
Supplement to: Loss factorization, weakly supervised
learning and label noise robustness

A Proofs

A.1 Proof of Lemma 5
We need to show the double implication that defines sufficiency for y.
⇒) By Factorization Theorem (3), RS,`(h)−RS′,`(h) is label independent only if the odd part cancels out.
⇐) If µS = µ′S then RS,`(h) − RS′,`(h) is independent of the label, because the label only appears in the
mean operator due to Factorization Theorem (3).

A.2 Proof of Lemma 6
Consider the class of LOLs satisfying `(x) − `(−x) = 2ax. For any element of the class, define `e(x) =
`(x)− ax, which is even. In fact we have

`e(−x) = `(−x) + ax = `(x)− 2ax+ ax = `(x)− ax = `e(x) .

A.3 Proof of Theorem 7
We start by proving two helper Lemmas. The next one provides a bound to the Rademacher complexity
computed on the sample S2x

.
= {(xi, σ), i ∈ [m],∀σ ∈ Y}.

Lemma 1 Suppose m even. Suppose X = {x : ‖x‖2 ≤ X} be the observations space, and H = {θ : ‖θ‖2 ≤
B} be the space of linear hypotheses. Let Y2m .

= ×j∈[2m]Y. Then the empirical Rademacher complexity

R(H ◦ S2x) .
= Eσ∼Y2m

 sup
θ∈H

1

2m

∑
i∈[2m]

σi〈θ,xi〉


of H on S2x satisfies:

R(H ◦ S2x) ≤ v · BX√
2m

, (1)

with v .
= 1

2 + 1
2

√
1
2 − 1

m .
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Proof Suppose without loss of generality that xi = xm+i. The proof relies on the observation that ∀σ ∈ Y2m,

arg sup
θ∈H
{ES[σ(x)〈θ,x〉]} =

1

2m
arg sup

θ∈H

{∑
i

σi〈θ,xi〉
}

=
supH ‖θ‖2
‖∑i σixi‖2

∑
i

σixi . (2)

So,

R(H ◦ S2x) = EY2m sup
h∈H
{ES2x

[σ(x)h(x)]}

=
supH ‖θ‖2

2m
· EY2m


(∑2m

i=1 σixi

)> (∑2m
i=1 σixi

)
‖∑2m

i=1 σixi‖2


= sup

H

‖θ‖2 · EY2m

[
1

2m
·
∥∥∥∥∥

2m∑
i=1

σixi

∥∥∥∥∥
2

]
. (3)

Now, remark that whenever σi = −σm+i, xi disappears in the sum, and therefore the max norm for the sum
may decrease as well. This suggests to split the 22m assignations into 2m groups of size 2m, ranging over the
possible number of observations taken into account in the sum. They can be factored by a weighted sum of
contributions of each subset of indices I ⊆ [m] ranging over the non-duplicated observations:

EY2m

[
1

m
·
∥∥∥∥∥

2m∑
i=1

σixi

∥∥∥∥∥
2

]
=

1

22m

∑
I⊆[m]

2m−|I|

2m
·
∑
σ∈Y|I|

√
2

∥∥∥∥∥∑
i∈I

σixi

∥∥∥∥∥
2

. (4)

=

√
2

2m

∑
I⊆[m]

1

2m
· 1

2|I|
·
∑
σ∈Y|I|

∥∥∥∥∥∑
i∈I

σixi

∥∥∥∥∥
2︸ ︷︷ ︸

u|I|

. (5)
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The
√
2 factor appears because of the fact that we now consider only the observations of S. Now, for any fixed

I, we renumber its observations in [|I|] for simplicity, and observe that, since
√
1 + x ≤ 1 + x/2,

u|I| =
1

2|I|

∑
σ∈Y|I|

√∑
i∈I

‖xi‖22 +
∑
i1 6=i2

σi1σi2x
>
i1
xi2 (6)

=

√∑
i∈I ‖xi‖22
2|I|

∑
σ∈Y|I|

√
1 +

∑
i1 6=i2 σi1σi2x

>
i1
xi2∑

i∈I ‖xi‖22
(7)

≤

√∑
i∈I ‖xi‖22
2|I|

∑
σ∈Y|I|

(
1 +

∑
i1 6=i2 σi1σi2x

>
i1
xi2

2
∑
i∈I ‖xi‖22

)
(8)

=

√∑
i∈I

‖xi‖22 +
1

2|I| · 2∑i∈I ‖xi‖22
·
∑
σ∈Y|I|

∑
i1 6=i2

σi1σi2x
>
i1xi2 (9)

=

√∑
i∈I

‖xi‖22 +
1

2|I| · 2∑i∈I ‖xi‖22
·
∑
i1 6=i2

x>i1xi2 ·

 ∑
σ∈Y|I|

σi1σi2


︸ ︷︷ ︸

=0

(10)

=

√∑
i∈I

‖xi‖22 (11)

≤
√
|I| ·X . (12)

Plugging this in eq. (5) yields

1

X
· EY2m

[
1

m
·
∥∥∥∥∥

2m∑
i=1

σixi

∥∥∥∥∥
2

]
≤
√
2

2m

m∑
k=0

√
k

2m

(
m

k

)
. (13)

Since m is even:

EY2m

[
1

2m
·
∥∥∥∥∥

2m∑
i=1

σixi

∥∥∥∥∥
2

]
≤
√
2

2m

(m/2)−1∑
k=0

√
k

2m

(
m

k

)
+

√
2

2m

m∑
k=m/2

√
k

2m

(
m

k

)
. (14)

Notice that the left one trivially satisfies
√
2

2m

(m/2)−1∑
k=0

√
k

2m

(
m

k

)
≤
√
2

2m

(m/2)−1∑
k=0

1

2m
·
√
m− 2

2

(
m

k

)

=
1

2
·
√

1

m
− 2

m2
· 1

2m

(m/2)−1∑
k=0

(
m

k

)

≤ 1

4
·
√

1

m
− 2

m2
(15)

Also, the right one satisfies:
√
2

2m

m∑
k=m/2

√
k

2m

(
m

k

)
≤
√
2

2m

m∑
k=m/2

√
m

2m

(
m

k

)

=
1√
2m
· 1

2m

m∑
k=m/2

(
m

k

)
=

1

2
· 1√

2m
. (16)
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We get

1

X
· EY2m

[
1

m
·
∥∥∥∥∥

2m∑
i=1

σixi

∥∥∥∥∥
2

]
≤ 1

4
·
√

1

m
− 2

m2
+

1

2
·
√

1

2m
(17)

=
1√
2m
·
(
1

2
+

1

2

√
1

2
− 1

m

)
. (18)

And finally:

R(H ◦ S2x) ≤ v · BX√
2m

, (19)

with

v
.
=

1

2
+

1

2

√
1

2
− 1

m
, (20)

as claimed.

The second Lemma is a straightforward application of McDiarmid ’s inequality [McDiarmid, 1998] to evaluate
the convergence of the empirical mean operator to its population counterpart.

Lemma 2 Suppose Rd ⊇ X = {x : ‖x‖2 ≤ X < ∞} be the observations space. Then for any δ > 0 with
probability at least 1− δ

‖µD − µS‖2 ≤ X ·
√
d

m
log

(
d

δ

)
.

Proof Let S and S′ be two learning samples that differ for only one example (xi, yi) 6= (xi′ , yi′). Let first
consider the one-dimensional case. We refer to the k-dimensional component of µ with µk. For any S, S′ and
any k ∈ [d] it holds ∣∣µkS − µkS′ ∣∣ = 1

m

∣∣xki yi − xki′yi′ ∣∣
≤ X

m
|yi − yi′ |

≤ 2X

m
.

This satisfies the bounded difference condition of McDiarmid’s inequality, which let us write for any k ∈ [d]
and any ε > 0 that

P
(∣∣µkD − µkS∣∣ ≥ ε) ≤ exp

(
−mε

2

2X2

)
and the multi-dimensional case, by union bound

P
(
∃k ∈ [d] :

∣∣µkD − µkS∣∣ ≥ ε) ≤ d exp(−mε22X2

)
.

Then by negation

P
(
∀k ∈ [d] :

∣∣µkD − µkS∣∣ ≤ ε) ≥ 1− d exp
(
−mε

2

2X2

)
,
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which implies that for any δ > 0 with probability 1− δ

X

√
2

m
log

(
d

δ

)
≥ ‖µD − µS‖∞ ≥ d−1/2 ‖µD − µS‖2 .

This concludes the proof.

We now restate and prove Theorem 7.

Theorem 7 Assume ` is a-LOL and L-Lipschitz. Suppose Rd ⊇ X = {x : ‖x‖2 ≤ X < ∞} be the
observations space, and H = {θ : ‖θ‖2 ≤ B < ∞} be the space of linear hypotheses. Let c(X,B)

.
=

maxy∈Y `(yXB). Let θ̂ = argminθ∈HRS,`(θ). Then for any δ > 0, with probability at least 1− δ

RD,`(θ̂)−RD,`(θ
?) ≤

(√
2 + 1

4

)
· XBL√

m
+
c(X,B)L

2
·
√

1

m
log

(
1

δ

)
+ 2|a|B · ‖µD − µS‖2 ,

or more explicitly

RD,`(θ̂)−RD,`(θ
?) ≤

(√
2 + 1

4

)
· XBL√

m
+
c(X,B)L

2

√
1

m
log

(
2

δ

)
+ 2|a|XB

√
d

m
log

(
2d

δ

)
.

Proof Let θ? = argminθ∈HRD,`(θ). We have

RD,`(θ̂)−RD,`(θ
?) =

1

2
RD2x,`(θ̂) + a〈θ̂,µD〉 −

1

2
RD2x,`(θ

?)− a〈θ?,µD〉 (21)

=
1

2

(
RD2x,`(θ̂)−RD2x,`(θ

?)
)
+ a〈θ̂ − θ?,µD〉

=
1

2

(
RS2x,`(θ̂)−RS2x,`(θ

?)
)
+ a〈θ̂ − θ?,µD〉

+
1

2

(
RD2x,`(θ̂)−RS2x,`(θ̂)−RD2x,`(θ

?) +RS2x,`(θ
?)
) }

A1 . (22)

Step 21 is obtained by the equality RD,`(θ) = 1
2RD2x,`(θ) + a〈θ,µD〉 for any θ. Now, rename Line 22 as

A1. Applying the same equality with regard to S, we have

RD,`(θ̂)−RD,`(θ
?) ≤ RS,`(θ̂)−RS,`(θ

?)︸ ︷︷ ︸
A2

+ a〈θ̂ − θ?,µD − µS〉︸ ︷︷ ︸
A3

+A1 .

Now, A2 is never more than 0 because θ̂ is the minimizer of RS,`(θ). From the Cauchy-Schwarz inequality
and bounded models it holds true that

A3 ≤ |a|
∥∥∥θ̂ − θ?∥∥∥

2
·
∥∥∥µD − µS

∥∥∥
2
≤ 2|a|B

∥∥∥µD − µS

∥∥∥
2
. (23)

We could treat A1 by calling standard bounds based on Rademacher complexity on a sample with size 2m
[Bartlett and Mendelson, 2002]. Indeed, since the complexity does not depend on labels, its value would be
the same –modulo the change of sample size– for both S and S2x, as they are computed with same loss and
observations. However, the special structure of S2x allows us to obtain a tighter structural complexity term, due
to some cancellation effect. The fact is proven by Lemma 1. In order to exploit it, we first observe that

A1 ≤
1

2

(
RD2x,`(θ̂)−RS2x,`(θ̂)−RD2x,`(θ

?) +RS2x,`(θ
?)
)

≤ sup
θ∈H
|RD2x,`(θ)−RS2x,`(θ)|
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which by standard arguments [Bartlett and Mendelson, 2002] and the application of Lemma 1 gives a bound
with probability at least 1− δ, δ > 0

A1 ≤ 2L · R(H ◦ S2x) + c(X,B)L ·
√

1

4m
log

(
1

δ

)

≤ L ·
√
2 + 1√
2
· BX√

2m
+ c(X,B)L ·

√
1

4m
log

(
1

δ

)

where c(X,B)
.
= maxy∈Y `(yXB) and because 1

2 + 1
2

√
1
2 − 1

m <
(√

2+1√
2

)
, ∀m > 0. We combine the

results and get with probability at least 1− δ, δ > 0 that

RD,`(θ̂)−RD,`(θ
?) ≤

(√
2 + 1

2

)
· XBL√

m
+
c(X,B)L

2
·
√

1

m
log

(
1

δ

)
+ 2|a|B · ‖µD − µS‖2 . (24)

This proves the first part of the statement. For the second one, we apply Lemma 2 that provides the probabilistic
bound for the norm discrepancy of the mean operators. Consider that both statements are true with probability
at least 1− δ/2. We write

P

({
RD,`(θ̂)−RD,`(θ

?) ≤
(√

2 + 1

2

)
· XBL√

m
+
c(X,B)L

2
·
√

1

m
log

(
2

δ

)
+ 2|a|B · ‖µD − µS‖2

}
∧{

‖µD − µS‖2 ≤ X ·
√
d

m
log

(
2d

δ

)})
≥ 1− δ/2− δ/2 = 1− δ ,

and therefore with probability 1− δ

RD,`(θ̂)−RD,`(θ
?) ≤

(√
2 + 1

2

)
· XBL√

m
+
c(X,B)L

2
·
√

1

m
log

(
2

δ

)
+ 2|a|XB ·

√
d

m
log

(
2d

δ

)
.

A.4 Unbiased estimator for the mean operator with asymmetric label noise
Natarajan et al. [2013, Lemma 1] provides an unbiased estimator for a loss `(x) computed on x of the form:

ˆ̀(y〈θ,xi〉) .
=

(1− p−y) · `(〈θ,xi〉) + py · `(−〈θ,xi〉)
1− p− − p+

We apply it for estimating the mean operator instead of, from another perspective, for estimating a linear
(unhinged) loss as in van Rooyen et al. [2015]. We are allowed to do so by the very result of the Factorization
Theorem, since the noise corruption has effect on the linear-odd term of the loss only. The estimator of the
sufficient statistic of a single example yx is

ẑ
.
=

1− p−y + py
1− p− − p+

yx

=
1− (p− − p+)y
1− p− − p+

yx

=
y − (p− − p+)
1− p− − p+

x ,
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and its average, i.e. the mean operator estimator, is

µ̂S
.
= ES

[
y − (p− + p+)

1− p− − p+
x

]
,

such that in expectation over the noisy distribution it holds ED̃[ẑ] = µD. Moreover, the corresponding risk
enjoys the same unbiasedness property. In fact

R̂D̃,`(θ) =
1

2
RD2x,`(θ) + ED̃ [a〈θ, ẑ〉]

=
1

2
RD2x,`(θ) + a〈θ, µ̂D̃〉 (25)

=
1

2
RD2x,`(θ) + a〈θ,µD〉

= RD,`(θ) ,

where we have also used the independency on labels (and therefore of label noise) of RD2x,`.

A.5 Proof of Theorem 8
This Theorem is a version of Theorem 7 applied to the case of asymmetric label noise. Those results differ in
three elements. First, we consider the generalization property of a minimizer θ̂ that is learnt on the corrupted
sample S̃. Second, the minimizer is computed on the basis of the unbiased estimator of µ̂S̃ and not barely µS̃.
Third, as a consequence, Lemma 2 is not valid in this scenario. Therefore, we first prove a version of the bound
for the mean operator norm discrepancy while considering label noise.

Lemma 3 Suppose Rd ⊇ X = {x : ‖x‖2 ≤ X < ∞} be the observations space. Let S̃ is a learning sample
affected by asymmetric label noise with noise rates (p+, p−) ∈ [0, 1/2). Then for any δ > 0 with probability
at least 1− δ ∥∥µ̂D̃ − µ̂S̃

∥∥
2
≤ X

1− p− − p+
·
√
d

m
log

(
d

δ

)
.

Proof Let S̃ and S̃′ be two learning samples from the corrupted distribution D̃ that differ for only one example
(xi, ỹi) 6= (xi′ , ỹi′). Let first consider the one-dimensional case. We refer to the k-dimensional component of
µ with µk. For any S̃, S̃′ and any k ∈ [d] it holds

∣∣µ̂k
S̃
− µ̂k

S̃′

∣∣ = 1

m

∣∣∣∣( ỹi − (p− − p+)
1− p− − p+

)
xki −

(
ỹi′ − (p− − p+)
1− p− − p+

)
xki′

∣∣∣∣
=

1

m

∣∣∣∣ ỹix
k
i

1− p− − p+
− ỹi′x

k
i′

1− p− − p+

∣∣∣∣
≤ X

m(1− p− − p+)
|ỹi − ỹi′ |

≤ 2X

m(1− p− − p+)
.

This satisfies the bounded difference condition of McDiarmid’s inequality, which let us write for any k ∈ [d]
and any ε > 0 that

P
(∣∣µ̂kD − µ̂kS∣∣ ≥ ε) ≤ exp

(
−(1− p− − p+)2

mε2

2X2

)
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and the multi-dimensional case, by union bound

P
(
∃k ∈ [d] :

∣∣µ̂kD − µ̂kS∣∣ ≥ ε) ≤ d exp(−(1− p− − p+)2mε22X2

)
.

Then by negation

P
(
∀k ∈ [d] :

∣∣µ̂kD − µ̂kS∣∣ ≤ ε) ≥ 1− d exp
(
−(1− p− − p+)2

mε2

2X2

)
,

which implies that for any δ > 0 with probability 1− δ

X

(1− p− − p+)

√
2

m
log

(
d

δ

)
≥ ‖µ̂D − µ̂S‖∞ ≥ d−1/2 ‖µD − µS‖2 .

This concludes the proof.

The proof of Theorem 8 follows the structure of Theorem 7’s and elements of Natarajan et al. [2013, Theorem
3]’s. Let θ̂ = argminθ∈H R̂D̃,`(θ) and θ? = argminθ∈HRD,`(θ). We have

RD,`(θ̂)−RD,`(θ
?) = R̂D̃,`(θ̂)− R̂D̃,`(θ

?) (26)

=
1

2
RD2x,`(θ̂) + a〈θ̂, µ̂D̃〉 −

1

2
RD2x,`(θ

?)− a〈θ?, µ̂D̃〉

=
1

2

(
RD2x,`(θ̂)−RD2x,`(θ

?)
)
+ a〈θ̂ − θ?, µ̂D̃〉

=
1

2

(
RS2x,`(θ̂)−RS2x,`(θ

?)
)
+ a〈θ̂ − θ?, µ̂D̃〉

+
1

2

(
RD2x,`(θ̂)−RS2x,`(θ̂)−RD2x,`(θ

?) +RS2x,`(θ
?)
) }

A1 . (27)

Step 26 is due to unbiasedness shown in Section A.4. Again, rename Line 27 asA1, which this time is bounded
directly by Theorem 7. Next, we proceed as within the proof of Theorem 7 but now exploiting the fact that
1
2RS2x,`(θ) = R̂S̃,`(θ)− a〈θ, µ̂D̃〉

RD,`(θ̂)−RD,`(θ
?) ≤ R̂S̃,`(θ̂)− R̂S̃,`(θ

?)︸ ︷︷ ︸
A2

+ a〈θ̂ − θ?, µ̂D̃ − µ̂S̃〉︸ ︷︷ ︸
A3

+A1 .

Now, A2 is never more than 0 because θ̂ is the minimizer of R̂S̃,`(θ). From the Cauchy-Schwarz inequality
and bounded models it holds true that

A3 ≤ |a|
∥∥∥θ̂ − θ?∥∥∥

2
·
∥∥∥µ̂D̃ − µ̂S

∥∥∥
2
≤ 2|a|B

∥∥∥µ̂D̃ − µ̂S̃

∥∥∥
2
, (28)

for which we can call Lemma 3. Finally, by a union bound we get that for any δ > 0 with probability 1− δ

RD,`(θ̂)−RD,`(θ
?) ≤

(√
2 + 1

2

)
· XBL√

m
+
c(X,B)L

2

√
1

m
log

(
2

δ

)
+

2|a|XB
1− p+ − p−

√
d

m
log

(
2d

δ

)
.

A.6 Proof of Theorem 10
We now restate and prove Theorem 8. The reader might question the bound for the fact that the quantity on
the right-hand side can change by rescaling µD by X , i.e. the max L2 norm of observations in the space X.
Although, such transformation would affect `-risks on the left-hand side as well, balancing the effect. With this
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in mind, we formulate the result without making explicit dependency on X .

Theorem 10 Assume {θ ∈ H : ||θ||2 ≤ B}. Let (θ?, θ̃?) respectively the minimizers of (RD,`(θ), RD̃,`(θ))
in H. Then every a-LOL is ε-ALN. That is

RD̃,`(θ
?)−RD̃,`(θ̃

?) ≤ 4|a|Bmax(p−, p+) · ‖µD‖2 .

Moreover:
1. If ‖µD‖2 = 0 for D then every LOL is ALN for any D̃.
2. Suppose that ` is also once differentiable and γ-strongly convex. Then ‖θ? − θ̃?‖22 ≤ 2ε/γ .

Proof The proof draws ideas from Manwani and Sastry [2013]. Let us first assume the noise to be symmetric,
i.e. p+ = p− = p. For any θ we have

RD̃,`(θ
?)−RD̃,`(θ) = (1− p) (RD,`(θ

?)−RD,`(θ))

+ p (RD,`(θ
?)−RD,`(θ) + 2a〈θ? − θ,µD〉) (29)

≤ (RD,`(θ
?)−RD,`(θ)) + 4|a|Bp‖µD‖2 (30)

≤ 4|a|Bp‖µD‖2 . (31)

We are working with LOLs, which are such that `(x) = `(−x) + 2ax and therefore we can take Step 29. Step
30 follows from Cauchy-Schwartz inequality and bounded models. Step 31 is true because θ? is the minimizer
of RD,`(θ). We have obtained a bound for any θ and so for the supremum with regard to θ. Therefore:

sup
θ∈H

(
RD̃,`(θ

?)−RD̃,`(θ)
)
= RD̃,`(θ

?)−RD̃,`(θ̃) .

To lift the discussion to asymmetric label noise, risks have to be split into losses for negative and positive
examples. Let RD+,` be the risk computed over the distribution of the positive examples D+ and RD−,` the
one of the negatives, and denote the mean operators µD+ ,µD− accordingly. Also, define the probability of
positive and negative labels in D as π± = P(y = ±1). The same manipulations for the symmetric case let us
write

RD̃,`(θ
?)−RD̃,`(θ) = π−

(
RD−,`(θ

?)−RD−,`(θ)
)
+ π+

(
RD+,`(θ

?)−RD+,`(θ)
)

+ 2ap−π−〈θ? − θ,µD−〉+ 2ap+π+〈θ? − θ,µD+〉
≤ (RD,`(θ

?)−RD,`(θ)) + 2a〈θ? − θ, p−µD− + p+µD+〉
≤ 4|a|B · ‖p−π−µD− + p+π+µD+‖2
≤ 4|a|Bmax(p−, p+) · ‖π−µD− + π+µD+‖2
= 4|a|Bmax(p−, p+) · ‖µD‖2 .

Then, we conclude the proof by the same argument for the symmetric case. The first corollary is immediate.
For the second, we first recall the definition of a function f strongly convex.

Definition 4 A differentiable function f(x) is γ-strongly convex if for all x, x′ ∈ Dom(f) we have

f(x)− f(x′) ≥ 〈∇f(x′), x− x′〉+ γ

2
‖x− x′‖22 .

If ` is differentiable once and γ-strongly convex in the θ argument, so it the risk RD̃,` by composition with
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linear functions. Notice also that∇RD̃,`(θ̃
?) = 0 because θ̃? is the minimizer. Therefore:

ε ≥ RD̃,`(θ
?)−RD̃,`(θ̃

?)

≥
〈
∇RD̃,`(θ̃

?),θ? − θ̃?
〉
+
γ

2

∥∥∥θ? − θ̃?∥∥∥2
2

≥ γ

2

∥∥∥θ? − θ̃?∥∥∥2
2
,

which means that ∥∥∥θ? − θ̃?∥∥∥2
2
≤ 2ε

γ
.

A.7 Proof of Lemma 11

CovS[x, y] = ES[yx]− ES[y]ES[x]

= µS −

 1

m

∑
i:yi>0

1− 1

m

∑
i:yi<0

1

ES[x]

= µS − (2π+ − 1)ES[x] .

The second statement follows immediately.

B Factorization of non linear-odd losses
When `o is not linear, we can find upperbounds in the form of affine functions. It suffices to be continuous and
have asymptotes at ±∞.

Lemma 5 Let the loss ` be continuous. Suppose that it has asymptotes at ±∞, i.e. there exist c1, c2 ∈ R and
d1, d2 ∈ R such that

lim
x→+∞

`(x)− c1x− d1 = 0, lim
x→−∞

`(x)− c2x− d2 = 0

then there exists q ∈ R such that `o(x) ≤ c1+c2
2 x+ q .

Proof One can compute the limits at infinity of `o to get

lim
x→+∞

`o(x)−
c1 + c2

2
x =

d1 − d2
2

and
lim

x→−∞
`o(x)−

c1 + c2
2

x =
d2 − d1

2
.

Then q .
= sup{`o(x)− c1+c2

2 x} < +∞ as `o is continuous. Thus `o(x)− c1+c2
2 x ≤ q.

The Lemma covers many cases of practical interest outside the class of LOLs, e.g. hinge, absolute and Huber
losses. Exponential loss is the exception since `o(x) = −sinh(x) cannot be bounded. Consider now hinge loss:

10



`(x) = [1 − x]+ is not differentiable in 1 nor proper [Reid and Williamson, 2010], however it is continuous
with asymptotes at ±∞. Therefore, for any θ its empirical risk is bounded as

RS,hinge(θ) ≤
1

2
RS2x,hinge(θ)−

1

2
〈θ,µ〉+ q ,

since c1 = 0 and c2 = 1. An alternative proof of this result on hinge is provided next, giving the exact value of
q = 1/2. The odd term for hinge loss is

`o(x) =
1

2
([1− x]+ − [1 + x]+)

=
1

4
(−2x+ |1− x| − |1 + x|)

due to an arithmetic trick for the max function: max(a, b) = (a+ b)/2 + |b− a|/2. Then for any x

|1− x| ≤ |x|+ 1,

|1 + x| ≥ |x| − 1

and therefore
`o(x) ≤

1

4
(−2x+ |x|+ 1− |x|+ 1) =

1

2
(1− x) .

We also provide a “if-and-only-if” version of Lemma 5 fully characterizing which family of losses can be
upperbounded by a LOL.

Lemma 6 Let l : R→ R a continuous function. Then there exists c1, d1, d2 ∈ R such that

lim sup
x→+∞

`o(x)− c1x− d1 = 0 (32)

and
lim sup
x→−∞

`o(x)− c1x− d2 = 0 , (33)

if and only if there exists q, q′ ∈ R such that `o(x) ≤ q′x+ q for every x ∈ R.

Proof ⇒) Suppose that such limits exist and they are zero for some c1, d1, d2. Let prove that `o is bounded
from above by a line.

q = sup
x∈R
{`o(x)− c1x} <∞ ,

because `o is continuous. So for every x ∈ R

`o(x) ≤ c1x+ q .

In particular we can take c1 as the angular coefficient of the line.
⇐) Vice versa we proceed by contradiction. Suppose that there exists q, q′ ∈ R such that `o is bounded from
above by `(x) = q′x + q. Suppose in addition that the conditions on the asymptotes (32) and (33) are false.
This implies either the existence of a sequence xn → +∞ such that

lim
n→∞

`o(xn)− q′xn → ±∞ ,

or the existence of another sequence x′n → −∞

lim
n→∞

`o(yn)− q′x′n → ±∞ .

11



On one hand, if at least one of these two limits is +∞ then we already reach a contradiction, because `o(x) is
supposed to be bounded from above by `(x) = q′x+ q. Suppose on the other hand that xn → +∞ is such that

lim
n→+∞

`o(xn)− q′xn → −∞ .

Then defining x′n = −xn we have

lim
n→+∞

`o(wn)−mx′n → +∞ ,

and for the same reason as above we reach a contradiction.

C Factorization of square loss for regression
We have formulated the Factorization Theorem for classification problems. However, a similar property holds
for regression with square loss: f(〈θ,xi〉, y) = (〈θ,xi〉 − yi)2 factors as

ES[(〈θ,x〉 − y)2] = ES

[
〈θ,x〉2

]
+ ES

[
y2
]
− 2〈θ,µ〉 .

Taking the minimizers on both sides we obtain

argmin
θ

ES[f(〈θ,x〉, y)] = argmin
θ

ES

[
〈θ,x〉2

]
− 2〈θ,µ〉

= argmin
θ
‖X>θ‖22 − 2〈θ,µ〉 .

D The role of LOLs in du Plessis et al. [2015]
Let π+

.
= P(y = 1) and let D+ and D− respectively the set of positive and negative examples in D. Consider

first

E(x,·)∼D [`(−〈θ,x〉)] = π+E(x,·)∼D+
[`(−〈θ,x〉)] + (1− π+)E(x,·)∼D− [`(−〈θ,x〉)] (34)

Then, it is also true that

E(x,y)∼D [`(y〈θ,x〉)] = π+E(x,y)∼D+
[`(y〈θ,x〉)] + (1− π+)E(x,y)∼D− [`(y〈θ,x〉)] . (35)

Now, solve Equation 34 for (1−π+)E(x,y)∼D− [`(y〈θ,x〉)] = (1−π+)E(x,y)∼D− [−`(−〈θ,x〉)] and substi-
tute it into Equation 35 so as to obtain:

E(x,y)∼D [`(y〈θ,x〉)] = π+E(x,y)∼D+
[`(y〈θ,x〉)] + E(x,·)∼D [`(−〈θ,x〉)]− π+E(x,·)∼D+

[`(−〈θ,x〉)]
= π+

(
E(x,y)∼D+

[`(+〈θ,x〉)]− E(x,·)∼D+
[`(−〈θ,x〉)]

)
+ E(x,·)∼D [`(−〈θ,x〉)]

=
π+
2
E(x,y)∼D+

[`o(+〈θ,x〉)] + E(x,·)∼D [`(−〈θ,x〉)] , (36)

by our usual definition of `o(x) = 1
2 (`(x)− `(−x)). Recall that one of the goals of the authors is to conserve

the convexity of this new crafted loss function. Then, du Plessis et al. [2015, Theorem 1] proceeds stating that
when `o is convex, it must also be linear. And therefore they must focus on LOLs. The result of du Plessis et al.
[2015, Theorem 1] is immediate from the point of view of our theory: in fact, an odd function can be convex
or concave only if it also linear. The resulting expression based on the fact `(x)− `(−x) = 2ax simplifies into

E(x,y)∼D [`(y〈θ,x〉)] = aπ+E(x,y)∼D+
[y〈θ,x〉] + E(x,·)∼D [`(−〈θ,x〉)]

= aπ+µD+
+ E(x,·)∼D [`(−〈θ,x〉)] .

where µD+
is a mean operator computed on positive examples only. Notice how the second term is instead

label independent, although it is not an even function as in the Factorization Theorem.
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E Additional examples of loss factorization

loss even function `e odd function lo
generic `(x) 1

2 (`(x) + `(−x)) 1
2 (`(x)− `(−x))

01 1{x ≤ 0} 1− 1
2{x 6= 0} − 1

2 sign(x)
exponential e−x cosh(x) − sinh(x)
hinge [1− x]+ 1

2 ([1− x]+ − [1− x]+) 1
2 ([1− x]+ − [1 + x]+)

†

LOL `(x) 1
2 (`(x) + `(−x)) −ax

ρ-loss ρ|x| − ρx+ 1 ρ|x|+ 1 −ρx (ρ ≥ 0)
unhinged 1− x 1 −x
perceptron max(0,−x) x sign(x) −x
2-hinge max(−x, 1/2max(0, 1− x)) †† −x
SPL al + l?(−x)/bl al +

1
2bl

(l?(x) + l?(−x)) −x/(2bl)
logistic log(1 + e−x) 1

2 log(2 + ex + e−x) −x/2
square (1− x)2 1 + x2 −2x
Matsushita

√
1 + x2 − x

√
1 + x2 −x

Table 1: Factorization of losses in light of Theorem 12. †The odd term of hinge loss is upperbounded by
(1− x)/2 in B. †† = max(−x, 1/2max(0, 1− x)) + max(x, 1/2max(0, 1 + x)).
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−2 −1 0 1 2
x

−2

−1

0

1

2

1{x<0}
le(x)

lo(x)

(a) 0-1 loss

−2 −1 0 1 2
x

−2

0

2

4

6 √
1 + x2 − x

le(x)

lo(x)

(b) Matsushita loss

−2 −1 0 1 2
x

−2

0

2

4

6
|x| − x + 1

le(x)

lo(x)

(c) ρ-loss, ρ=1

−2 −1 0 1 2
x

−2

0

2

4

6
Huber

le(x)

lo(x)

(d) Huber loss
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