries, i.e. q(n) = poly(n),
the generalization errorR ≥ Ω

(
n0.499

)
for the constructed

selector; i.e. learning in this setting is impossible.

3.1. The Warm-Up Setting

We present a warm-up example that illustrates the difficulty
of learning an embedding between “combinatorial” metric
spaces. This oversimplified artificial setting puts in context
the involved analyses of Hamming and edit spaces. We
lower bound the generalization error for learners with ex-
pert advice by showing the existence of a bad concept in
the concept class. To further reduce clutter, we only deal
with the uniform distribution over domain X .

Proof idea: We consider concepts r ∈ C and experts A0,A1

that are low-distortion embeddings X → Y . Each em-
bedding is completely specified through a permutation of
points as follows. We think of the elements of the domain
X (resp. the range Y) of size 2n lying on the N2 ×N lat-
eral surface of a cylinder, where N is exponentially large
in the length parameter n and the N2 ×N grid on this sur-
face defines distance (the distance of two points on the grid
is their distance in the space). Then, low-distortion embed-
dings r,A0,A1 are all specified by the combinations of sub-
permutations such that for every latitude of the cylinder of
X , all the points are injectively mapped to the same latitude
on the cylinder of Y . Moreover, each sub-permutation pre-
serves relative order of involved points and hence acts as
a rotation specified by an offset, where the offsets for ev-
ery two consecutive latitudes differ by at most one. Thus,
we realize every low-distortion embedding as a deforma-
tion of the cylinder. To simplify the setting, we equally
partition the cylinder into N parts, where each part is a
small cylinder (with an N ×N grid) and we only consider
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two deformations on it – “identity” with all zero offsets and
“rotating” with increasing offsets (Figure 1.A). By speci-
fying the alternative choices on every small cylinder, we
define experts A0,A1 and concepts in C (Figure 1.B). The
learner with expert advice cannot work because there are
always concepts in C that are far away from the target con-
cept r ∈ C but indistinguishable from r to the learner.
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Figure 1. The warm-up example. (A) Two kinds of deformations
on a small cylinder: “identity” preserves the position of every el-
ement; “rotating” maps each element to a position on the same
latitude by applying rotations on every latitude. (B) The two ex-
perts A0,A1 and the concept ri ∈ C, where ri is a mixture of
A0,A1 specified by its subscript i ∈ {0, 1}N .

Theorem 4. There exists a concept class C and two experts
A0,A1 : X → Y (same for every concept in the class),
where |X | = |Y| = 2n, such that when input follows the
uniform distribution D = Un the following holds true. For
every learner that constructs C from q-queries, there exists
r ∈ C such that

R(C) ≥ (1− q

2n/3
) max {R(A0),R(A1)}

Furthermore, the optimal selector makes zero error and all
concepts in C and A0,A1 are embeddings from X to Y with
bi-Lipschitz constant ≤ 2.

Thus, for q(n) = poly(n), every selector has worst-case
generalization error asymptotical to that of the worst of the
two experts, although an optimal selection between these
two experts leads to zero error.

Proof. We first define the concept class C and the experts
A0,A1 with length parameter n, and then analyze the gener-
alization error of the selector. The bi-Lipschitz conditions
follows immediately.

Construction (the warm-up example) The two experts
A0,A1 and concepts in C are all defined over cylindric met-
ric spaces as follows.

Definition 5. The cylindric metric space is the space
[N2]× [N ] equipped with the following distance function

d
(
(x, y), (x′, y′)

)
= |x− x′|+ |(y − y′) mod N |

for all (x, y), (x′, y′) ∈ [N2] × [N ] in the space, where
the modular operation (y − y′) mod N takes values from{
z ∈ Z

∣∣−N/2 < z ≤ N/2
}

. Thus, (x, y) = (x, y′) if
and only if y ≡ y′ mod N .

Let instances and labels be drawn from the above cylindric
spaces, i.e. X = Y = [N2] × [N ] where N = 2n/3 and
hence |X | = |Y| = 2n. We consider experts A0,A1 defined
as follows:

A0(x, y)
def
= (x, y), A1(x, y)

def
=
(
x, (y + x) mod N

)
Let the concept class be C

def
= {ri

∣∣ i ∈ {0, 1}N , ‖i‖1 =
N/2}, where each concept ri : X → Y indexed by i =
(i1, i2, · · · , iN ) is defined as

ri(x, y)
def
=
(
x, (y + x× idx/Ne) mod N

)
(1)

The intuition is that we partition the cylindric space into
N small cylinders for dx/Ne = 1, 2, . . . , N respectively,
where each small cylinder has size N × N . Formally, for
every j ∈ [N ] and (j − 1)N + 1 ≤ x ≤ jN , it holds that
ri(x, y) = Aij (x, y). Recalling that the index i satisfies
‖i‖1 = N/2, we concludeR(A0) = R(A1) = N

8 for every
target concept ri ∈ C .

Now, we show the lower bound for an arbitrary selector
constructed by any learner with expert advice that makes q
queries to the target concept ri.

Lower Bound for R(C) We lower bound the general-
ization error of the best selector C constructed from q-
queries. Since the mapping ri on every small cylinder is
specified by a single bit of the subscript i following (1),
the label for every instance is uniquely determined by one
bit in i. Without loss of generality, we may assume that
the labels for the q many queries are fully determined by
the first q bits of i. For the subscript i ∈ {0, 1}N , let
i′ = (i1, i2, · · · , iq, 1 − iq+1, 1 − iq+2, · · · , 1 − iN ) be
the string that flips the last N − q bits of i. Then, we prove
thatR(C) ≥ N−q

8 either for target concept being ri or ri′ .

Rri(C) +Rri′ (C)

=Es∼D
[
d
(
ri(s),C(s)

)]
+ Es∼D

[
d
(
ri′(s),C(s)

)]
≥Es∼D

[
d
(
ri(s), ri′(s)

)]
≥ N − q

N
· N

4
=
N − q

4

Recalling that N = 2n/3 andR(A0) = R(A1) = N
8 ,

R(C) ≥ N − q
8

= (1− q

2n/3
) max {R(A0),R(A1)}
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3.2. What Changes in Hamming and Edit Spaces?

The warm-up example illustrates the lower bound phenom-
ena, though it relies on the nice properties of the artificial
metric structure. In particular, it has dimension two and
a large diameter (i.e. exponential in n), as well as a tai-
lored (almost `1) distance function. However, natural met-
ric spaces lack such properties (the warm-up example was
engineered for the lower bound to work). They may have
much higher dimensions (i.e. linear in n) and lower diam-
eters (i.e. logarithmic in n), and be equipped with more
natural/common distance functions, e.g. `1 or edit distance
ed. Such metric spaces can hardly be visualized and the
low-distortion embedding over these spaces do not have an
immediate decomposition as in the warm-up example.

Important examples of natural metric spaces are high di-
mensional spaces (i.e. {0, 1}n) equipped with Hamming
distance or edit distance. The Hamming space ({0, 1}n, `1)
has diameter n, which is logarithmic to its size 2n. For
x ∈ {0, 1}n and radius ρ > 0, the size of Bx(ρ) is ex-
ponential in ρ, compared to what was just polynomial (i.e.
O
(
ρ2
)
) in the warm-up example. In this sense, the Ham-

ming space has much stronger geometric relation among
neighborhoods than the warm-up example, and hence the
low-distortion property provides more information. Note
that edit distance is always upper bounded by Hamming
distance, the geometric relation is strengthened in the edit
space ({0, 1}n, ed).

3.3. Overview of the Edit Space Impossibility

We present a high-level description for the worst-case im-
possibility (Theorem 1). The full proof and the proof for
Hamming spaces is given in the full version.

The intuition of Theorem 1 is that each observation
(s, r(s)) only provides information about instances that are
close to s in X (or respectively labels close to r(s) in Y)
following the low-distortion property of r, whereas the dis-
tortion grows large enough for far away instances such that
labels cannot be deduced. We think of each observation
under the low-distortion embedding as a “beacon”, which
reveals information for instances within a fixed radius ρ.
Therefore, the number of points that are influenced by those
“beacons” upper bounds the accuracy of a selector from q-
queries.

Proof sketch of Theorem 1. For the full argument (includ-
ing a proof of the bi-Lipschitz condition) see the full ver-
sion. Here, we first present the constructions of experts
A0,A1 and the concept class C, and then lower boundR(C)
by analyzing the influence of “beacons”.

Construction 6. For x ∈ {0, 1}n, y ∈ {0, 1}n, let the

experts be as follows:

A0(x, y)
def
= (x, y), A1(x, y)

def
=
(
x, y +m(ρ)

)
(2)

where the computation of y+m(ρ) is bitwise over {0, 1}n,
and we define the masking function m : {0, 1, · · · , n} →
{0, 1}n that for every t ∈ {0, 1, . . . , n}

m(t)
def
= (0, · · · , 0︸ ︷︷ ︸

n−t

, 1, 1, · · · , 1︸ ︷︷ ︸
t

) (3)

Let C
def
= {r0}

⋃{
rQ
∣∣Q ⊆ {0, 1}2n, |Q| ≤ q(n)

}
, where

r0 = A0, and for every Q the concept rQ is

defined as rQ(x, y)
def
=

(
x, y + m

(
wQ(x)

))
, for

wQ(x)
def
= min

{
minq′i∈Q′

{
ed
(
x, q′i

)}
, ρ
}

and Q′
def
={

q′i
∣∣∃qi ∈ Q, qi = (q′i, q

′′
i )
}

.

Now, we discuss the edit distance between y and y+m(ρ).
By definition, y + m(ρ) refers to the string obtained by
flipping the last ρ bits of y, whose effect on resulted edit
distance is lower bounded by Lemma 7. This lemma is
proved in the full version by calculating the probability that
there are at least (ρ+

√
ρ)/2 many 0’s in the last ρ uniform

random bits.

Lemma 7. For every ρ ≤ n and m as in (3),

E
y∼Un

[
ed
(
y, y +m(ρ)

)]
≥ Ω (

√
ρ)

Lemma 7 lower bounds the expected distance between
A0(s) and A1(s) which is also (linearly) related to the gen-
eralization error of a selector that randomly selects between
A0 and A1. However, no better treatment exists for an in-
stance that is far from all observations, since those far away
“beacons” reveals no useful information about it. Thus, to
lower bound R(C), we first upper bound the amount of in-
formation that can be deduced from all the q(n) observa-
tions.

Upper Bound for the Influence of “Beacons”. Let Q
be the set of all queries instances, i.e. the “beacons”. By
definition, rQ(x, y) = r0(x, y) only when x ∈ Q′, and the
distance of r0 and rQ gradually grows to ρ as the instance
moves away from “beacons”. Since each beacon influences
a ball of radius ρ which has size at most (4(n+ ρ))

ρ, the
influence of all beacons is upper bounded by the union of
balls. ∣∣∣∣ ⋃

q′i∈Q′

Bq′i(ρ)

∣∣∣∣ < (4n+ 4ρ)
ρ
q(n) (4)
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Lower Bound forR(C) By inequality (4) and Lemma 7,

ed(r0, rQ) = E
(x,y)∼U2n

[
ed
(
r0(x, y), rQ(x, y)

)]
=

1

22n

∑
(x,y)∈{0,1}2n

ed
(

(x, y),
(
x, y +m(wQ(x))

))
≥ 1

2n

∑
x∈{0,1}n

wQ(x)=ρ

1

2n

∑
y∈{0,1}n

ed
(

(x, y),
(
x, y +m(wQ(x))

))

>
2n − (4n+ 4ρ)

ρ
q(n)

2n
E

y∼Un

[
ed
(
y, y +m(ρ)

)]
≥
(

1− (4n+ 4ρ)
ρ
q(n)

2n

)
Ω (
√
ρ)

Since C cannot distinguish r0 from rQ, there exists r ∈ C
(in particular, r ∈ {r0, rQ}) such that

R(C) ≥ ed(r0, rQ)/2 >

(
1

2
− (4n+ 4ρ)

ρ
q(n)

2n+1

)
Ω (
√
ρ)

See the full version for the proof of bi-Lipschitz condition.

4. Conclusions and Future Work
This work initiates the study of learning low-distortion
maps between natural combinatorial metric spaces. If there
is no distortion (isometry) then learning becomes very ef-
ficient. What we show here is that in general, tiny small
distortion turns the problem not learnable. In fact, this is
shown in a much stronger sense, where we are given (even
off-line) access to experts.4

Note that our work just introduces the setting, while the
main problem is still how to get positive results, i.e. which
additional natural properties would give rise to algorithms.
Along this line, we can think of two main research direc-
tions in this framework, which are not tackled by our work.

The first direction is to investigate natural geometric/metric
conditions (in addition to low-distortion) that suffice to de-
vise learning methods.

The second direction builds on top of the first one. We
would like to know whether one can solve the on-line learn-
ing version of our problem. Again, further restrictions
should be identified. The study of the on-line version is
a potentially very fruitful direction.

4To prove our theorems we develop new technical tools. Some
of them could be of independent interest to NLP (e.g. the random-
ized algorithm that computes the local embedding, implicit in the
proof of Lemma 10 in the full version).
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