Supplement to: Loss factorization, weakly supervised learning and label noise robustness

A Proofs

A.1 Proof of Lemma 5

We need to show the double implication that defines sufficiency for y.

 \Rightarrow) By Factorization Theorem (3), $R_{S,\ell}(h) - R_{S',\ell}(h)$ is label independent only if the odd part cancels out. \Leftarrow) If $\mu_S = \mu'_S$ then $R_{S,\ell}(h) - R_{S',\ell}(h)$ is independent of the label, because the label only appears in the mean operator due to Factorization Theorem (3).

A.2 Proof of Lemma 6

Consider the class of LOLs satisfying $\ell(x) - \ell(-x) = 2ax$. For any element of the class, define $\ell_e(x) = \ell(x) - ax$, which is even. In fact we have

$$\ell_e(-x) = \ell(-x) + ax = \ell(x) - 2ax + ax = \ell(x) - ax = \ell_e(x) .$$

A.3 Proof of Theorem 7

We start by proving two helper Lemmas. The next one provides a bound to the Rademacher complexity computed on the sample $S_{2x} \doteq \{(x_i, \sigma), i \in [m], \forall \sigma \in \mathcal{Y}\}$.

Lemma 1 Suppose m even. Suppose $\mathfrak{X} = \{ \boldsymbol{x} : \| \boldsymbol{x} \|_2 \leq X \}$ be the observations space, and $\mathfrak{H} = \{ \boldsymbol{\theta} : \| \boldsymbol{\theta} \|_2 \leq B \}$ be the space of linear hypotheses. Let $\mathfrak{Y}^{2m} \doteq \times_{j \in [2m]} \mathfrak{Y}$. Then the empirical Rademacher complexity

$$\mathcal{R}(\mathcal{H} \circ \mathcal{S}_{2x}) \doteq \mathbb{E}_{\sigma \sim \mathcal{Y}^{2m}} \left[\sup_{\boldsymbol{\theta} \in \mathcal{H}} \frac{1}{2m} \sum_{i \in [2m]} \sigma_i \langle \boldsymbol{\theta}, \boldsymbol{x}_i \rangle \right]$$

of \mathcal{H} on S_{2x} satisfies:

$$\Re(\mathfrak{H} \circ \mathfrak{S}_{2x}) \leq v \cdot \frac{BX}{\sqrt{2m}} , \qquad (1)$$

with $v \doteq \frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2} - \frac{1}{m}}$.

Proof Suppose without loss of generality that $x_i = x_{m+i}$. The proof relies on the observation that $\forall \sigma \in \mathcal{Y}^{2m}$,

$$\arg \sup_{\boldsymbol{\theta} \in \mathcal{H}} \left\{ \mathbb{E}_{\mathcal{S}}[\sigma(\boldsymbol{x})\langle \boldsymbol{\theta}, \boldsymbol{x} \rangle] \right\} = \frac{1}{2m} \arg \sup_{\boldsymbol{\theta} \in \mathcal{H}} \left\{ \sum_{i} \sigma_{i} \langle \boldsymbol{\theta}, \boldsymbol{x}_{i} \rangle \right\}$$
$$= \frac{\sup_{\mathcal{H}} \|\boldsymbol{\theta}\|_{2}}{\|\sum_{i} \sigma_{i} \boldsymbol{x}_{i}\|_{2}} \sum_{i} \sigma_{i} \boldsymbol{x}_{i} .$$
(2)

So,

$$\begin{aligned} \mathcal{R}(\mathcal{H} \circ \mathbb{S}_{2x}) &= \mathbb{E}_{\mathcal{Y}^{2m}} \sup_{h \in \mathcal{H}} \left\{ \mathbb{E}_{\mathbb{S}_{2x}} [\sigma(\boldsymbol{x})h(\boldsymbol{x})] \right\} \\ &= \frac{\sup_{\mathcal{H}} \|\boldsymbol{\theta}\|_2}{2m} \cdot \mathbb{E}_{\mathcal{Y}^{2m}} \left[\frac{\left(\sum_{i=1}^{2m} \sigma_i \boldsymbol{x}_i\right)^{\mathsf{T}} \left(\sum_{i=1}^{2m} \sigma_i \boldsymbol{x}_i\right)}{\|\sum_{i=1}^{2m} \sigma_i \boldsymbol{x}_i\|_2} \right] \\ &= \sup_{\mathcal{H}} \|\boldsymbol{\theta}\|_2 \cdot \mathbb{E}_{\mathcal{Y}^{2m}} \left[\frac{1}{2m} \cdot \left\| \sum_{i=1}^{2m} \sigma_i \boldsymbol{x}_i \right\|_2 \right] . \end{aligned}$$
(3)

Now, remark that whenever $\sigma_i = -\sigma_{m+i}$, x_i disappears in the sum, and therefore the max norm for the sum may decrease as well. This suggests to split the 2^{2m} assignations into 2^m groups of size 2^m , ranging over the possible number of observations taken into account in the sum. They can be factored by a weighted sum of contributions of each subset of indices $\mathcal{I} \subseteq [m]$ ranging over the non-duplicated observations:

$$\mathbb{E}_{\mathcal{Y}^{2m}}\left[\frac{1}{m} \cdot \left\|\sum_{i=1}^{2m} \sigma_i \boldsymbol{x}_i\right\|_2\right] = \frac{1}{2^{2m}} \sum_{\mathcal{I} \subseteq [m]} \frac{2^{m-|\mathcal{I}|}}{2m} \cdot \sum_{\boldsymbol{\sigma} \in \mathcal{Y}^{|\mathcal{I}|}} \sqrt{2} \left\|\sum_{i \in \mathcal{I}} \sigma_i \boldsymbol{x}_i\right\|_2.$$
(4)

$$= \frac{\sqrt{2}}{2^{m}} \sum_{\mathcal{I} \subseteq [m]} \frac{1}{2m} \cdot \underbrace{\frac{1}{2^{|\mathcal{I}|}} \cdot \sum_{\boldsymbol{\sigma} \in \mathcal{Y}^{|\mathcal{I}|}} \left\| \sum_{i \in \mathcal{I}} \sigma_{i} \boldsymbol{x}_{i} \right\|_{2}}_{u_{|\mathcal{I}|}} .$$
(5)

The $\sqrt{2}$ factor appears because of the fact that we now consider only the observations of S. Now, for any *fixed* \mathcal{I} , we renumber its observations in $[|\mathcal{I}|]$ for simplicity, and observe that, since $\sqrt{1+x} \leq 1+x/2$,

$$u_{|\mathcal{I}|} = \frac{1}{2^{|\mathcal{I}|}} \sum_{\boldsymbol{\sigma} \in \mathcal{Y}^{|\mathcal{I}|}} \sqrt{\sum_{i \in \mathcal{I}} \|\boldsymbol{x}_i\|_2^2 + \sum_{i_1 \neq i_2} \sigma_{i_1} \sigma_{i_2} \boldsymbol{x}_{i_1}^\top \boldsymbol{x}_{i_2}}$$
(6)

$$= \frac{\sqrt{\sum_{i \in \mathcal{I}} \|\boldsymbol{x}_i\|_2^2}}{2^{|\mathcal{I}|}} \sum_{\boldsymbol{\sigma} \in \mathcal{Y}^{|\mathcal{I}|}} \sqrt{1 + \frac{\sum_{i_1 \neq i_2} \sigma_{i_1} \sigma_{i_2} \boldsymbol{x}_{i_1}^\top \boldsymbol{x}_{i_2}}{\sum_{i \in \mathcal{I}} \|\boldsymbol{x}_i\|_2^2}}$$
(7)

$$\leq \frac{\sqrt{\sum_{i \in \mathcal{I}} \|\boldsymbol{x}_i\|_2^2}}{2^{|\mathcal{I}|}} \sum_{\boldsymbol{\sigma} \in \mathcal{Y}^{|\mathcal{I}|}} \left(1 + \frac{\sum_{i_1 \neq i_2} \sigma_{i_1} \sigma_{i_2} \boldsymbol{x}_{i_1}^\top \boldsymbol{x}_{i_2}}{2\sum_{i \in \mathcal{I}} \|\boldsymbol{x}_i\|_2^2} \right)$$
(8)

$$= \sqrt{\sum_{i \in \mathcal{I}} \|\boldsymbol{x}_i\|_2^2} + \frac{1}{2^{|\mathcal{I}|} \cdot 2\sum_{i \in \mathcal{I}} \|\boldsymbol{x}_i\|_2^2} \cdot \sum_{\boldsymbol{\sigma} \in \mathcal{Y}^{|\mathcal{I}|}} \sum_{i_1 \neq i_2} \sigma_{i_1} \sigma_{i_2} \boldsymbol{x}_{i_1}^\top \boldsymbol{x}_{i_2}$$
(9)

$$= \sqrt{\sum_{i\in\mathcal{I}} \|\boldsymbol{x}_i\|_2^2} + \frac{1}{2^{|\mathcal{I}|} \cdot 2\sum_{i\in\mathcal{I}} \|\boldsymbol{x}_i\|_2^2} \cdot \sum_{i_1\neq i_2} \boldsymbol{x}_{i_1}^\top \boldsymbol{x}_{i_2} \cdot \underbrace{\left(\sum_{\boldsymbol{\sigma}\in\mathcal{Y}^{|\mathcal{I}|}} \sigma_{i_1}\sigma_{i_2}\right)}_{=0}\right)}_{=0}$$
(10)

$$= \sqrt{\sum_{i \in \mathcal{I}} \|\boldsymbol{x}_i\|_2^2} \tag{11}$$

$$\leq \sqrt{|\mathcal{I}|} \cdot X$$
 (12)

Plugging this in eq. (5) yields

$$\frac{1}{X} \cdot \mathbb{E}_{\mathcal{Y}^{2m}} \left[\frac{1}{m} \cdot \left\| \sum_{i=1}^{2m} \sigma_i \boldsymbol{x}_i \right\|_2 \right] \leq \frac{\sqrt{2}}{2^m} \sum_{k=0}^m \frac{\sqrt{k}}{2m} \binom{m}{k} .$$
(13)

Since m is even:

$$\mathbb{E}_{\mathcal{Y}^{2m}}\left[\frac{1}{2m} \cdot \left\|\sum_{i=1}^{2m} \sigma_i \boldsymbol{x}_i\right\|_2\right] \leq \frac{\sqrt{2}}{2m} \sum_{k=0}^{(m/2)-1} \frac{\sqrt{k}}{2m} \binom{m}{k} + \frac{\sqrt{2}}{2^m} \sum_{k=m/2}^m \frac{\sqrt{k}}{2m} \binom{m}{k} .$$
(14)

Notice that the left one trivially satisfies

$$\frac{\sqrt{2}}{2^{m}} \sum_{k=0}^{(m/2)-1} \frac{\sqrt{k}}{2m} {m \choose k} \leq \frac{\sqrt{2}}{2^{m}} \sum_{k=0}^{(m/2)-1} \frac{1}{2m} \cdot \sqrt{\frac{m-2}{2}} {m \choose k} \\
= \frac{1}{2} \cdot \sqrt{\frac{1}{m} - \frac{2}{m^{2}}} \cdot \frac{1}{2^{m}} \sum_{k=0}^{(m/2)-1} {m \choose k} \\
\leq \frac{1}{4} \cdot \sqrt{\frac{1}{m} - \frac{2}{m^{2}}} \tag{15}$$

Also, the right one satisfies:

$$\frac{\sqrt{2}}{2^{m}} \sum_{k=m/2}^{m} \frac{\sqrt{k}}{2m} \binom{m}{k} \leq \frac{\sqrt{2}}{2^{m}} \sum_{k=m/2}^{m} \frac{\sqrt{m}}{2m} \binom{m}{k} \\
= \frac{1}{\sqrt{2m}} \cdot \frac{1}{2^{m}} \sum_{k=m/2}^{m} \binom{m}{k} \\
= \frac{1}{2} \cdot \frac{1}{\sqrt{2m}} .$$
(16)

We get

$$\frac{1}{X} \cdot \mathbb{E}_{\mathcal{Y}^{2m}} \left[\frac{1}{m} \cdot \left\| \sum_{i=1}^{2m} \sigma_i \boldsymbol{x}_i \right\|_2 \right] \leq \frac{1}{4} \cdot \sqrt{\frac{1}{m} - \frac{2}{m^2}} + \frac{1}{2} \cdot \sqrt{\frac{1}{2m}}$$
(17)

$$= \frac{1}{\sqrt{2m}} \cdot \left(\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2} - \frac{1}{m}}\right) .$$
 (18)

And finally:

$$\mathcal{R}(\mathcal{H} \circ \mathcal{S}_{2x}) \leq v \cdot \frac{BX}{\sqrt{2m}} , \qquad (19)$$

with

$$v \doteq \frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2} - \frac{1}{m}}$$
, (20)

as claimed.

The second Lemma is a straightforward application of McDiarmid 's inequality [McDiarmid, 1998] to evaluate the convergence of the empirical mean operator to its population counterpart.

Lemma 2 Suppose $\mathbb{R}^d \supseteq \mathfrak{X} = \{ \boldsymbol{x} : \|\boldsymbol{x}\|_2 \leq X < \infty \}$ be the observations space. Then for any $\delta > 0$ with probability at least $1 - \delta$

$$\|\boldsymbol{\mu}_{\mathcal{D}} - \boldsymbol{\mu}_{\mathcal{S}}\|_2 \leq X \cdot \sqrt{\frac{d}{m} \log\left(\frac{d}{\delta}\right)}$$
.

Proof Let S and S' be two learning samples that differ for only one example $(x_i, y_i) \neq (x_{i'}, y_{i'})$. Let first consider the one-dimensional case. We refer to the k-dimensional component of μ with μ^k . For any S, S' and any $k \in [d]$ it holds

$$egin{aligned} egin{aligned} egi$$

This satisfies the bounded difference condition of McDiarmid's inequality, which let us write for any $k \in [d]$ and any $\epsilon > 0$ that

$$\mathbb{P}\left(\left|\boldsymbol{\mu}_{\mathcal{D}}^{k}-\boldsymbol{\mu}_{\mathcal{S}}^{k}\right|\geq\epsilon\right)\leq\exp\left(-\frac{m\epsilon^{2}}{2X^{2}}\right)$$

and the multi-dimensional case, by union bound

$$\mathbb{P}\left(\exists k \in [d] : \left|\boldsymbol{\mu}_{\mathcal{D}}^{k} - \boldsymbol{\mu}_{\mathcal{S}}^{k}\right| \ge \epsilon\right) \le d \exp\left(-\frac{m\epsilon^{2}}{2X^{2}}\right) \;.$$

Then by negation

$$\mathbb{P}\left(\forall k \in [d]: \left|\boldsymbol{\mu}_{\mathcal{D}}^{k} - \boldsymbol{\mu}_{\mathcal{S}}^{k}\right| \leq \epsilon\right) \geq 1 - d \exp\left(-\frac{m\epsilon^{2}}{2X^{2}}\right) ,$$

which implies that for any $\delta > 0$ with probability $1 - \delta$

$$X\sqrt{\frac{2}{m}\log\left(\frac{d}{\delta}\right)} \ge \left\|\boldsymbol{\mu}_{\mathcal{D}} - \boldsymbol{\mu}_{\mathcal{S}}\right\|_{\infty} \ge d^{-1/2} \left\|\boldsymbol{\mu}_{\mathcal{D}} - \boldsymbol{\mu}_{\mathcal{S}}\right\|_{2}$$

This concludes the proof.

We now restate and prove Theorem 7.

Theorem 7 Assume ℓ is a-LOL and L-Lipschitz. Suppose $\mathbb{R}^d \supseteq \mathfrak{X} = \{ \boldsymbol{x} : \|\boldsymbol{x}\|_2 \leq X < \infty \}$ be the observations space, and $\mathfrak{H} = \{ \boldsymbol{\theta} : \|\boldsymbol{\theta}\|_2 \leq B < \infty \}$ be the space of linear hypotheses. Let $c(X, B) \doteq \max_{\boldsymbol{y} \in \mathfrak{Y}} \ell(\boldsymbol{y}XB)$. Let $\hat{\boldsymbol{\theta}} = \operatorname{argmin}_{\boldsymbol{\theta} \in \mathfrak{H}} R_{\mathfrak{S},\ell}(\boldsymbol{\theta})$. Then for any $\delta > 0$, with probability at least $1 - \delta$

$$R_{\mathcal{D},\ell}(\hat{\boldsymbol{\theta}}) - R_{\mathcal{D},\ell}(\boldsymbol{\theta}^{\star}) \leq \left(\frac{\sqrt{2}+1}{4}\right) \cdot \frac{XBL}{\sqrt{m}} + \frac{c(X,B)L}{2} \cdot \sqrt{\frac{1}{m}\log\left(\frac{1}{\delta}\right)} + 2|a|B \cdot \|\boldsymbol{\mu}_{\mathcal{D}} - \boldsymbol{\mu}_{\mathcal{S}}\|_{2} ,$$

or more explicitly

$$R_{\mathcal{D},\ell}(\hat{\boldsymbol{\theta}}) - R_{\mathcal{D},\ell}(\boldsymbol{\theta}^{\star}) \le \left(\frac{\sqrt{2}+1}{4}\right) \cdot \frac{XBL}{\sqrt{m}} + \frac{c(X,B)L}{2}\sqrt{\frac{1}{m}\log\left(\frac{2}{\delta}\right)} + 2|a|XB\sqrt{\frac{d}{m}\log\left(\frac{2d}{\delta}\right)}$$

Proof Let $\theta^{\star} = \operatorname{argmin}_{\theta \in \mathcal{H}} R_{\mathcal{D},\ell}(\theta)$. We have

$$R_{\mathcal{D},\ell}(\hat{\boldsymbol{\theta}}) - R_{\mathcal{D},\ell}(\boldsymbol{\theta}^{\star}) = \frac{1}{2} R_{\mathcal{D}_{2x},\ell}(\hat{\boldsymbol{\theta}}) + a\langle\hat{\boldsymbol{\theta}},\boldsymbol{\mu}_{\mathcal{D}}\rangle - \frac{1}{2} R_{\mathcal{D}_{2x},\ell}(\boldsymbol{\theta}^{\star}) - a\langle\boldsymbol{\theta}^{\star},\boldsymbol{\mu}_{\mathcal{D}}\rangle$$

$$= \frac{1}{2} \left(R_{\mathcal{D}_{2x},\ell}(\hat{\boldsymbol{\theta}}) - R_{\mathcal{D}_{2x},\ell}(\boldsymbol{\theta}^{\star}) \right) + a\langle\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star},\boldsymbol{\mu}_{\mathcal{D}}\rangle$$

$$= \frac{1}{2} \left(R_{\mathcal{S}_{2x},\ell}(\hat{\boldsymbol{\theta}}) - R_{\mathcal{S}_{2x},\ell}(\boldsymbol{\theta}^{\star}) \right) + a\langle\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star},\boldsymbol{\mu}_{\mathcal{D}}\rangle$$

$$+ \frac{1}{2} \left(R_{\mathcal{D}_{2x},\ell}(\hat{\boldsymbol{\theta}}) - R_{\mathcal{S}_{2x},\ell}(\hat{\boldsymbol{\theta}}) - R_{\mathcal{D}_{2x},\ell}(\boldsymbol{\theta}^{\star}) + R_{\mathcal{S}_{2x},\ell}(\boldsymbol{\theta}^{\star}) \right) \right\} A_{1} .$$

$$(21)$$

Step 21 is obtained by the equality $R_{\mathcal{D},\ell}(\theta) = \frac{1}{2}R_{\mathcal{D}_{2x},\ell}(\theta) + a\langle\theta,\mu_{\mathcal{D}}\rangle$ for any θ . Now, rename Line 22 as A_1 . Applying the same equality with regard to δ , we have

$$R_{\mathcal{D},\ell}(\hat{\theta}) - R_{\mathcal{D},\ell}(\theta^{\star}) \leq \underbrace{R_{\mathcal{S},\ell}(\hat{\theta}) - R_{\mathcal{S},\ell}(\theta^{\star})}_{A_2} + \underbrace{a\langle \hat{\theta} - \theta^{\star}, \mu_{\mathcal{D}} - \mu_{\mathcal{S}} \rangle}_{A_3} + A_1 .$$

Now, A_2 is never more than 0 because $\hat{\theta}$ is the minimizer of $R_{s,\ell}(\theta)$. From the Cauchy-Schwarz inequality and bounded models it holds true that

$$A_{3} \leq |a| \left\| \hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star} \right\|_{2} \cdot \left\| \boldsymbol{\mu}_{\mathcal{D}} - \boldsymbol{\mu}_{\mathcal{S}} \right\|_{2} \leq 2|a|B \left\| \boldsymbol{\mu}_{\mathcal{D}} - \boldsymbol{\mu}_{\mathcal{S}} \right\|_{2}$$
(23)

We could treat A_1 by calling standard bounds based on Rademacher complexity on a sample with size 2m [Bartlett and Mendelson, 2002]. Indeed, since the complexity does not depend on labels, its value would be the same –modulo the change of sample size– for both S and S_{2x} , as they are computed with same loss and observations. However, the special structure of S_{2x} allows us to obtain a tighter structural complexity term, due to some cancellation effect. The fact is proven by Lemma 1. In order to exploit it, we first observe that

$$A_{1} \leq \frac{1}{2} \Big(R_{\mathcal{D}_{2x},\ell}(\hat{\boldsymbol{\theta}}) - R_{\mathcal{S}_{2x},\ell}(\hat{\boldsymbol{\theta}}) - R_{\mathcal{D}_{2x},\ell}(\boldsymbol{\theta}^{\star}) + R_{\mathcal{S}_{2x},\ell}(\boldsymbol{\theta}^{\star}) \Big)$$

$$\leq \sup_{\boldsymbol{\theta}\in\mathcal{H}} |R_{\mathcal{D}_{2x},\ell}(\boldsymbol{\theta}) - R_{\mathcal{S}_{2x},\ell}(\boldsymbol{\theta})|$$

which by standard arguments [Bartlett and Mendelson, 2002] and the application of Lemma 1 gives a bound with probability at least $1 - \delta$, $\delta > 0$

$$A_{1} \leq 2L \cdot \Re(\mathfrak{H} \circ \mathfrak{S}_{2x}) + c(X, B)L \cdot \sqrt{\frac{1}{4m}\log\left(\frac{1}{\delta}\right)}$$
$$\leq L \cdot \frac{\sqrt{2}+1}{\sqrt{2}} \cdot \frac{BX}{\sqrt{2m}} + c(X, B)L \cdot \sqrt{\frac{1}{4m}\log\left(\frac{1}{\delta}\right)}$$

where $c(X,B) \doteq \max_{y \in \mathcal{Y}} \ell(yXB)$ and because $\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2} - \frac{1}{m}} < \left(\frac{\sqrt{2}+1}{\sqrt{2}}\right)$, $\forall m > 0$. We combine the results and get with probability at least $1 - \delta$, $\delta > 0$ that

$$R_{\mathcal{D},\ell}(\hat{\boldsymbol{\theta}}) - R_{\mathcal{D},\ell}(\boldsymbol{\theta}^{\star}) \le \left(\frac{\sqrt{2}+1}{2}\right) \cdot \frac{XBL}{\sqrt{m}} + \frac{c(X,B)L}{2} \cdot \sqrt{\frac{1}{m}\log\left(\frac{1}{\delta}\right)} + 2|a|B \cdot \|\boldsymbol{\mu}_{\mathcal{D}} - \boldsymbol{\mu}_{\mathcal{S}}\|_{2} \quad (24)$$

This proves the first part of the statement. For the second one, we apply Lemma 2 that provides the probabilistic bound for the norm discrepancy of the mean operators. Consider that both statements are true with probability at least $1 - \delta/2$. We write

$$\mathbb{P}\left(\left\{R_{\mathcal{D},\ell}(\hat{\boldsymbol{\theta}}) - R_{\mathcal{D},\ell}(\boldsymbol{\theta}^{\star}) \leq \left(\frac{\sqrt{2}+1}{2}\right) \cdot \frac{XBL}{\sqrt{m}} + \frac{c(X,B)L}{2} \cdot \sqrt{\frac{1}{m}\log\left(\frac{2}{\delta}\right)} + 2|a|B \cdot \|\boldsymbol{\mu}_{\mathcal{D}} - \boldsymbol{\mu}_{\mathcal{S}}\|_{2}\right\} \\ \wedge \left\{\|\boldsymbol{\mu}_{\mathcal{D}} - \boldsymbol{\mu}_{\mathcal{S}}\|_{2} \leq X \cdot \sqrt{\frac{d}{m}\log\left(\frac{2d}{\delta}\right)}\right\} \ge 1 - \delta/2 - \delta/2 = 1 - \delta \ ,$$

and therefore with probability $1-\delta$

$$R_{\mathcal{D},\ell}(\hat{\boldsymbol{\theta}}) - R_{\mathcal{D},\ell}(\boldsymbol{\theta}^{\star}) \le \left(\frac{\sqrt{2}+1}{2}\right) \cdot \frac{XBL}{\sqrt{m}} + \frac{c(X,B)L}{2} \cdot \sqrt{\frac{1}{m}\log\left(\frac{2}{\delta}\right)} + 2|a|XB \cdot \sqrt{\frac{d}{m}\log\left(\frac{2d}{\delta}\right)} \ .$$

A.4 Unbiased estimator for the mean operator with asymmetric label noise

Natarajan et al. [2013, Lemma 1] provides an unbiased estimator for a loss $\ell(x)$ computed on x of the form:

$$\hat{\ell}(y \langle \boldsymbol{\theta}, \boldsymbol{x}_i \rangle) \doteq \frac{(1 - p_{-y}) \cdot \ell(\langle \boldsymbol{\theta}, \boldsymbol{x}_i \rangle) + p_y \cdot \ell(-\langle \boldsymbol{\theta}, \boldsymbol{x}_i \rangle)}{1 - p_{-} - p_{+}}$$

We apply it for estimating the mean operator instead of, from another perspective, for estimating a linear (unhinged) loss as in van Rooyen et al. [2015]. We are allowed to do so by the very result of the Factorization Theorem, since the noise corruption has effect on the linear-odd term of the loss only. The estimator of the sufficient statistic of a single example yx is

$$egin{aligned} \hat{m{z}} &\doteq rac{1-p_{-y}+p_y}{1-p_{-}-p_{+}}ym{x} \ &= rac{1-(p_{-}-p_{+})y}{1-p_{-}-p_{+}}ym{x} \ &= rac{y-(p_{-}-p_{+})}{1-p_{-}-p_{+}}m{x} \ , \end{aligned}$$

and its average, *i.e.* the mean operator estimator, is

$$\hat{oldsymbol{\mu}}_{\mathcal{S}} \doteq \mathbb{E}_{\mathcal{S}}\left[rac{y-(p_-+p_+)}{1-p_--p_+}oldsymbol{x}
ight]$$

such that in expectation over the noisy distribution it holds $\mathbb{E}_{\tilde{D}}[\hat{z}] = \mu_{\mathcal{D}}$. Moreover, the corresponding risk enjoys the same unbiasedness property. In fact

$$\hat{R}_{\tilde{\mathcal{D}},\ell}(\boldsymbol{\theta}) = \frac{1}{2} R_{\mathcal{D}_{2x},\ell}(\boldsymbol{\theta}) + \mathbb{E}_{\tilde{\mathcal{D}}} \left[a \langle \boldsymbol{\theta}, \hat{\boldsymbol{z}} \rangle \right]
= \frac{1}{2} R_{\mathcal{D}_{2x},\ell}(\boldsymbol{\theta}) + a \langle \boldsymbol{\theta}, \hat{\boldsymbol{\mu}}_{\tilde{\mathcal{D}}} \rangle
= \frac{1}{2} R_{\mathcal{D}_{2x},\ell}(\boldsymbol{\theta}) + a \langle \boldsymbol{\theta}, \boldsymbol{\mu}_{\mathcal{D}} \rangle
= R_{\mathcal{D},\ell}(\boldsymbol{\theta}) ,$$
(25)

where we have also used the independency on labels (and therefore of label noise) of $R_{\mathcal{D}_{2x},\ell}$.

A.5 Proof of Theorem 8

This Theorem is a version of Theorem 7 applied to the case of asymmetric label noise. Those results differ in three elements. First, we consider the generalization property of a minimizer $\hat{\theta}$ that is learnt on the corrupted sample \tilde{S} . Second, the minimizer is computed on the basis of the unbiased estimator of $\hat{\mu}_{\tilde{S}}$ and not barely $\mu_{\tilde{S}}$. Third, as a consequence, Lemma 2 is not valid in this scenario. Therefore, we first prove a version of the bound for the mean operator norm discrepancy while considering label noise.

Lemma 3 Suppose $\mathbb{R}^d \supseteq \mathfrak{X} = \{ \boldsymbol{x} : \|\boldsymbol{x}\|_2 \le X < \infty \}$ be the observations space. Let \tilde{S} is a learning sample affected by asymmetric label noise with noise rates $(p_+, p_-) \in [0, 1/2)$. Then for any $\delta > 0$ with probability at least $1 - \delta$

$$\|\hat{\boldsymbol{\mu}}_{\tilde{\mathcal{D}}} - \hat{\boldsymbol{\mu}}_{\tilde{\delta}}\|_2 \leq \frac{X}{1 - p_- - p_+} \cdot \sqrt{\frac{d}{m} \log\left(\frac{d}{\delta}\right)}.$$

Proof Let \tilde{S} and $\tilde{S'}$ be two learning samples from the corrupted distribution \tilde{D} that differ for only one example $(\boldsymbol{x}_i, \tilde{y}_i) \neq (\boldsymbol{x}_{i'}, \tilde{y}_{i'})$. Let first consider the one-dimensional case. We refer to the *k*-dimensional component of $\boldsymbol{\mu}$ with $\boldsymbol{\mu}^k$. For any $\tilde{S}, \tilde{S'}$ and any $k \in [d]$ it holds

$$\begin{aligned} |\hat{\boldsymbol{\mu}}_{\tilde{\mathbf{S}}}^{k} - \hat{\boldsymbol{\mu}}_{\tilde{\mathbf{S}}'}^{k}| &= \frac{1}{m} \left| \left(\frac{\tilde{y}_{i} - (p_{-} - p_{+})}{1 - p_{-} - p_{+}} \right) \boldsymbol{x}_{i}^{k} - \left(\frac{\tilde{y}_{i'} - (p_{-} - p_{+})}{1 - p_{-} - p_{+}} \right) \boldsymbol{x}_{i'}^{k} \right| \\ &= \frac{1}{m} \left| \frac{\tilde{y}_{i} \boldsymbol{x}_{i}^{k}}{1 - p_{-} - p_{+}} - \frac{\tilde{y}_{i'} \boldsymbol{x}_{i'}^{k}}{1 - p_{-} - p_{+}} \right| \\ &\leq \frac{X}{m(1 - p_{-} - p_{+})} \left| \tilde{y}_{i} - \tilde{y}_{i'} \right| \\ &\leq \frac{2X}{m(1 - p_{-} - p_{+})} . \end{aligned}$$

This satisfies the bounded difference condition of McDiarmid's inequality, which let us write for any $k \in [d]$ and any $\epsilon > 0$ that

$$\mathbb{P}\left(\left|\hat{\boldsymbol{\mu}}_{\mathcal{D}}^{k}-\hat{\boldsymbol{\mu}}_{\mathcal{S}}^{k}\right|\geq\epsilon\right)\leq\exp\left(-(1-p_{-}-p_{+})^{2}\frac{m\epsilon^{2}}{2X^{2}}\right)$$

and the multi-dimensional case, by union bound

$$\mathbb{P}\left(\exists k \in [d] : \left|\hat{\boldsymbol{\mu}}_{\mathcal{D}}^{k} - \hat{\boldsymbol{\mu}}_{\mathcal{S}}^{k}\right| \ge \epsilon\right) \le d \exp\left(-(1 - p_{-} - p_{+})^{2} \frac{m\epsilon^{2}}{2X^{2}}\right) \;.$$

Then by negation

$$\mathbb{P}\left(\forall k \in [d] : \left|\hat{\boldsymbol{\mu}}_{\mathcal{D}}^{k} - \hat{\boldsymbol{\mu}}_{\mathcal{S}}^{k}\right| \le \epsilon\right) \ge 1 - d \exp\left(-(1 - p_{-} - p_{+})^{2} \frac{m\epsilon^{2}}{2X^{2}}\right) ,$$

which implies that for any $\delta > 0$ with probability $1 - \delta$

$$\frac{X}{(1-p_{-}-p_{+})}\sqrt{\frac{2}{m}\log\left(\frac{d}{\delta}\right)} \ge \|\hat{\boldsymbol{\mu}}_{\mathcal{D}} - \hat{\boldsymbol{\mu}}_{\mathcal{S}}\|_{\infty} \ge d^{-1/2} \|\boldsymbol{\mu}_{\mathcal{D}} - \boldsymbol{\mu}_{\mathcal{S}}\|_{2}$$

This concludes the proof.

The proof of Theorem 8 follows the structure of Theorem 7's and elements of Natarajan et al. [2013, Theorem 3]'s. Let $\hat{\theta} = \operatorname{argmin}_{\theta \in \mathcal{H}} \hat{R}_{\tilde{D},\ell}(\theta)$ and $\theta^* = \operatorname{argmin}_{\theta \in \mathcal{H}} R_{D,\ell}(\theta)$. We have

$$R_{\mathcal{D},\ell}(\hat{\boldsymbol{\theta}}) - R_{\mathcal{D},\ell}(\boldsymbol{\theta}^{\star}) = \hat{R}_{\tilde{\mathcal{D}},\ell}(\hat{\boldsymbol{\theta}}) - \hat{R}_{\tilde{\mathcal{D}},\ell}(\boldsymbol{\theta}^{\star})$$

$$= \frac{1}{2} R_{\mathcal{D}_{2x},\ell}(\hat{\boldsymbol{\theta}}) + a\langle\hat{\boldsymbol{\theta}},\hat{\boldsymbol{\mu}}_{\tilde{\mathcal{D}}}\rangle - \frac{1}{2} R_{\mathcal{D}_{2x},\ell}(\boldsymbol{\theta}^{\star}) - a\langle\boldsymbol{\theta}^{\star},\hat{\boldsymbol{\mu}}_{\tilde{\mathcal{D}}}\rangle$$

$$= \frac{1}{2} \left(R_{\mathcal{D}_{2x},\ell}(\hat{\boldsymbol{\theta}}) - R_{\mathcal{D}_{2x},\ell}(\boldsymbol{\theta}^{\star}) \right) + a\langle\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star},\hat{\boldsymbol{\mu}}_{\tilde{\mathcal{D}}}\rangle$$

$$= \frac{1}{2} \left(R_{\mathcal{S}_{2x},\ell}(\hat{\boldsymbol{\theta}}) - R_{\mathcal{S}_{2x},\ell}(\boldsymbol{\theta}^{\star}) \right) + a\langle\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star},\hat{\boldsymbol{\mu}}_{\tilde{\mathcal{D}}}\rangle$$

$$+ \frac{1}{2} \left(R_{\mathcal{D}_{2x},\ell}(\hat{\boldsymbol{\theta}}) - R_{\mathcal{S}_{2x},\ell}(\hat{\boldsymbol{\theta}}) - R_{\mathcal{D}_{2x},\ell}(\boldsymbol{\theta}^{\star}) + R_{\mathcal{S}_{2x},\ell}(\boldsymbol{\theta}^{\star}) \right) \right\} A_{1} .$$

$$(26)$$

Step 26 is due to unbiasedness shown in Section A.4. Again, rename Line 27 as A_1 , which this time is bounded directly by Theorem 7. Next, we proceed as within the proof of Theorem 7 but now exploiting the fact that $\frac{1}{2}R_{\mathbb{S}_{2x},\ell}(\boldsymbol{\theta}) = \hat{R}_{\tilde{\mathbf{S}},\ell}(\boldsymbol{\theta}) - a\langle \boldsymbol{\theta}, \hat{\boldsymbol{\mu}}_{\tilde{D}} \rangle$

$$R_{\mathcal{D},\ell}(\hat{\boldsymbol{\theta}}) - R_{\mathcal{D},\ell}(\boldsymbol{\theta}^{\star}) \leq \underbrace{\hat{R}_{\tilde{\mathcal{S}},\ell}(\hat{\boldsymbol{\theta}}) - \hat{R}_{\tilde{\mathcal{S}},\ell}(\boldsymbol{\theta}^{\star})}_{A_2} + \underbrace{a\langle \hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\mu}}_{\tilde{\mathcal{D}}} - \hat{\boldsymbol{\mu}}_{\tilde{\mathcal{S}}} \rangle}_{A_3} + A_1 .$$

Now, A_2 is never more than 0 because $\hat{\theta}$ is the minimizer of $\hat{R}_{\tilde{S},\ell}(\theta)$. From the Cauchy-Schwarz inequality and bounded models it holds true that

$$A_{3} \leq |a| \left\| \hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star} \right\|_{2} \cdot \left\| \hat{\boldsymbol{\mu}}_{\tilde{\mathcal{D}}} - \hat{\boldsymbol{\mu}}_{\tilde{\mathcal{S}}} \right\|_{2} \leq 2|a|B \left\| \hat{\boldsymbol{\mu}}_{\tilde{\mathcal{D}}} - \hat{\boldsymbol{\mu}}_{\tilde{\mathcal{S}}} \right\|_{2},$$

$$(28)$$

for which we can call Lemma 3. Finally, by a union bound we get that for any $\delta > 0$ with probability $1 - \delta$

$$R_{\mathcal{D},\ell}(\hat{\boldsymbol{\theta}}) - R_{\mathcal{D},\ell}(\boldsymbol{\theta}^{\star}) \le \left(\frac{\sqrt{2}+1}{2}\right) \cdot \frac{XBL}{\sqrt{m}} + \frac{c(X,B)L}{2}\sqrt{\frac{1}{m}\log\left(\frac{2}{\delta}\right)} + \frac{2|a|XB}{1-p_{+}-p_{-}}\sqrt{\frac{d}{m}\log\left(\frac{2d}{\delta}\right)}$$

A.6 Proof of Theorem 10

We now restate and prove Theorem 8. The reader might question the bound for the fact that the quantity on the right-hand side can change by rescaling $\mu_{\mathcal{D}}$ by X, *i.e.* the max L_2 norm of observations in the space \mathcal{X} . Although, such transformation would affect ℓ -risks on the left-hand side as well, balancing the effect. With this

in mind, we formulate the result without making explicit dependency on X.

Theorem 10 Assume $\{\boldsymbol{\theta} \in \mathcal{H} : ||\boldsymbol{\theta}||_2 \leq B\}$. Let $(\boldsymbol{\theta}^{\star}, \tilde{\boldsymbol{\theta}}^{\star})$ respectively the minimizers of $(R_{\mathcal{D},\ell}(\boldsymbol{\theta}), R_{\tilde{\mathcal{D}},\ell}(\boldsymbol{\theta}))$ in \mathcal{H} . Then every a-LOL is ϵ -ALN. That is

$$R_{\tilde{\mathcal{D}},\ell}(\boldsymbol{\theta}^{\star}) - R_{\tilde{\mathcal{D}},\ell}(\tilde{\boldsymbol{\theta}}^{\star}) \leq 4|a|B\max(p_{-},p_{+}) \cdot \|\boldsymbol{\mu}_{\mathcal{D}}\|_{2} .$$

Moreover:

1. If $\|\boldsymbol{\mu}_{\mathcal{D}}\|_2 = 0$ for \mathcal{D} then every LOL is ALN for any $\tilde{\mathcal{D}}$. 2. Suppose that ℓ is also once differentiable and γ -strongly convex. Then $\|\boldsymbol{\theta}^* - \tilde{\boldsymbol{\theta}}^*\|_2^2 \leq 2\epsilon/\gamma$.

Proof The proof draws ideas from Manwani and Sastry [2013]. Let us first assume the noise to be symmetric, *i.e.* $p_+ = p_- = p$. For any θ we have

$$R_{\tilde{\mathcal{D}},\ell}(\boldsymbol{\theta}^{\star}) - R_{\tilde{\mathcal{D}},\ell}(\boldsymbol{\theta}) = (1-p) \left(R_{\mathcal{D},\ell}(\boldsymbol{\theta}^{\star}) - R_{\mathcal{D},\ell}(\boldsymbol{\theta}) \right) + p \left(R_{\mathcal{D},\ell}(\boldsymbol{\theta}^{\star}) - R_{\mathcal{D},\ell}(\boldsymbol{\theta}) + 2a \langle \boldsymbol{\theta}^{\star} - \boldsymbol{\theta}, \boldsymbol{\mu}_{\mathcal{D}} \rangle \right)$$
(29)

$$\leq (R_{\mathcal{D},\ell}(\boldsymbol{\theta}^{\star}) - R_{\mathcal{D},\ell}(\boldsymbol{\theta})) + 4|a|Bp\|\boldsymbol{\mu}_{\mathcal{D}}\|_{2}$$
(30)

$$\leq 4|a|Bp\|\boldsymbol{\mu}_{\mathcal{D}}\|_2 \quad . \tag{31}$$

We are working with LOLs, which are such that $\ell(x) = \ell(-x) + 2ax$ and therefore we can take Step 29. Step 30 follows from Cauchy-Schwartz inequality and bounded models. Step 31 is true because θ^* is the minimizer of $R_{\mathcal{D},\ell}(\theta)$. We have obtained a bound for any θ and so for the supremum with regard to θ . Therefore:

$$\sup_{\boldsymbol{\theta}\in\mathcal{H}} \left(R_{\tilde{\mathcal{D}},\ell}(\boldsymbol{\theta}^{\star}) - R_{\tilde{\mathcal{D}},\ell}(\boldsymbol{\theta}) \right) = R_{\tilde{\mathcal{D}},\ell}(\boldsymbol{\theta}^{\star}) - R_{\tilde{\mathcal{D}},\ell}(\tilde{\boldsymbol{\theta}}) \ .$$

To lift the discussion to *asymmetric* label noise, risks have to be split into losses for negative and positive examples. Let $R_{\mathcal{D}^+,\ell}$ be the risk computed over the distribution of the positive examples \mathcal{D}^+ and $R_{\mathcal{D}^-,\ell}$ the one of the negatives, and denote the mean operators $\mu_{\mathcal{D}^+}, \mu_{\mathcal{D}^-}$ accordingly. Also, define the probability of positive and negative labels in \mathcal{D} as $\pi_{\pm} = \mathbb{P}(y = \pm 1)$. The same manipulations for the symmetric case let us write

$$\begin{split} R_{\tilde{\mathcal{D}},\ell}(\boldsymbol{\theta}^{\star}) - R_{\tilde{\mathcal{D}},\ell}(\boldsymbol{\theta}) &= \pi_{-} \left(R_{\mathcal{D}^{-},\ell}(\boldsymbol{\theta}^{\star}) - R_{\mathcal{D}^{-},\ell}(\boldsymbol{\theta}) \right) + \pi_{+} \left(R_{\mathcal{D}^{+},\ell}(\boldsymbol{\theta}^{\star}) - R_{\mathcal{D}^{+},\ell}(\boldsymbol{\theta}) \right) \\ &+ 2ap_{-}\pi_{-} \langle \boldsymbol{\theta}^{\star} - \boldsymbol{\theta}, \boldsymbol{\mu}_{\mathcal{D}^{-}} \rangle + 2ap_{+}\pi_{+} \langle \boldsymbol{\theta}^{\star} - \boldsymbol{\theta}, \boldsymbol{\mu}_{\mathcal{D}^{+}} \rangle \\ &\leq \left(R_{\mathcal{D},\ell}(\boldsymbol{\theta}^{\star}) - R_{\mathcal{D},\ell}(\boldsymbol{\theta}) \right) + 2a \langle \boldsymbol{\theta}^{\star} - \boldsymbol{\theta}, p_{-}\boldsymbol{\mu}_{\mathcal{D}^{-}} + p_{+}\boldsymbol{\mu}_{\mathcal{D}^{+}} \rangle \\ &\leq 4|a|B \cdot \|p_{-}\pi_{-}\boldsymbol{\mu}_{\mathcal{D}^{-}} + p_{+}\pi_{+}\boldsymbol{\mu}_{\mathcal{D}^{+}}\|_{2} \\ &\leq 4|a|B \max(p_{-},p_{+}) \cdot \|\pi_{-}\boldsymbol{\mu}_{\mathcal{D}^{-}} + \pi_{+}\boldsymbol{\mu}_{\mathcal{D}^{+}}\|_{2} \\ &= 4|a|B \max(p_{-},p_{+}) \cdot \|\boldsymbol{\mu}_{\mathcal{D}}\|_{2} \ . \end{split}$$

Then, we conclude the proof by the same argument for the symmetric case. The first corollary is immediate. For the second, we first recall the definition of a function f strongly convex.

Definition 4 A differentiable function f(x) is γ -strongly convex if for all $x, x' \in Dom(f)$ we have

$$f(x) - f(x') \ge \langle \nabla f(x'), x - x' \rangle + \frac{\gamma}{2} ||x - x'||_2^2$$

If ℓ is differentiable once and γ -strongly convex in the θ argument, so it the risk $R_{\tilde{D},\ell}$ by composition with

linear functions. Notice also that $\nabla R_{\tilde{D},\ell}(\tilde{\theta}^{\star}) = 0$ because $\tilde{\theta}^{\star}$ is the minimizer. Therefore:

$$\begin{split} \epsilon &\geq R_{\tilde{\mathcal{D}},\ell}(\boldsymbol{\theta}^{\star}) - R_{\tilde{\mathcal{D}},\ell}(\tilde{\boldsymbol{\theta}}^{\star}) \\ &\geq \left\langle \nabla R_{\tilde{\mathcal{D}},\ell}(\tilde{\boldsymbol{\theta}}^{\star}), \boldsymbol{\theta}^{\star} - \tilde{\boldsymbol{\theta}}^{\star} \right\rangle + \frac{\gamma}{2} \left\| \boldsymbol{\theta}^{\star} - \tilde{\boldsymbol{\theta}}^{\star} \right\|_{2}^{2} \\ &\geq \frac{\gamma}{2} \left\| \boldsymbol{\theta}^{\star} - \tilde{\boldsymbol{\theta}}^{\star} \right\|_{2}^{2} , \end{split}$$

which means that

$$\left\| \boldsymbol{\theta}^{\star} - \tilde{\boldsymbol{\theta}}^{\star} \right\|_{2}^{2} \leq \frac{2\epsilon}{\gamma}$$

A.7 Proof of Lemma 11

$$\mathbb{C}\operatorname{ov}_{\mathbb{S}}[\boldsymbol{x}, y] = \mathbb{E}_{\mathbb{S}}[y\boldsymbol{x}] - \mathbb{E}_{\mathbb{S}}[y]\mathbb{E}_{\mathbb{S}}[\boldsymbol{x}]$$
$$= \boldsymbol{\mu}_{\mathbb{S}} - \left(\frac{1}{m}\sum_{i:y_i>0} 1 - \frac{1}{m}\sum_{i:y_i<0} 1\right)\mathbb{E}_{\mathbb{S}}[\boldsymbol{x}]$$
$$= \boldsymbol{\mu}_{\mathbb{S}} - (2\pi_{+} - 1)\mathbb{E}_{\mathbb{S}}[\boldsymbol{x}] \ .$$

The second statement follows immediately.

B Factorization of non linear-odd losses

When ℓ_o is not linear, we can find upperbounds in the form of affine functions. It suffices to be continuous and have asymptotes at $\pm \infty$.

Lemma 5 Let the loss ℓ be continuous. Suppose that it has asymptotes at $\pm \infty$, i.e. there exist $c_1, c_2 \in \mathbb{R}$ and $d_1, d_2 \in \mathbb{R}$ such that

$$\lim_{x \to +\infty} \ell(x) - c_1 x - d_1 = 0, \quad \lim_{x \to -\infty} \ell(x) - c_2 x - d_2 = 0$$

then there exists $q \in \mathbb{R}$ such that $\ell_o(x) \leq \frac{c_1+c_2}{2}x+q$.

Proof One can compute the limits at infinity of ℓ_o to get

$$\lim_{x \to +\infty} \ell_o(x) - \frac{c_1 + c_2}{2}x = \frac{d_1 - d_2}{2}$$

and

$$\lim_{x \to -\infty} \ell_o(x) - \frac{c_1 + c_2}{2}x = \frac{d_2 - d_1}{2}$$

Then $q \doteq \sup\{\ell_o(x) - \frac{c_1+c_2}{2}x\} < +\infty$ as ℓ_o is continuous. Thus $\ell_o(x) - \frac{c_1+c_2}{2}x \le q$.

The Lemma covers many cases of practical interest outside the class of LOLs, *e.g.* hinge, absolute and Huber losses. Exponential loss is the exception since $\ell_o(x) = -\sinh(x)$ cannot be bounded. Consider now hinge loss:

 $\ell(x) = [1 - x]_+$ is not differentiable in 1 nor proper [Reid and Williamson, 2010], however it is continuous with asymptotes at $\pm \infty$. Therefore, for any θ its empirical risk is bounded as

$$R_{\mathcal{S},hinge}(\boldsymbol{ heta}) \leq rac{1}{2} R_{\mathcal{S}_{2x},hinge}(\boldsymbol{ heta}) - rac{1}{2} \langle \boldsymbol{ heta}, \boldsymbol{\mu}
angle + q$$

since $c_1 = 0$ and $c_2 = 1$. An alternative proof of this result on hinge is provided next, giving the exact value of q = 1/2. The odd term for hinge loss is

$$\ell_o(x) = \frac{1}{2} \left([1-x]_+ - [1+x]_+ \right)$$
$$= \frac{1}{4} \left(-2x + |1-x| - |1+x| \right)$$

due to an arithmetic trick for the max function: $\max(a, b) = (a + b)/2 + |b - a|/2$. Then for any x

$$|1 - x| \le |x| + 1,$$

 $|1 + x| \ge |x| - 1$

and therefore

$$\ell_o(x) \le \frac{1}{4}(-2x + |x| + 1 - |x| + 1) = \frac{1}{2}(1 - x)$$

We also provide a "if-and-only-if" version of Lemma 5 fully characterizing which family of losses can be upperbounded by a LOL.

Lemma 6 Let $l : \mathbb{R} \to \mathbb{R}$ a continuous function. Then there exists $c_1, d_1, d_2 \in \mathbb{R}$ such that

$$\limsup_{x \to +\infty} \ell_o(x) - c_1 x - d_1 = 0 \tag{32}$$

and

$$\limsup_{x \to -\infty} \ell_o(x) - c_1 x - d_2 = 0 , \qquad (33)$$

if and only if there exists $q, q' \in \mathbb{R}$ such that $\ell_o(x) \leq q'x + q$ for every $x \in \mathbb{R}$.

Proof \Rightarrow) Suppose that such limits exist and they are zero for some c_1, d_1, d_2 . Let prove that ℓ_o is bounded from above by a line.

$$q = \sup_{x \in \mathbb{R}} \left\{ \ell_o(x) - c_1 x \right\} < \infty ,$$

because ℓ_o is continuous. So for every $x \in \mathbb{R}$

 $\ell_o(x) \le c_1 x + q \; .$

In particular we can take c_1 as the angular coefficient of the line. \Leftarrow) Vice versa we proceed by contradiction. Suppose that there exists $q, q' \in \mathbb{R}$ such that ℓ_o is bounded from above by $\ell(x) = q'x + q$. Suppose in addition that the conditions on the asymptotes (32) and (33) are false. This implies either the existence of a sequence $x_n \to +\infty$ such that

$$\lim_{n \to \infty} \ell_o(x_n) - q' x_n \to \pm \infty \; ,$$

or the existence of another sequence $x_n' \to -\infty$

$$\lim_{n \to \infty} \ell_o(y_n) - q' x'_n \to \pm \infty \; .$$

On one hand, if at least one of these two limits is $+\infty$ then we already reach a contradiction, because $\ell_o(x)$ is supposed to be bounded from above by $\ell(x) = q'x + q$. Suppose on the other hand that $x_n \to +\infty$ is such that

$$\lim_{n \to +\infty} \ell_o(x_n) - q' x_n \to -\infty$$

Then defining $x'_n = -x_n$ we have

$$\lim_{n \to +\infty} \ell_o(w_n) - m x'_n \to +\infty ,$$

and for the same reason as above we reach a contradiction.

C Factorization of square loss for regression

We have formulated the Factorization Theorem for classification problems. However, a similar property holds for regression with square loss: $f(\langle \boldsymbol{\theta}, \boldsymbol{x}_i \rangle, y) = (\langle \boldsymbol{\theta}, \boldsymbol{x}_i \rangle - y_i)^2$ factors as

$$\mathbb{E}_{\mathbb{S}}[(\langle \boldsymbol{\theta}, \boldsymbol{x} \rangle - y)^2] = \mathbb{E}_{\mathbb{S}}\left[\langle \boldsymbol{\theta}, \boldsymbol{x} \rangle^2\right] + \mathbb{E}_{\mathbb{S}}\left[y^2\right] - 2\langle \boldsymbol{\theta}, \boldsymbol{\mu} \rangle$$

Taking the minimizers on both sides we obtain

$$\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \mathbb{E}_{\mathcal{S}}[f(\langle \boldsymbol{\theta}, \boldsymbol{x} \rangle, y)] = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \mathbb{E}_{\mathcal{S}}\left[\langle \boldsymbol{\theta}, \boldsymbol{x} \rangle^{2}\right] - 2\langle \boldsymbol{\theta}, \boldsymbol{\mu} \rangle$$
$$= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \|X^{\top} \boldsymbol{\theta}\|_{2}^{2} - 2\langle \boldsymbol{\theta}, \boldsymbol{\mu} \rangle .$$

D The role of LOLs in du Plessis et al. [2015]

Let $\pi_+ \doteq \mathbb{P}(y=1)$ and let \mathcal{D}_+ and \mathcal{D}_- respectively the set of positive and negative examples in \mathcal{D} . Consider first

$$\mathbb{E}_{(\boldsymbol{x},\cdot)\sim\mathcal{D}}\left[\ell(-\langle\boldsymbol{\theta},\boldsymbol{x}\rangle)\right] = \pi_{+}\mathbb{E}_{(\boldsymbol{x},\cdot)\sim\mathcal{D}_{+}}\left[\ell(-\langle\boldsymbol{\theta},\boldsymbol{x}\rangle)\right] + (1-\pi_{+})\mathbb{E}_{(\boldsymbol{x},\cdot)\sim\mathcal{D}_{-}}\left[\ell(-\langle\boldsymbol{\theta},\boldsymbol{x}\rangle)\right]$$
(34)

Then, it is also true that

$$\mathbb{E}_{(\boldsymbol{x},y)\sim\mathcal{D}}\left[\ell(y\langle\boldsymbol{\theta},\boldsymbol{x}\rangle)\right] = \pi_{+}\mathbb{E}_{(\boldsymbol{x},y)\sim\mathcal{D}_{+}}\left[\ell(y\langle\boldsymbol{\theta},\boldsymbol{x}\rangle)\right] + (1-\pi_{+})\mathbb{E}_{(\boldsymbol{x},y)\sim\mathcal{D}_{-}}\left[\ell(y\langle\boldsymbol{\theta},\boldsymbol{x}\rangle)\right]$$
(35)

Now, solve Equation 34 for $(1 - \pi_+)\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}_-} [\ell(y \langle \boldsymbol{\theta}, \boldsymbol{x} \rangle)] = (1 - \pi_+)\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}_-} [-\ell(-\langle \boldsymbol{\theta}, \boldsymbol{x} \rangle)]$ and substitute it into Equation 35 so as to obtain:

$$\mathbb{E}_{(\boldsymbol{x},\boldsymbol{y})\sim\mathcal{D}}\left[\ell(\boldsymbol{y}\langle\boldsymbol{\theta},\boldsymbol{x}\rangle)\right] = \pi_{+}\mathbb{E}_{(\boldsymbol{x},\boldsymbol{y})\sim\mathcal{D}_{+}}\left[\ell(\boldsymbol{y}\langle\boldsymbol{\theta},\boldsymbol{x}\rangle)\right] + \mathbb{E}_{(\boldsymbol{x},\cdot)\sim\mathcal{D}}\left[\ell(-\langle\boldsymbol{\theta},\boldsymbol{x}\rangle)\right] - \pi_{+}\mathbb{E}_{(\boldsymbol{x},\cdot)\sim\mathcal{D}_{+}}\left[\ell(-\langle\boldsymbol{\theta},\boldsymbol{x}\rangle)\right] \\ = \pi_{+}\left(\mathbb{E}_{(\boldsymbol{x},\boldsymbol{y})\sim\mathcal{D}_{+}}\left[\ell(+\langle\boldsymbol{\theta},\boldsymbol{x}\rangle)\right] - \mathbb{E}_{(\boldsymbol{x},\cdot)\sim\mathcal{D}_{+}}\left[\ell(-\langle\boldsymbol{\theta},\boldsymbol{x}\rangle)\right]\right) + \mathbb{E}_{(\boldsymbol{x},\cdot)\sim\mathcal{D}}\left[\ell(-\langle\boldsymbol{\theta},\boldsymbol{x}\rangle)\right] \\ = \frac{\pi_{+}}{2}\mathbb{E}_{(\boldsymbol{x},\boldsymbol{y})\sim\mathcal{D}_{+}}\left[\ell_{o}(+\langle\boldsymbol{\theta},\boldsymbol{x}\rangle)\right] + \mathbb{E}_{(\boldsymbol{x},\cdot)\sim\mathcal{D}}\left[\ell(-\langle\boldsymbol{\theta},\boldsymbol{x}\rangle)\right] , \qquad (36)$$

by our usual definition of $\ell_o(x) = \frac{1}{2}(\ell(x) - \ell(-x))$. Recall that one of the goals of the authors is to conserve the convexity of this new crafted loss function. Then, du Plessis et al. [2015, Theorem 1] proceeds stating that when ℓ_o is convex, it must also be linear. And therefore they must focus on LOLs. The result of du Plessis et al. [2015, Theorem 1] is immediate from the point of view of our theory: in fact, an odd function can be convex or concave only if it also linear. The resulting expression based on the fact $\ell(x) - \ell(-x) = 2ax$ simplifies into

$$\mathbb{E}_{(\boldsymbol{x},y)\sim\mathcal{D}}\left[\ell(y\langle\boldsymbol{\theta},\boldsymbol{x}\rangle)\right] = a\pi_{+}\mathbb{E}_{(\boldsymbol{x},y)\sim\mathcal{D}_{+}}\left[y\langle\boldsymbol{\theta},\boldsymbol{x}\rangle\right] + \mathbb{E}_{(\boldsymbol{x},\cdot)\sim\mathcal{D}}\left[\ell(-\langle\boldsymbol{\theta},\boldsymbol{x}\rangle)\right] \\ = a\pi_{+}\boldsymbol{\mu}_{\mathcal{D}_{+}} + \mathbb{E}_{(\boldsymbol{x},\cdot)\sim\mathcal{D}}\left[\ell(-\langle\boldsymbol{\theta},\boldsymbol{x}\rangle)\right] \ .$$

where $\mu_{\mathcal{D}_+}$ is a mean operator computed on positive examples only. Notice how the second term is instead label independent, although it is not an even function as in the Factorization Theorem.

	loss	even function ℓ_e	odd function l_o
generic	$\ell(x)$	$\frac{1}{2}(\ell(x) + \ell(-x))$	$\frac{1}{2}(\ell(x) - \ell(-x))$
01	$1\{x \le 0\}$	$1 - \frac{1}{2} \{x \neq 0\}$	$-\frac{1}{2}\operatorname{sign}(x)$
exponential	e^{-x}	$\cosh(x)$	$-\sinh(x)$
hinge	$[1-x]_+$	$\frac{1}{2}([1-x]_+ - [1-x]_+)$	$\frac{1}{2}([1-x]_+ - [1+x]_+)^{\dagger}$
LOL	$\ell(x)$	$\frac{1}{2}(\ell(x) + \ell(-x))$	-ax
ρ -loss	ho x - ho x + 1	$\rho x +1$	$-\rho x \ (\rho \ge 0)$
unhinged	1-x	1	-x
perceptron	$\max(0, -x)$	$x \operatorname{sign}(x)$	-x
2-hinge	$\max(-x, 1/2\max(0, 1-x))$	††	-x
SPL	$a_l + l^\star(-x)/b_l$	$a_l + \frac{1}{2b_l}(l^{\star}(x) + l^{\star}(-x))$	$-x/(2b_l)$
logistic	$\log(1+e^{-x})$	$\frac{1}{2}\log(2+e^x+e^{-x})$	-x/2
square	$(1-x)^2$	$1 + x^2$	-2x
Matsushita	$\sqrt{1+x^2} - x$	$\sqrt{1+x^2}$	-x

E Additional examples of loss factorization

Table 1: Factorization of losses in light of Theorem 12. [†]The odd term of hinge loss is upper bounded by (1-x)/2 in B. ^{††} = max $(-x, 1/2 \max(0, 1-x)) + \max(x, 1/2 \max(0, 1+x))$.

References

- C. McDiarmid. Concentration. In M. Habib, C. McDiarmid, J. Ramirez-Alfonsin, and B. Reed, editors, *Probabilistic Methods for Algorithmic Discrete Mathematics*, pages 1–54. Springer Verlag, 1998.
- P.-L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. *JMLR*, 3:463–482, 2002.
- N. Natarajan, I. S. Dhillon, P. K. Ravikumar, and A. Tewari. Learning with noisy labels. In NIPS*27, 2013.
- B. van Rooyen, A. K. Menon, and R. C. Williamson. Learning with symmetric label noise: The importance of being unhinged. In *NIPS*29*, 2015.
- N. Manwani and P. S. Sastry. Noise tolerance under risk minimization. *Cybernetics, IEEE Transactions on*, 43 (3):1146–1151, 2013.
- M. D. Reid and R. C. Williamson. Composite binary losses. JMLR, 11:2387-2422, 2010.
- M C. du Plessis, G. Niu, and M. Sugiyama. Convex formulation for learning from positive and unlabeled data. In 32 th ICML, pages 1386–1394, 2015.