Supplement to: Loss factorization, weakly supervised learning and label noise robustness

A Proofs

A. 1 Proof of Lemma 5

We need to show the double implication that defines sufficiency for y.
\Rightarrow) By Factorization Theorem (3), $R_{S, \ell}(h)-R_{\delta^{\prime}, \ell}(h)$ is label independent only if the odd part cancels out. $\Leftarrow)$ If $\boldsymbol{\mu}_{\mathcal{S}}=\boldsymbol{\mu}_{\mathcal{S}}^{\prime}$ then $R_{\mathcal{S}, \ell}(h)-R_{\mathcal{S}^{\prime}, \ell}(h)$ is independent of the label, because the label only appears in the mean operator due to Factorization Theorem (3).

A. 2 Proof of Lemma 6

Consider the class of Lols satisfying $\ell(x)-\ell(-x)=2 a x$. For any element of the class, define $\ell_{e}(x)=$ $\ell(x)-a x$, which is even. In fact we have

$$
\ell_{e}(-x)=\ell(-x)+a x=\ell(x)-2 a x+a x=\ell(x)-a x=\ell_{e}(x)
$$

A. 3 Proof of Theorem 7

We start by proving two helper Lemmas. The next one provides a bound to the Rademacher complexity computed on the sample $\mathcal{S}_{2 x} \doteq\left\{\left(\boldsymbol{x}_{i}, \sigma\right), i \in[m], \forall \sigma \in \mathcal{Y}\right\}$.

Lemma 1 Suppose m even. Suppose $\mathcal{X}=\left\{\boldsymbol{x}:\|\boldsymbol{x}\|_{2} \leq X\right\}$ be the observations space, and $\mathcal{H}=\left\{\boldsymbol{\theta}:\|\boldsymbol{\theta}\|_{2} \leq\right.$ $B\}$ be the space of linear hypotheses. Let $y^{2 m} \doteq x_{j \in[2 m]}$ y. Then the empirical Rademacher complexity

$$
\mathcal{R}\left(\mathcal{H} \circ \mathcal{S}_{2 x}\right) \doteq \mathbb{E}_{\sigma \sim y_{2 m}}\left[\sup _{\boldsymbol{\theta} \in \mathcal{H}} \frac{1}{2 m} \sum_{i \in[2 m]} \sigma_{i}\left\langle\boldsymbol{\theta}, \boldsymbol{x}_{i}\right\rangle\right]
$$

of \mathcal{H} on $\mathcal{S}_{2 x}$ satisfies:

$$
\begin{equation*}
\mathcal{R}\left(\mathcal{H} \circ \mathcal{S}_{2 x}\right) \leq v \cdot \frac{B X}{\sqrt{2 m}} \tag{1}
\end{equation*}
$$

with $v \doteq \frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}-\frac{1}{m}}$.

Proof Suppose without loss of generality that $\boldsymbol{x}_{i}=\boldsymbol{x}_{m+i}$. The proof relies on the observation that $\forall \boldsymbol{\sigma} \in y^{2 m}$,

$$
\begin{align*}
\arg \sup _{\boldsymbol{\theta} \in \mathcal{H}}\left\{\mathbb{E}_{\mathcal{S}}[\sigma(\boldsymbol{x})\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle]\right\} & =\frac{1}{2 m} \arg \sup _{\boldsymbol{\theta} \in \mathcal{H}}\left\{\sum_{i} \sigma_{i}\left\langle\boldsymbol{\theta}, \boldsymbol{x}_{i}\right\rangle\right\} \\
& =\frac{\sup _{\mathcal{H}}\|\boldsymbol{\theta}\|_{2}}{\left\|\sum_{i} \sigma_{i} \boldsymbol{x}_{i}\right\|_{2}} \sum_{i} \sigma_{i} \boldsymbol{x}_{i} \tag{2}
\end{align*}
$$

So,

$$
\begin{align*}
\mathcal{R}\left(\mathcal{H} \circ \mathcal{S}_{2 x}\right) & =\mathbb{E}_{y 2 m} \sup _{h \in \mathcal{H}}\left\{\mathbb{E}_{\mathcal{S}_{2 x}}[\sigma(\boldsymbol{x}) h(\boldsymbol{x})]\right\} \\
& =\frac{\sup _{\mathcal{H}}\|\theta\|_{2}}{2 m} \cdot \mathbb{E}_{\boldsymbol{y}_{2 m}}\left[\frac{\left(\sum_{i=1}^{2 m} \sigma_{i} \boldsymbol{x}_{i}\right)^{\top}\left(\sum_{i=1}^{2 m} \sigma_{i} \boldsymbol{x}_{i}\right)}{\left\|\sum_{i=1}^{2 m} \sigma_{i} \boldsymbol{x}_{i}\right\|_{2}}\right] \\
& =\sup _{\mathcal{H}}\|\theta\|_{2} \cdot \mathbb{E}_{\boldsymbol{y} 2 m}\left[\frac{1}{2 m} \cdot\left\|\sum_{i=1}^{2 m} \sigma_{i} \boldsymbol{x}_{i}\right\|_{2}\right] . \tag{3}
\end{align*}
$$

Now, remark that whenever $\sigma_{i}=-\sigma_{m+i}, \boldsymbol{x}_{i}$ disappears in the sum, and therefore the max norm for the sum may decrease as well. This suggests to split the $2^{2 m}$ assignations into 2^{m} groups of size 2^{m}, ranging over the possible number of observations taken into account in the sum. They can be factored by a weighted sum of contributions of each subset of indices $\mathcal{J} \subseteq[m]$ ranging over the non-duplicated observations:

$$
\begin{align*}
\mathbb{E}_{y_{2} 2 m}\left[\frac{1}{m} \cdot\left\|\sum_{i=1}^{2 m} \sigma_{i} \boldsymbol{x}_{i}\right\|_{2}\right] & =\frac{1}{2^{2 m}} \sum_{\mathcal{J} \subseteq[m]} \frac{2^{m-|\mathcal{J}|}}{2 m} \cdot \sum_{\boldsymbol{\sigma} \in \mathfrak{y}|\mathcal{J}|} \sqrt{2}\left\|\sum_{i \in \mathcal{J}} \sigma_{i} \boldsymbol{x}_{i}\right\|_{2} \tag{4}\\
& =\frac{\sqrt{2}}{2^{m}} \sum_{\mathcal{J} \subseteq[m]} \frac{1}{2 m} \cdot \underbrace{\frac{1}{2^{|\mathcal{J}|}} \cdot \sum_{\boldsymbol{\sigma} \in \mathfrak{y}|\mathcal{J}|}\left\|\sum_{i \in \mathcal{J}} \sigma_{i} \boldsymbol{x}_{i}\right\|_{2}}_{u_{\mid \mathcal{J}}} . \tag{5}
\end{align*}
$$

The $\sqrt{2}$ factor appears because of the fact that we now consider only the observations of \mathcal{S}. Now, for any fixed \mathcal{J}, we renumber its observations in $[|\mathcal{J}|]$ for simplicity, and observe that, since $\sqrt{1+x} \leq 1+x / 2$,

$$
\begin{align*}
& u_{|\mathcal{J}|}=\frac{1}{2^{|\mathcal{J}|}} \sum_{\boldsymbol{\sigma} \in \mathcal{y}|\mathcal{J}|} \sqrt{\sum_{i \in \mathcal{J}}\left\|\boldsymbol{x}_{i}\right\|_{2}^{2}+\sum_{i_{1} \neq i_{2}} \sigma_{i_{1}} \sigma_{i_{2}} \boldsymbol{x}_{i_{1}}^{\top} \boldsymbol{x}_{i_{2}}} \tag{6}\\
& =\frac{\sqrt{\sum_{i \in \mathcal{J}}\left\|\boldsymbol{x}_{i}\right\|_{2}^{2}}}{2^{|\mathcal{J}|}} \sum_{\boldsymbol{\sigma} \in \mathcal{y | \Im |}} \sqrt{1+\frac{\sum_{i_{1} \neq i_{2}} \sigma_{i_{1}} \sigma_{i_{2}} \boldsymbol{x}_{i_{1}}^{\top} \boldsymbol{x}_{i_{2}}}{\sum_{i \in \mathcal{J}}\left\|\boldsymbol{x}_{i}\right\|_{2}^{2}}} \tag{7}\\
& \leq \frac{\sqrt{\sum_{i \in \mathcal{J}}\left\|\boldsymbol{x}_{i}\right\|_{2}^{2}}}{2^{|\mathcal{J}|}} \sum_{\boldsymbol{\sigma} \in \mathcal{y}|\mathcal{J}|}\left(1+\frac{\sum_{i_{1} \neq i_{2}} \sigma_{i_{1}} \sigma_{i_{2}} \boldsymbol{x}_{i_{1}}^{\top} \boldsymbol{x}_{i_{2}}}{2 \sum_{i \in \mathcal{J}}\left\|\boldsymbol{x}_{i}\right\|_{2}^{2}}\right) \tag{8}\\
& =\sqrt{\sum_{i \in \mathcal{J}}\left\|\boldsymbol{x}_{i}\right\|_{2}^{2}}+\frac{1}{2^{|\mathcal{J}|} \cdot 2 \sum_{i \in \mathcal{J}}\left\|\boldsymbol{x}_{i}\right\|_{2}^{2}} \cdot \sum_{\boldsymbol{\sigma} \in \mathcal{Y}|\boldsymbol{J}|} \sum_{i_{1} \neq i_{2}} \sigma_{i_{1}} \sigma_{i_{2}} \boldsymbol{x}_{i_{1}}^{\top} \boldsymbol{x}_{i_{2}} \tag{9}\\
& =\sqrt{\sum_{i \in \mathcal{J}}\left\|\boldsymbol{x}_{i}\right\|_{2}^{2}}+\frac{1}{2^{|\mathcal{J}|} \cdot 2 \sum_{i \in \mathcal{J}}\left\|\boldsymbol{x}_{i}\right\|_{2}^{2}} \cdot \sum_{i_{1} \neq i_{2}} \boldsymbol{x}_{i_{1}}^{\top} \boldsymbol{x}_{i_{2}} \cdot \underbrace{\left(\sum_{\boldsymbol{\sigma} \in \mathcal{y | \mathcal { J } |}} \sigma_{i_{1}} \sigma_{i_{2}}\right)}_{=0} \tag{10}\\
& =\sqrt{\sum_{i \in \mathcal{J}}\left\|\boldsymbol{x}_{i}\right\|_{2}^{2}} \tag{11}\\
& \leq \sqrt{|\mathcal{J}|} \cdot X \text {. } \tag{12}
\end{align*}
$$

Plugging this in eq. (5) yields

$$
\begin{equation*}
\frac{1}{X} \cdot \mathbb{E}_{\boldsymbol{y}_{2 m}}\left[\frac{1}{m} \cdot\left\|\sum_{i=1}^{2 m} \sigma_{i} \boldsymbol{x}_{i}\right\|_{2}\right] \leq \frac{\sqrt{2}}{2^{m}} \sum_{k=0}^{m} \frac{\sqrt{k}}{2 m}\binom{m}{k} \tag{13}
\end{equation*}
$$

Since m is even:

$$
\begin{equation*}
\mathbb{E}_{y_{2 m}}\left[\frac{1}{2 m} \cdot\left\|\sum_{i=1}^{2 m} \sigma_{i} \boldsymbol{x}_{i}\right\|_{2}\right] \leq \frac{\sqrt{2}}{2^{m}} \sum_{k=0}^{(m / 2)-1} \frac{\sqrt{k}}{2 m}\binom{m}{k}+\frac{\sqrt{2}}{2^{m}} \sum_{k=m / 2}^{m} \frac{\sqrt{k}}{2 m}\binom{m}{k} \tag{14}
\end{equation*}
$$

Notice that the left one trivially satisfies

$$
\begin{align*}
\frac{\sqrt{2}}{2^{m}} \sum_{k=0}^{(m / 2)-1} \frac{\sqrt{k}}{2 m}\binom{m}{k} & \leq \frac{\sqrt{2}}{2^{m}} \sum_{k=0}^{(m / 2)-1} \frac{1}{2 m} \cdot \sqrt{\frac{m-2}{2}}\binom{m}{k} \\
& =\frac{1}{2} \cdot \sqrt{\frac{1}{m}-\frac{2}{m^{2}}} \cdot \frac{1}{2^{m}} \sum_{k=0}^{(m / 2)-1}\binom{m}{k} \\
& \leq \frac{1}{4} \cdot \sqrt{\frac{1}{m}-\frac{2}{m^{2}}} \tag{15}
\end{align*}
$$

Also, the right one satisfies:

$$
\begin{align*}
\frac{\sqrt{2}}{2^{m}} \sum_{k=m / 2}^{m} \frac{\sqrt{k}}{2 m}\binom{m}{k} & \leq \frac{\sqrt{2}}{2^{m}} \sum_{k=m / 2}^{m} \frac{\sqrt{m}}{2 m}\binom{m}{k} \\
& =\frac{1}{\sqrt{2 m}} \cdot \frac{1}{2^{m}} \sum_{k=m / 2}^{m}\binom{m}{k} \\
& =\frac{1}{2} \cdot \frac{1}{\sqrt{2 m}} \tag{16}
\end{align*}
$$

We get

$$
\begin{align*}
\frac{1}{X} \cdot \mathbb{E}_{y 2 m}\left[\frac{1}{m} \cdot\left\|\sum_{i=1}^{2 m} \sigma_{i} \boldsymbol{x}_{i}\right\|_{2}\right] & \leq \frac{1}{4} \cdot \sqrt{\frac{1}{m}-\frac{2}{m^{2}}}+\frac{1}{2} \cdot \sqrt{\frac{1}{2 m}} \tag{17}\\
& =\frac{1}{\sqrt{2 m}} \cdot\left(\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}-\frac{1}{m}}\right) . \tag{18}
\end{align*}
$$

And finally:

$$
\begin{equation*}
\mathcal{R}\left(\mathcal{H} \circ \mathcal{S}_{2 x}\right) \leq v \cdot \frac{B X}{\sqrt{2 m}} \tag{19}
\end{equation*}
$$

with

$$
\begin{equation*}
v \doteq \frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}-\frac{1}{m}} \tag{20}
\end{equation*}
$$

as claimed.

The second Lemma is a straightforward application of McDiarmid 's inequality [McDiarmid, 1998] to evaluate the convergence of the empirical mean operator to its population counterpart.

Lemma 2 Suppose $\mathbb{R}^{d} \supseteq \mathcal{X}=\left\{\boldsymbol{x}:\|\boldsymbol{x}\|_{2} \leq X<\infty\right\}$ be the observations space. Then for any $\delta>0$ with probability at least $1-\delta$

$$
\left\|\boldsymbol{\mu}_{\mathcal{D}}-\boldsymbol{\mu}_{\mathcal{S}}\right\|_{2} \leq X \cdot \sqrt{\frac{d}{m} \log \left(\frac{d}{\delta}\right)}
$$

Proof Let \mathcal{S} and \mathcal{S}^{\prime} be two learning samples that differ for only one example $\left(\boldsymbol{x}_{i}, y_{i}\right) \neq\left(\boldsymbol{x}_{i^{\prime}}, y_{i^{\prime}}\right)$. Let first consider the one-dimensional case. We refer to the k-dimensional component of $\boldsymbol{\mu}$ with $\boldsymbol{\mu}^{k}$. For any $\mathcal{S}, \mathcal{S}^{\prime}$ and any $k \in[d]$ it holds

$$
\begin{aligned}
\left|\boldsymbol{\mu}_{\mathcal{S}}^{k}-\boldsymbol{\mu}_{\mathcal{S}^{\prime}}^{k}\right| & =\frac{1}{m}\left|\boldsymbol{x}_{i}^{k} y_{i}-\boldsymbol{x}_{i^{\prime}}^{k} y_{i^{\prime}}\right| \\
& \leq \frac{X}{m}\left|y_{i}-y_{i^{\prime}}\right| \\
& \leq \frac{2 X}{m}
\end{aligned}
$$

This satisfies the bounded difference condition of McDiarmid's inequality, which let us write for any $k \in[d]$ and any $\epsilon>0$ that

$$
\mathbb{P}\left(\left|\boldsymbol{\mu}_{\mathcal{D}}^{k}-\boldsymbol{\mu}_{\mathcal{S}}^{k}\right| \geq \epsilon\right) \leq \exp \left(-\frac{m \epsilon^{2}}{2 X^{2}}\right)
$$

and the multi-dimensional case, by union bound

$$
\mathbb{P}\left(\exists k \in[d]:\left|\boldsymbol{\mu}_{\mathcal{D}}^{k}-\boldsymbol{\mu}_{\mathfrak{S}}^{k}\right| \geq \epsilon\right) \leq d \exp \left(-\frac{m \epsilon^{2}}{2 X^{2}}\right)
$$

Then by negation

$$
\mathbb{P}\left(\forall k \in[d]:\left|\boldsymbol{\mu}_{\mathcal{D}}^{k}-\boldsymbol{\mu}_{\mathcal{S}}^{k}\right| \leq \epsilon\right) \geq 1-d \exp \left(-\frac{m \epsilon^{2}}{2 X^{2}}\right)
$$

which implies that for any $\delta>0$ with probability $1-\delta$

$$
X \sqrt{\frac{2}{m} \log \left(\frac{d}{\delta}\right)} \geq\left\|\boldsymbol{\mu}_{\mathcal{D}}-\boldsymbol{\mu}_{\mathcal{S}}\right\|_{\infty} \geq d^{-1 / 2}\left\|\boldsymbol{\mu}_{\mathcal{D}}-\boldsymbol{\mu}_{\mathcal{S}}\right\|_{2}
$$

This concludes the proof.

We now restate and prove Theorem 7.
Theorem 7 Assume ℓ is a-LOL and L-Lipschitz. Suppose $\mathbb{R}^{d} \supseteq X=\left\{\boldsymbol{x}:\|\boldsymbol{x}\|_{2} \leq X<\infty\right\}$ be the observations space, and $\mathcal{H}=\left\{\boldsymbol{\theta}:\|\boldsymbol{\theta}\|_{2} \leq B<\infty\right\}$ be the space of linear hypotheses. Let $c(X, B) \doteq$ $\max _{y \in y} \ell(y X B)$. Let $\hat{\boldsymbol{\theta}}=\operatorname{argmin}_{\boldsymbol{\theta} \in \mathcal{H}} R_{S, \ell}(\boldsymbol{\theta})$. Then for any $\delta>0$, with probability at least $1-\delta$

$$
R_{\mathcal{D}, \ell}(\hat{\boldsymbol{\theta}})-R_{\mathcal{D}, \ell}\left(\boldsymbol{\theta}^{\star}\right) \leq\left(\frac{\sqrt{2}+1}{4}\right) \cdot \frac{X B L}{\sqrt{m}}+\frac{c(X, B) L}{2} \cdot \sqrt{\frac{1}{m} \log \left(\frac{1}{\delta}\right)}+2|a| B \cdot\left\|\boldsymbol{\mu}_{\mathcal{D}}-\boldsymbol{\mu}_{\mathcal{S}}\right\|_{2}
$$

or more explicitly

$$
R_{\mathcal{D}, \ell}(\hat{\boldsymbol{\theta}})-R_{\mathcal{D}, \ell}\left(\boldsymbol{\theta}^{\star}\right) \leq\left(\frac{\sqrt{2}+1}{4}\right) \cdot \frac{X B L}{\sqrt{m}}+\frac{c(X, B) L}{2} \sqrt{\frac{1}{m} \log \left(\frac{2}{\delta}\right)}+2|a| X B \sqrt{\frac{d}{m} \log \left(\frac{2 d}{\delta}\right)}
$$

Proof Let $\boldsymbol{\theta}^{\star}=\operatorname{argmin}_{\boldsymbol{\theta} \in \mathcal{H}} R_{\mathcal{D}, \ell}(\boldsymbol{\theta})$. We have

$$
\begin{align*}
R_{\mathcal{D}, \ell}(\hat{\boldsymbol{\theta}})-R_{\mathcal{D}, \ell}\left(\boldsymbol{\theta}^{\star}\right) & =\frac{1}{2} R_{\mathcal{D}_{2 x}, \ell}(\hat{\boldsymbol{\theta}})+a\left\langle\hat{\boldsymbol{\theta}}, \boldsymbol{\mu}_{\mathcal{D}}\right\rangle-\frac{1}{2} R_{\mathcal{D}_{2 x}, \ell}\left(\boldsymbol{\theta}^{\star}\right)-a\left\langle\boldsymbol{\theta}^{\star}, \boldsymbol{\mu}_{\mathcal{D}}\right\rangle \tag{21}\\
& =\frac{1}{2}\left(R_{\mathcal{D}_{2 x}, \ell}(\hat{\boldsymbol{\theta}})-R_{\mathcal{D}_{2 x}, \ell}\left(\boldsymbol{\theta}^{\star}\right)\right)+a\left\langle\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{\star}, \boldsymbol{\mu}_{\mathcal{D}}\right\rangle \\
& =\frac{1}{2}\left(R_{\mathrm{S}_{2 x}, \ell}(\hat{\boldsymbol{\theta}})-R_{\mathcal{S}_{2 x}, \ell}\left(\boldsymbol{\theta}^{\star}\right)\right)+a\left\langle\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{\star}, \boldsymbol{\mu}_{\mathcal{D}}\right\rangle \\
& \left.+\frac{1}{2}\left(R_{\mathcal{D}_{2 x}, \ell}(\hat{\boldsymbol{\theta}})-R_{\mathcal{S}_{2 x}, \ell}(\hat{\boldsymbol{\theta}})-R_{\mathcal{D}_{2 x}, \ell}\left(\boldsymbol{\theta}^{\star}\right)+R_{\mathrm{S}_{2 x}, \ell}\left(\boldsymbol{\theta}^{\star}\right)\right)\right\} A_{1} \tag{22}
\end{align*}
$$

Step 21 is obtained by the equality $R_{\mathcal{D}, \ell}(\boldsymbol{\theta})=\frac{1}{2} R_{\mathcal{D}_{2 x}, \ell}(\boldsymbol{\theta})+a\left\langle\boldsymbol{\theta}, \boldsymbol{\mu}_{\mathcal{D}}\right\rangle$ for any $\boldsymbol{\theta}$. Now, rename Line 22 as A_{1}. Applying the same equality with regard to \mathcal{S}, we have

$$
R_{\mathcal{D}, \ell}(\hat{\boldsymbol{\theta}})-R_{\mathcal{D}, \ell}\left(\boldsymbol{\theta}^{\star}\right) \leq \underbrace{R_{\mathcal{S}, \ell}(\hat{\boldsymbol{\theta}})-R_{\mathcal{S}, \ell}\left(\boldsymbol{\theta}^{\star}\right)}_{A_{2}}+\underbrace{a\left\langle\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{\star}, \boldsymbol{\mu}_{\mathcal{D}}-\boldsymbol{\mu}_{s}\right\rangle}_{A_{3}}+A_{1}
$$

Now, A_{2} is never more than 0 because $\hat{\boldsymbol{\theta}}$ is the minimizer of $R_{\Im}, \ell(\boldsymbol{\theta})$. From the Cauchy-Schwarz inequality and bounded models it holds true that

$$
\begin{equation*}
A_{3} \leq|a|\left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{\star}\right\|_{2} \cdot\left\|\boldsymbol{\mu}_{\mathcal{D}}-\boldsymbol{\mu}_{\mathcal{S}}\right\|_{2} \leq 2|a| B\left\|\boldsymbol{\mu}_{\mathcal{D}}-\boldsymbol{\mu}_{\mathcal{S}}\right\|_{2} \tag{23}
\end{equation*}
$$

We could treat A_{1} by calling standard bounds based on Rademacher complexity on a sample with size $2 m$ [Bartlett and Mendelson, 2002]. Indeed, since the complexity does not depend on labels, its value would be the same -modulo the change of sample size- for both \mathcal{S} and $\mathcal{S}_{2 x}$, as they are computed with same loss and observations. However, the special structure of $\mathcal{S}_{2 x}$ allows us to obtain a tighter structural complexity term, due to some cancellation effect. The fact is proven by Lemma 1. In order to exploit it, we first observe that

$$
\begin{aligned}
A_{1} & \leq \frac{1}{2}\left(R_{\mathcal{D}_{2 x}, \ell}(\hat{\boldsymbol{\theta}})-R_{\mathcal{S}_{2 x}, \ell}(\hat{\boldsymbol{\theta}})-R_{\mathcal{D}_{2 x}, \ell}\left(\boldsymbol{\theta}^{\star}\right)+R_{\mathcal{S}_{2 x}, \ell}\left(\boldsymbol{\theta}^{\star}\right)\right) \\
& \leq \sup _{\boldsymbol{\theta} \in \mathcal{H}}\left|R_{\mathcal{D}_{2 x}, \ell}(\boldsymbol{\theta})-R_{\mathfrak{S}_{2 x}, \ell}(\boldsymbol{\theta})\right|
\end{aligned}
$$

which by standard arguments [Bartlett and Mendelson, 2002] and the application of Lemma 1 gives a bound with probability at least $1-\delta, \delta>0$

$$
\begin{aligned}
A_{1} & \leq 2 L \cdot \mathcal{R}\left(\mathcal{H} \circ \mathcal{S}_{2 x}\right)+c(X, B) L \cdot \sqrt{\frac{1}{4 m} \log \left(\frac{1}{\delta}\right)} \\
& \leq L \cdot \frac{\sqrt{2}+1}{\sqrt{2}} \cdot \frac{B X}{\sqrt{2 m}}+c(X, B) L \cdot \sqrt{\frac{1}{4 m} \log \left(\frac{1}{\delta}\right)}
\end{aligned}
$$

where $c(X, B) \doteq \max _{y \in y} \ell(y X B)$ and because $\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}-\frac{1}{m}}<\left(\frac{\sqrt{2}+1}{\sqrt{2}}\right), \forall m>0$. We combine the results and get with probability at least $1-\delta, \delta>0$ that

$$
\begin{equation*}
R_{\mathcal{D}, \ell}(\hat{\boldsymbol{\theta}})-R_{\mathcal{D}, \ell}\left(\boldsymbol{\theta}^{\star}\right) \leq\left(\frac{\sqrt{2}+1}{2}\right) \cdot \frac{X B L}{\sqrt{m}}+\frac{c(X, B) L}{2} \cdot \sqrt{\frac{1}{m} \log \left(\frac{1}{\delta}\right)}+2|a| B \cdot\left\|\boldsymbol{\mu}_{\mathcal{D}}-\boldsymbol{\mu}_{\mathcal{S}}\right\|_{2} \tag{24}
\end{equation*}
$$

This proves the first part of the statement. For the second one, we apply Lemma 2 that provides the probabilistic bound for the norm discrepancy of the mean operators. Consider that both statements are true with probability at least $1-\delta / 2$. We write

$$
\begin{aligned}
& \mathbb{P}\left(\left\{R_{\mathcal{D}, \ell}(\hat{\boldsymbol{\theta}})-R_{\mathcal{D}, \ell}\left(\boldsymbol{\theta}^{\star}\right) \leq\left(\frac{\sqrt{2}+1}{2}\right) \cdot \frac{X B L}{\sqrt{m}}+\frac{c(X, B) L}{2} \cdot \sqrt{\frac{1}{m} \log \left(\frac{2}{\delta}\right)}+2|a| B \cdot\left\|\boldsymbol{\mu}_{\mathcal{D}}-\boldsymbol{\mu}_{\mathcal{S}}\right\|_{2}\right\}\right. \\
& \left.\bigwedge\left\{\left\|\boldsymbol{\mu}_{\mathcal{D}}-\boldsymbol{\mu}_{\mathcal{S}}\right\|_{2} \leq X \cdot \sqrt{\frac{d}{m} \log \left(\frac{2 d}{\delta}\right)}\right\}\right) \geq 1-\delta / 2-\delta / 2=1-\delta
\end{aligned}
$$

and therefore with probability $1-\delta$

$$
R_{\mathcal{D}, \ell}(\hat{\boldsymbol{\theta}})-R_{\mathcal{D}, \ell}\left(\boldsymbol{\theta}^{\star}\right) \leq\left(\frac{\sqrt{2}+1}{2}\right) \cdot \frac{X B L}{\sqrt{m}}+\frac{c(X, B) L}{2} \cdot \sqrt{\frac{1}{m} \log \left(\frac{2}{\delta}\right)}+2|a| X B \cdot \sqrt{\frac{d}{m} \log \left(\frac{2 d}{\delta}\right)}
$$

A. 4 Unbiased estimator for the mean operator with asymmetric label noise

Natarajan et al. [2013, Lemma 1] provides an unbiased estimator for a loss $\ell(x)$ computed on x of the form:

$$
\hat{\ell}\left(y\left\langle\boldsymbol{\theta}, \boldsymbol{x}_{i}\right\rangle\right) \doteq \frac{\left(1-p_{-y}\right) \cdot \ell\left(\left\langle\boldsymbol{\theta}, \boldsymbol{x}_{i}\right\rangle\right)+p_{y} \cdot \ell\left(-\left\langle\boldsymbol{\theta}, \boldsymbol{x}_{i}\right\rangle\right)}{1-p_{-}-p_{+}}
$$

We apply it for estimating the mean operator instead of, from another perspective, for estimating a linear (unhinged) loss as in van Rooyen et al. [2015]. We are allowed to do so by the very result of the Factorization Theorem, since the noise corruption has effect on the linear-odd term of the loss only. The estimator of the sufficient statistic of a single example $y \boldsymbol{x}$ is

$$
\begin{aligned}
\hat{\boldsymbol{z}} & \doteq \frac{1-p_{-y}+p_{y}}{1-p_{-}-p_{+}} y \boldsymbol{x} \\
& =\frac{1-\left(p_{-}-p_{+}\right) y}{1-p_{-}-p_{+}} y \boldsymbol{x} \\
& =\frac{y-\left(p_{-}-p_{+}\right)}{1-p_{-}-p_{+}} \boldsymbol{x}
\end{aligned}
$$

and its average, i.e. the mean operator estimator, is

$$
\hat{\boldsymbol{\mu}}_{\mathcal{S}} \doteq \mathbb{E}_{\mathcal{S}}\left[\frac{y-\left(p_{-}+p_{+}\right)}{1-p_{-}-p_{+}} \boldsymbol{x}\right]
$$

such that in expectation over the noisy distribution it holds $\mathbb{E}_{\tilde{\mathcal{D}}}[\hat{\boldsymbol{z}}]=\boldsymbol{\mu}_{\mathcal{D}}$. Moreover, the corresponding risk enjoys the same unbiasedness property. In fact

$$
\begin{align*}
\hat{R}_{\tilde{D}, \ell}(\boldsymbol{\theta}) & =\frac{1}{2} R_{\mathcal{D}_{2 x}, \ell}(\boldsymbol{\theta})+\mathbb{E}_{\tilde{D}}[a\langle\boldsymbol{\theta}, \hat{\boldsymbol{z}}\rangle] \\
& =\frac{1}{2} R_{\mathcal{D}_{2 x}, \ell}(\boldsymbol{\theta})+a\left\langle\boldsymbol{\theta}, \hat{\boldsymbol{\mu}}_{\tilde{D}}\right\rangle \tag{25}\\
& =\frac{1}{2} R_{\mathcal{D}_{2 x}, \ell}(\boldsymbol{\theta})+a\left\langle\boldsymbol{\theta}, \boldsymbol{\mu}_{\mathcal{D}}\right\rangle \\
& =R_{\mathcal{D}, \ell}(\boldsymbol{\theta}),
\end{align*}
$$

where we have also used the independency on labels (and therefore of label noise) of $R_{\mathcal{D}_{2 x}, \ell}$.

A. 5 Proof of Theorem 8

This Theorem is a version of Theorem 7 applied to the case of asymmetric label noise. Those results differ in three elements. First, we consider the generalization property of a minimizer $\hat{\boldsymbol{\theta}}$ that is learnt on the corrupted sample $\tilde{\mathcal{S}}$. Second, the minimizer is computed on the basis of the unbiased estimator of $\hat{\boldsymbol{\mu}}_{\tilde{\mathcal{S}}}$ and not barely $\boldsymbol{\mu}_{\tilde{\mathcal{S}}}$. Third, as a consequence, Lemma 2 is not valid in this scenario. Therefore, we first prove a version of the bound for the mean operator norm discrepancy while considering label noise.

Lemma 3 Suppose $\mathbb{R}^{d} \supseteq \mathcal{X}=\left\{\boldsymbol{x}:\|\boldsymbol{x}\|_{2} \leq X<\infty\right\}$ be the observations space. Let $\tilde{\mathcal{S}}$ is a learning sample affected by asymmetric label noise with noise rates $\left(p_{+}, p_{-}\right) \in[0,1 / 2)$. Then for any $\delta>0$ with probability at least $1-\delta$

$$
\left\|\hat{\boldsymbol{\mu}}_{\tilde{D}}-\hat{\boldsymbol{\mu}}_{\tilde{\mathfrak{S}}}\right\|_{2} \leq \frac{X}{1-p_{-}-p_{+}} \cdot \sqrt{\frac{d}{m} \log \left(\frac{d}{\delta}\right)}
$$

Proof Let $\tilde{\mathcal{S}}$ and $\tilde{\mathcal{S}^{\prime}}$ be two learning samples from the corrupted distribution $\tilde{\mathcal{D}}$ that differ for only one example $\left(\boldsymbol{x}_{i}, \tilde{y}_{i}\right) \neq\left(\boldsymbol{x}_{i^{\prime}}, \tilde{y}_{i^{\prime}}\right)$. Let first consider the one-dimensional case. We refer to the k-dimensional component of $\boldsymbol{\mu}$ with $\boldsymbol{\mu}^{k}$. For any $\tilde{\mathcal{S}}, \tilde{\mathcal{S}}^{\prime}$ and any $k \in[d]$ it holds

$$
\begin{aligned}
\left|\hat{\boldsymbol{\mu}}_{\tilde{\mathcal{s}}}^{k}-\hat{\boldsymbol{\mu}}_{\tilde{\mathrm{s}}^{\prime}}^{k}\right| & =\frac{1}{m}\left|\left(\frac{\tilde{y}_{i}-\left(p_{-}-p_{+}\right)}{1-p_{-}-p_{+}}\right) \boldsymbol{x}_{i}^{k}-\left(\frac{\tilde{y}_{i^{\prime}}-\left(p_{-}-p_{+}\right)}{1-p_{-}-p_{+}}\right) \boldsymbol{x}_{i^{\prime}}^{k}\right| \\
& =\frac{1}{m}\left|\frac{\tilde{y}_{i} \boldsymbol{x}_{i}^{k}}{1-p_{-}-p_{+}}-\frac{\tilde{y}_{i^{\prime}} \boldsymbol{x}_{i^{\prime}}^{k}}{1-p_{-}-p_{+}}\right| \\
& \leq \frac{X}{m\left(1-p_{-}-p_{+}\right)}\left|\tilde{y}_{i}-\tilde{y}_{i^{\prime}}\right| \\
& \leq \frac{2 X}{m\left(1-p_{-}-p_{+}\right)} .
\end{aligned}
$$

This satisfies the bounded difference condition of McDiarmid's inequality, which let us write for any $k \in[d]$ and any $\epsilon>0$ that

$$
\mathbb{P}\left(\left|\hat{\boldsymbol{\mu}}_{\mathcal{D}}^{k}-\hat{\boldsymbol{\mu}}_{\mathcal{S}}^{k}\right| \geq \epsilon\right) \leq \exp \left(-\left(1-p_{-}-p_{+}\right)^{2} \frac{m \epsilon^{2}}{2 X^{2}}\right)
$$

and the multi-dimensional case, by union bound

$$
\mathbb{P}\left(\exists k \in[d]:\left|\hat{\boldsymbol{\mu}}_{\mathcal{D}}^{k}-\hat{\boldsymbol{\mu}}_{\mathcal{S}}^{k}\right| \geq \epsilon\right) \leq d \exp \left(-\left(1-p_{-}-p_{+}\right)^{2} \frac{m \epsilon^{2}}{2 X^{2}}\right)
$$

Then by negation

$$
\mathbb{P}\left(\forall k \in[d]:\left|\hat{\boldsymbol{\mu}}_{\mathcal{D}}^{k}-\hat{\boldsymbol{\mu}}_{\mathcal{S}}^{k}\right| \leq \epsilon\right) \geq 1-d \exp \left(-\left(1-p_{-}-p_{+}\right)^{2} \frac{m \epsilon^{2}}{2 X^{2}}\right)
$$

which implies that for any $\delta>0$ with probability $1-\delta$

$$
\frac{X}{\left(1-p_{-}-p_{+}\right)} \sqrt{\frac{2}{m} \log \left(\frac{d}{\delta}\right)} \geq\left\|\hat{\boldsymbol{\mu}}_{\mathcal{D}}-\hat{\boldsymbol{\mu}}_{\mathcal{S}}\right\|_{\infty} \geq d^{-1 / 2}\left\|\boldsymbol{\mu}_{\mathcal{D}}-\boldsymbol{\mu}_{\mathcal{S}}\right\|_{2}
$$

This concludes the proof.

The proof of Theorem 8 follows the structure of Theorem 7's and elements of Natarajan et al. [2013, Theorem 3]'s. Let $\hat{\boldsymbol{\theta}}=\operatorname{argmin}_{\boldsymbol{\theta} \in \mathcal{H}} \hat{R}_{\tilde{\mathcal{D}}, \ell}(\boldsymbol{\theta})$ and $\boldsymbol{\theta}^{\star}=\operatorname{argmin}_{\boldsymbol{\theta} \in \mathcal{H}} R_{\mathcal{D}, \ell}(\boldsymbol{\theta})$. We have

$$
\begin{align*}
R_{\mathcal{D}, \ell}(\hat{\boldsymbol{\theta}})-R_{\mathcal{D}, \ell}\left(\boldsymbol{\theta}^{\star}\right) & =\hat{R}_{\tilde{\mathcal{D}}, \ell}(\hat{\boldsymbol{\theta}})-\hat{R}_{\tilde{\mathcal{D}}, \ell}\left(\boldsymbol{\theta}^{\star}\right) \tag{26}\\
& =\frac{1}{2} R_{\mathcal{D}_{2 x}, \ell}(\hat{\boldsymbol{\theta}})+a\left\langle\hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\mu}}_{\tilde{D}}\right\rangle-\frac{1}{2} R_{\mathcal{D}_{2 x}, \ell}\left(\boldsymbol{\theta}^{\star}\right)-a\left\langle\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\mu}}_{\tilde{D}}\right\rangle \\
& =\frac{1}{2}\left(R_{\mathcal{D}_{2 x}, \ell}(\hat{\boldsymbol{\theta}})-R_{\mathcal{D}_{2 x}, \ell}\left(\boldsymbol{\theta}^{\star}\right)\right)+a\left\langle\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\mu}}_{\tilde{\mathcal{D}}}\right\rangle \\
& =\frac{1}{2}\left(R_{\mathcal{S}_{2 x}, \ell}(\hat{\boldsymbol{\theta}})-R_{\mathcal{S}_{2 x}, \ell}\left(\boldsymbol{\theta}^{\star}\right)\right)+a\left\langle\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\mu}}_{\tilde{D}}\right\rangle \\
& \left.+\frac{1}{2}\left(R_{\mathcal{D}_{2 x}, \ell}(\hat{\boldsymbol{\theta}})-R_{\mathcal{S}_{2 x}, \ell}(\hat{\boldsymbol{\theta}})-R_{\mathcal{D}_{2 x}, \ell}\left(\boldsymbol{\theta}^{\star}\right)+R_{\mathcal{S}_{2 x}, \ell}\left(\boldsymbol{\theta}^{\star}\right)\right)\right\} A_{1} . \tag{27}
\end{align*}
$$

Step 26 is due to unbiasedness shown in Section A.4. Again, rename Line 27 as A_{1}, which this time is bounded directly by Theorem 7. Next, we proceed as within the proof of Theorem 7 but now exploiting the fact that $\frac{1}{2} R_{\mathcal{S}_{2 x}, \ell}(\boldsymbol{\theta})=\hat{R}_{\tilde{\S}, \ell}(\boldsymbol{\theta})-a\left\langle\boldsymbol{\theta}, \hat{\boldsymbol{\mu}}_{\tilde{D}}\right\rangle$

$$
R_{\mathcal{D}, \ell}(\hat{\boldsymbol{\theta}})-R_{\mathcal{D}, \ell}\left(\boldsymbol{\theta}^{\star}\right) \leq \underbrace{\hat{R}_{\tilde{\mathfrak{s}}, \ell}(\hat{\boldsymbol{\theta}})-\hat{R}_{\tilde{\mathfrak{s}}, \ell}\left(\boldsymbol{\theta}^{\star}\right)}_{A_{2}}+\underbrace{a\left\langle\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\mu}}_{\tilde{\mathcal{D}}}-\hat{\boldsymbol{\mu}}_{\tilde{\mathfrak{s}}}\right\rangle}_{A_{3}}+A_{1}
$$

Now, A_{2} is never more than 0 because $\hat{\boldsymbol{\theta}}$ is the minimizer of $\hat{R}_{\tilde{\S}, \ell}(\boldsymbol{\theta})$. From the Cauchy-Schwarz inequality and bounded models it holds true that

$$
\begin{equation*}
A_{3} \leq|a|\left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{\star}\right\|_{2} \cdot\left\|\hat{\boldsymbol{\mu}}_{\tilde{\mathcal{D}}}-\hat{\boldsymbol{\mu}}_{\mathcal{S}}\right\|_{2} \leq 2|a| B\left\|\hat{\boldsymbol{\mu}}_{\tilde{\mathcal{D}}}-\hat{\boldsymbol{\mu}}_{\tilde{\mathcal{S}}}\right\|_{2} \tag{28}
\end{equation*}
$$

for which we can call Lemma 3. Finally, by a union bound we get that for any $\delta>0$ with probability $1-\delta$

$$
R_{\mathcal{D}, \ell}(\hat{\boldsymbol{\theta}})-R_{\mathcal{D}, \ell}\left(\boldsymbol{\theta}^{\star}\right) \leq\left(\frac{\sqrt{2}+1}{2}\right) \cdot \frac{X B L}{\sqrt{m}}+\frac{c(X, B) L}{2} \sqrt{\frac{1}{m} \log \left(\frac{2}{\delta}\right)}+\frac{2|a| X B}{1-p_{+}-p_{-}} \sqrt{\frac{d}{m} \log \left(\frac{2 d}{\delta}\right)}
$$

A. 6 Proof of Theorem 10

We now restate and prove Theorem 8. The reader might question the bound for the fact that the quantity on the right-hand side can change by rescaling $\boldsymbol{\mu}_{\mathcal{D}}$ by X, i.e. the max L_{2} norm of observations in the space X. Although, such transformation would affect ℓ-risks on the left-hand side as well, balancing the effect. With this
in mind, we formulate the result without making explicit dependency on X.
Theorem 10 Assume $\left\{\boldsymbol{\theta} \in \mathcal{H}:\|\boldsymbol{\theta}\|_{2} \leq B\right\}$. Let $\left(\boldsymbol{\theta}^{\star}, \tilde{\boldsymbol{\theta}}^{\star}\right)$ respectively the minimizers of $\left(R_{\mathcal{D}, \ell}(\boldsymbol{\theta}), R_{\tilde{\mathcal{D}}, \ell}(\boldsymbol{\theta})\right)$ in \mathcal{H}. Then every a-LOL is ϵ-ALN. That is

$$
R_{\tilde{\mathcal{D}}, \ell}\left(\boldsymbol{\theta}^{\star}\right)-R_{\tilde{\mathcal{D}}, \ell}\left(\tilde{\boldsymbol{\theta}}^{\star}\right) \leq 4|a| B \max \left(p_{-}, p_{+}\right) \cdot\left\|\boldsymbol{\mu}_{\mathcal{D}}\right\|_{2} .
$$

Moreover:

1. If $\left\|\boldsymbol{\mu}_{\mathcal{D}}\right\|_{2}=0$ for \mathcal{D} then every LOL is ALN for any $\tilde{\mathcal{D}}$.
2. Suppose that ℓ is also once differentiable and γ-strongly convex. Then $\left\|\boldsymbol{\theta}^{\star}-\tilde{\boldsymbol{\theta}}^{\star}\right\|_{2}^{2} \leq 2 \epsilon / \gamma$.

Proof The proof draws ideas from Manwani and Sastry [2013]. Let us first assume the noise to be symmetric, i.e. $p_{+}=p_{-}=p$. For any $\boldsymbol{\theta}$ we have

$$
\begin{align*}
R_{\tilde{D}, \ell}\left(\boldsymbol{\theta}^{\star}\right)-R_{\tilde{D}, \ell}(\boldsymbol{\theta})= & (1-p)\left(R_{\mathcal{D}, \ell}\left(\boldsymbol{\theta}^{\star}\right)-R_{\mathcal{D}, \ell}(\boldsymbol{\theta})\right) \\
& +p\left(R_{\mathcal{D}, \ell}\left(\boldsymbol{\theta}^{\star}\right)-R_{\mathcal{D}, \ell}(\boldsymbol{\theta})+2 a\left\langle\boldsymbol{\theta}^{\star}-\boldsymbol{\theta}, \boldsymbol{\mu}_{\mathcal{D}}\right\rangle\right) \tag{29}\\
\leq & \left(R_{\mathcal{D}, \ell}\left(\boldsymbol{\theta}^{\star}\right)-R_{\mathcal{D}, \ell}(\boldsymbol{\theta})\right)+4|a| B p\left\|_{\mathcal{D}}\right\|_{2} \tag{30}\\
\leq & 4|a| B p\left\|\boldsymbol{\mu}_{\mathcal{D}}\right\|_{2} \tag{31}
\end{align*}
$$

We are working with Lols, which are such that $\ell(x)=\ell(-x)+2 a x$ and therefore we can take Step 29. Step 30 follows from Cauchy-Schwartz inequality and bounded models. Step 31 is true because $\boldsymbol{\theta}^{\star}$ is the minimizer of $R_{\mathcal{D}, \ell}(\boldsymbol{\theta})$. We have obtained a bound for any $\boldsymbol{\theta}$ and so for the supremum with regard to $\boldsymbol{\theta}$. Therefore:

$$
\sup _{\boldsymbol{\theta} \in \mathcal{H}}\left(R_{\tilde{\mathcal{D}}, \ell}\left(\boldsymbol{\theta}^{\star}\right)-R_{\tilde{\mathcal{D}}, \ell}(\boldsymbol{\theta})\right)=R_{\tilde{\mathcal{D}}, \ell}\left(\boldsymbol{\theta}^{\star}\right)-R_{\tilde{\mathcal{D}}, \ell}(\tilde{\boldsymbol{\theta}})
$$

To lift the discussion to asymmetric label noise, risks have to be split into losses for negative and positive examples. Let $R_{\mathcal{D}^{+}, \ell}$ be the risk computed over the distribution of the positive examples \mathcal{D}^{+}and $R_{\mathcal{D}^{-}, \ell}$ the one of the negatives, and denote the mean operators $\boldsymbol{\mu}_{\mathcal{D}^{+}}, \boldsymbol{\mu}_{\mathcal{D}^{-}}$accordingly. Also, define the probability of positive and negative labels in \mathcal{D} as $\pi_{ \pm}=\mathbb{P}(y= \pm 1)$. The same manipulations for the symmetric case let us write

$$
\begin{aligned}
R_{\tilde{\mathcal{D}}, \ell}\left(\boldsymbol{\theta}^{\star}\right)-R_{\tilde{\mathcal{D}}, \ell}(\boldsymbol{\theta})= & \pi_{-}\left(R_{\mathcal{D}^{-}, \ell}\left(\boldsymbol{\theta}^{\star}\right)-R_{\mathcal{D}^{-}, \ell}(\boldsymbol{\theta})\right)+\pi_{+}\left(R_{\mathcal{D}^{+}, \ell}\left(\boldsymbol{\theta}^{\star}\right)-R_{\mathcal{D}^{+}, \ell}(\boldsymbol{\theta})\right) \\
& +2 a p_{-} \pi_{-}\left\langle\boldsymbol{\theta}^{\star}-\boldsymbol{\theta}, \boldsymbol{\mu}_{\mathcal{D}^{-}}\right\rangle+2 a p_{+} \pi_{+}\left\langle\boldsymbol{\theta}^{\star}-\boldsymbol{\theta}, \boldsymbol{\mu}_{\mathcal{D}^{+}}\right\rangle \\
\leq & \left(R_{\mathcal{D}^{\prime}(}\left(\boldsymbol{\theta}^{\star}\right)-R_{\mathcal{D}^{\prime} \ell}(\boldsymbol{\theta})\right)+2 a\left\langle\boldsymbol{\theta}^{\star}-\boldsymbol{\theta}, p_{-} \boldsymbol{\mu}_{\mathcal{D}^{-}}+p_{+} \boldsymbol{\mu}_{\mathcal{D}^{+}}\right\rangle \\
\leq & 4|a| B \cdot\left\|p_{-} \pi_{-} \boldsymbol{\mu}_{\mathcal{D}^{-}}+p_{+} \pi_{+} \boldsymbol{\mu}_{\mathcal{D}^{+}}\right\|_{2} \\
\leq & 4|a| B \max \left(p_{-}, p_{+}\right) \cdot\left\|\pi_{-} \boldsymbol{\mu}_{\mathcal{D}^{-}}+\pi_{+} \boldsymbol{\mu}_{\mathcal{D}^{+}}\right\|_{2} \\
= & 4|a| B \max \left(p_{-}, p_{+}\right) \cdot\left\|\boldsymbol{\mu}_{\mathcal{D}}\right\|_{2}
\end{aligned}
$$

Then, we conclude the proof by the same argument for the symmetric case. The first corollary is immediate. For the second, we first recall the definition of a function f strongly convex.

Definition 4 A differentiable function $f(x)$ is γ-strongly convex if for all $x, x^{\prime} \in \operatorname{Dom}(f)$ we have

$$
f(x)-f\left(x^{\prime}\right) \geq\left\langle\nabla f\left(x^{\prime}\right), x-x^{\prime}\right\rangle+\frac{\gamma}{2}\left\|x-x^{\prime}\right\|_{2}^{2}
$$

If ℓ is differentiable once and γ-strongly convex in the $\boldsymbol{\theta}$ argument, so it the risk $R_{\tilde{D}, \ell}$ by composition with
linear functions. Notice also that $\nabla R_{\tilde{D}, \ell}\left(\tilde{\boldsymbol{\theta}}^{\star}\right)=0$ because $\tilde{\boldsymbol{\theta}}^{\star}$ is the minimizer. Therefore:

$$
\begin{aligned}
\epsilon & \geq R_{\tilde{\mathcal{D}}, \ell}\left(\boldsymbol{\theta}^{\star}\right)-R_{\tilde{\mathcal{D}}, \ell}\left(\tilde{\boldsymbol{\theta}}^{\star}\right) \\
& \geq\left\langle\nabla R_{\tilde{\mathcal{D}}, \ell}\left(\tilde{\boldsymbol{\theta}}^{\star}\right), \boldsymbol{\theta}^{\star}-\tilde{\boldsymbol{\theta}}^{\star}\right\rangle+\frac{\gamma}{2}\left\|\boldsymbol{\theta}^{\star}-\tilde{\boldsymbol{\theta}}^{\star}\right\|_{2}^{2} \\
& \geq \frac{\gamma}{2}\left\|\boldsymbol{\theta}^{\star}-\tilde{\boldsymbol{\theta}}^{\star}\right\|_{2}^{2}
\end{aligned}
$$

which means that

$$
\left\|\boldsymbol{\theta}^{\star}-\tilde{\boldsymbol{\theta}}^{\star}\right\|_{2}^{2} \leq \frac{2 \epsilon}{\gamma}
$$

A. 7 Proof of Lemma 11

$$
\begin{aligned}
\operatorname{Cov}_{\mathcal{S}}[\boldsymbol{x}, y] & =\mathbb{E}_{\mathcal{S}}[y \boldsymbol{x}]-\mathbb{E}_{\mathcal{S}}[y] \mathbb{E}_{\mathcal{S}}[\boldsymbol{x}] \\
& =\boldsymbol{\mu}_{\mathcal{S}}-\left(\frac{1}{m} \sum_{i: y_{i}>0} 1-\frac{1}{m} \sum_{i: y_{i}<0} 1\right) \mathbb{E}_{\mathcal{S}}[\boldsymbol{x}] \\
& =\boldsymbol{\mu}_{\mathcal{S}}-\left(2 \pi_{+}-1\right) \mathbb{E}_{\mathcal{S}}[\boldsymbol{x}]
\end{aligned}
$$

The second statement follows immediately.

B Factorization of non linear-odd losses

When ℓ_{o} is not linear, we can find upperbounds in the form of affine functions. It suffices to be continuous and have asymptotes at $\pm \infty$.

Lemma 5 Let the loss ℓ be continuous. Suppose that it has asymptotes at $\pm \infty$, i.e. there exist $c_{1}, c_{2} \in \mathbb{R}$ and $d_{1}, d_{2} \in \mathbb{R}$ such that

$$
\lim _{x \rightarrow+\infty} \ell(x)-c_{1} x-d_{1}=0, \quad \lim _{x \rightarrow-\infty} \ell(x)-c_{2} x-d_{2}=0
$$

then there exists $q \in \mathbb{R}$ such that $\ell_{o}(x) \leq \frac{c_{1}+c_{2}}{2} x+q$.
Proof One can compute the limits at infinity of ℓ_{o} to get

$$
\lim _{x \rightarrow+\infty} \ell_{o}(x)-\frac{c_{1}+c_{2}}{2} x=\frac{d_{1}-d_{2}}{2}
$$

and

$$
\lim _{x \rightarrow-\infty} \ell_{o}(x)-\frac{c_{1}+c_{2}}{2} x=\frac{d_{2}-d_{1}}{2}
$$

Then $q \doteq \sup \left\{\ell_{o}(x)-\frac{c_{1}+c_{2}}{2} x\right\}<+\infty$ as ℓ_{o} is continuous. Thus $\ell_{o}(x)-\frac{c_{1}+c_{2}}{2} x \leq q$.

The Lemma covers many cases of practical interest outside the class of Lols, e.g. hinge, absolute and Huber losses. Exponential loss is the exception since $\ell_{o}(x)=-\sinh (x)$ cannot be bounded. Consider now hinge loss:
$\ell(x)=[1-x]_{+}$is not differentiable in 1 nor proper [Reid and Williamson, 2010], however it is continuous with asymptotes at $\pm \infty$. Therefore, for any $\boldsymbol{\theta}$ its empirical risk is bounded as

$$
R_{S, \text { hinge }}(\boldsymbol{\theta}) \leq \frac{1}{2} R_{\mathbb{S}_{2 x}, \text { hinge }}(\boldsymbol{\theta})-\frac{1}{2}\langle\boldsymbol{\theta}, \boldsymbol{\mu}\rangle+q
$$

since $c_{1}=0$ and $c_{2}=1$. An alternative proof of this result on hinge is provided next, giving the exact value of $q=1 / 2$. The odd term for hinge loss is

$$
\begin{aligned}
\ell_{o}(x) & =\frac{1}{2}\left([1-x]_{+}-[1+x]_{+}\right) \\
& =\frac{1}{4}(-2 x+|1-x|-|1+x|)
\end{aligned}
$$

due to an arithmetic trick for the max function: $\max (a, b)=(a+b) / 2+|b-a| / 2$. Then for any x

$$
\begin{aligned}
& |1-x| \leq|x|+1 \\
& |1+x| \geq|x|-1
\end{aligned}
$$

and therefore

$$
\ell_{o}(x) \leq \frac{1}{4}(-2 x+|x|+1-|x|+1)=\frac{1}{2}(1-x) .
$$

We also provide a "if-and-only-if" version of Lemma 5 fully characterizing which family of losses can be upperbounded by a LOL.

Lemma 6 Let $l: \mathbb{R} \rightarrow \mathbb{R}$ a continuous function. Then there exists $c_{1}, d_{1}, d_{2} \in \mathbb{R}$ such that

$$
\begin{equation*}
\limsup _{x \rightarrow+\infty} \ell_{o}(x)-c_{1} x-d_{1}=0 \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{x \rightarrow-\infty} \ell_{o}(x)-c_{1} x-d_{2}=0 \tag{33}
\end{equation*}
$$

if and only if there exists $q, q^{\prime} \in \mathbb{R}$ such that $\ell_{o}(x) \leq q^{\prime} x+q$ for every $x \in \mathbb{R}$.
Proof $\Rightarrow)$ Suppose that such limits exist and they are zero for some c_{1}, d_{1}, d_{2}. Let prove that ℓ_{o} is bounded from above by a line.

$$
q=\sup _{x \in \mathbb{R}}\left\{\ell_{o}(x)-c_{1} x\right\}<\infty
$$

because ℓ_{o} is continuous. So for every $x \in \mathbb{R}$

$$
\ell_{o}(x) \leq c_{1} x+q .
$$

In particular we can take c_{1} as the angular coefficient of the line.
$\Leftarrow)$ Vice versa we proceed by contradiction. Suppose that there exists $q, q^{\prime} \in \mathbb{R}$ such that ℓ_{o} is bounded from above by $\ell(x)=q^{\prime} x+q$. Suppose in addition that the conditions on the asymptotes (32) and (33) are false. This implies either the existence of a sequence $x_{n} \rightarrow+\infty$ such that

$$
\lim _{n \rightarrow \infty} \ell_{o}\left(x_{n}\right)-q^{\prime} x_{n} \rightarrow \pm \infty
$$

or the existence of another sequence $x_{n}^{\prime} \rightarrow-\infty$

$$
\lim _{n \rightarrow \infty} \ell_{o}\left(y_{n}\right)-q^{\prime} x_{n}^{\prime} \rightarrow \pm \infty
$$

On one hand, if at least one of these two limits is $+\infty$ then we already reach a contradiction, because $\ell_{o}(x)$ is supposed to be bounded from above by $\ell(x)=q^{\prime} x+q$. Suppose on the other hand that $x_{n} \rightarrow+\infty$ is such that

$$
\lim _{n \rightarrow+\infty} \ell_{o}\left(x_{n}\right)-q^{\prime} x_{n} \rightarrow-\infty
$$

Then defining $x_{n}^{\prime}=-x_{n}$ we have

$$
\lim _{n \rightarrow+\infty} \ell_{o}\left(w_{n}\right)-m x_{n}^{\prime} \rightarrow+\infty
$$

and for the same reason as above we reach a contradiction.

C Factorization of square loss for regression

We have formulated the Factorization Theorem for classification problems. However, a similar property holds for regression with square loss: $f\left(\left\langle\boldsymbol{\theta}, \boldsymbol{x}_{i}\right\rangle, y\right)=\left(\left\langle\boldsymbol{\theta}, \boldsymbol{x}_{i}\right\rangle-y_{i}\right)^{2}$ factors as

$$
\mathbb{E}_{\mathcal{S}}\left[(\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle-y)^{2}\right]=\mathbb{E}_{\mathcal{S}}\left[\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle^{2}\right]+\mathbb{E}_{\mathcal{S}}\left[y^{2}\right]-2\langle\boldsymbol{\theta}, \boldsymbol{\mu}\rangle
$$

Taking the minimizers on both sides we obtain

$$
\begin{aligned}
\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \mathbb{E}_{\mathcal{S}}[f(\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle, y)] & =\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \mathbb{E}_{\mathcal{S}}\left[\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle^{2}\right]-2\langle\boldsymbol{\theta}, \boldsymbol{\mu}\rangle \\
& =\underset{\boldsymbol{\theta}}{\operatorname{argmin}}\left\|X^{\top} \boldsymbol{\theta}\right\|_{2}^{2}-2\langle\boldsymbol{\theta}, \boldsymbol{\mu}\rangle
\end{aligned}
$$

D The role of Lols in du Plessis et al. [2015]

Let $\pi_{+} \doteq \mathbb{P}(y=1)$ and let \mathcal{D}_{+}and \mathcal{D}_{-}respectively the set of positive and negative examples in \mathcal{D}. Consider first

$$
\begin{equation*}
\mathbb{E}_{(\boldsymbol{x}, \cdot) \sim \mathcal{D}}[\ell(-\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle)]=\pi_{+} \mathbb{E}_{(\boldsymbol{x}, \cdot) \sim \mathcal{D}_{+}}[\ell(-\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle)]+\left(1-\pi_{+}\right) \mathbb{E}_{(\boldsymbol{x}, \cdot) \sim \mathcal{D}_{-}}[\ell(-\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle)] \tag{34}
\end{equation*}
$$

Then, it is also true that

$$
\begin{equation*}
\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}}[\ell(y\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle)]=\pi_{+} \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}_{+}}[\ell(y\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle)]+\left(1-\pi_{+}\right) \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}_{-}}[\ell(y\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle)] \tag{35}
\end{equation*}
$$

Now, solve Equation 34 for $\left(1-\pi_{+}\right) \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}_{-}}[\ell(y\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle)]=\left(1-\pi_{+}\right) \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}_{-}}[-\ell(-\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle)]$ and substitute it into Equation 35 so as to obtain:

$$
\begin{align*}
\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}}[\ell(y\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle)] & =\pi_{+} \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}_{+}}[\ell(y\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle)]+\mathbb{E}_{(\boldsymbol{x}, \cdot) \sim \mathcal{D}}[\ell(-\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle)]-\pi_{+} \mathbb{E}_{(\boldsymbol{x}, \cdot) \sim \mathcal{D}_{+}}[\ell(-\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle)] \\
& =\pi_{+}\left(\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}_{+}}[\ell(+\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle)]-\mathbb{E}_{(\boldsymbol{x}, \cdot) \sim \mathcal{D}_{+}}[\ell(-\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle)]\right)+\mathbb{E}_{(\boldsymbol{x}, \cdot) \sim \mathcal{D}}[\ell(-\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle)] \\
& =\frac{\pi_{+}}{2} \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}_{+}}\left[\ell_{o}(+\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle)\right]+\mathbb{E}_{(\boldsymbol{x}, \cdot) \sim \mathcal{D}}[\ell(-\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle)], \tag{36}
\end{align*}
$$

by our usual definition of $\ell_{o}(x)=\frac{1}{2}(\ell(x)-\ell(-x))$. Recall that one of the goals of the authors is to conserve the convexity of this new crafted loss function. Then, du Plessis et al. [2015, Theorem 1] proceeds stating that when ℓ_{o} is convex, it must also be linear. And therefore they must focus on lols. The result of du Plessis et al. [2015, Theorem 1] is immediate from the point of view of our theory: in fact, an odd function can be convex or concave only if it also linear. The resulting expression based on the fact $\ell(x)-\ell(-x)=2 a x$ simplifies into

$$
\begin{aligned}
\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}}[\ell(y\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle)] & =a \pi_{+} \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}_{+}}[y\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle]+\mathbb{E}_{(\boldsymbol{x}, \cdot) \sim \mathcal{D}}[\ell(-\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle)] \\
& =a \pi_{+} \boldsymbol{\mu}_{\mathcal{D}_{+}}+\mathbb{E}_{(\boldsymbol{x}, \cdot) \sim \mathcal{D}}[\ell(-\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle)]
\end{aligned}
$$

where $\boldsymbol{\mu}_{\mathcal{D}_{+}}$is a mean operator computed on positive examples only. Notice how the second term is instead label independent, although it is not an even function as in the Factorization Theorem.

E Additional examples of loss factorization

	loss	even function ℓ_{e}	odd function l_{o}
generic	$\ell(x)$	$\frac{1}{2}(\ell(x)+\ell(-x))$	$\frac{1}{2}(\ell(x)-\ell(-x))$
01	$1\{x \leq 0\}$	$1-\frac{1}{2}\{x \neq 0\}$	$-\frac{1}{2} \operatorname{sign}(x)$
exponential	e^{-x}	$\cosh (x)$	$-\sinh (x)$
hinge	$[1-x]_{+}$	$\frac{1}{2}\left([1-x]_{+}-[1-x]_{+}\right)$	$\frac{1}{2}\left([1-x]_{+}-[1+x]_{+}\right)^{\dagger}$
LOL	$\ell(x)$	$\frac{1}{2}(\ell(x)+\ell(-x))$	$-a x$
ρ-loss	$\rho\|x\|-\rho x+1$	$\rho\|x\|+1$	$-\rho x(\rho \geq 0)$
unhinged	$1-x$	1	$-x$
perceptron	$\max (0,-x)$	$x \operatorname{sign}(x)$	$-x$
2-hinge	$\max (-x, 1 / 2 \max (0,1-x))$	$\dagger \dagger$	$-x$
SPL	$a_{l}+l^{\star}(-x) / b_{l}$	$a_{l}+\frac{1}{2 b_{l}\left(l^{\star}(x)+l^{\star}(-x)\right)}$	$-x /\left(2 b_{l}\right)$
logistic	$\log \left(1+e^{-x}\right)$	$\frac{1}{2} \log \left(2+e^{x}+e^{-x}\right)$	$-x / 2$
square	$(1-x)^{2}$	$1+x^{2}$	$-2 x$
Matsushita	$\sqrt{1+x^{2}}-x$	$\sqrt{1+x^{2}}$	$-x$

Table 1: Factorization of losses in light of Theorem 12 . † The odd term of hinge loss is upperbounded by $(1-x) / 2$ in B. ${ }^{\dagger \dagger}=\max (-x, 1 / 2 \max (0,1-x))+\max (x, 1 / 2 \max (0,1+x))$.

References

C. McDiarmid. Concentration. In M. Habib, C. McDiarmid, J. Ramirez-Alfonsin, and B. Reed, editors, Probabilistic Methods for Algorithmic Discrete Mathematics, pages 1-54. Springer Verlag, 1998.
P.-L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. JMLR, 3:463-482, 2002.
N. Natarajan, I. S. Dhillon, P. K. Ravikumar, and A. Tewari. Learning with noisy labels. In NIPS*27, 2013.
B. van Rooyen, A. K. Menon, and R. C. Williamson. Learning with symmetric label noise: The importance of being unhinged. In NIPS*29, 2015.
N. Manwani and P. S. Sastry. Noise tolerance under risk minimization. Cybernetics, IEEE Transactions on, 43 (3):1146-1151, 2013.
M. D. Reid and R. C. Williamson. Composite binary losses. JMLR, 11:2387-2422, 2010.

M C. du Plessis, G. Niu, and M. Sugiyama. Convex formulation for learning from positive and unlabeled data. In $32^{\text {th }}$ ICML, pages 1386-1394, 2015.

