
Deconstructing the Ladder Network Architecture

Mohammad Pezeshki∗ MOHAMMAD.PEZESHKI@UMONTREAL.CA
Linxi Fan? LINXI.FAN@COLUMBIA.EDU
Philémon Brakel∗ PBPOP3@GMAIL.COM
Aaron Courville∗† AARON.COURVILE@UMONTREAL.CA
Yoshua Bengio∗† YOSHUA.BENGIO@UMONTREAL.CA
∗Université de Montréal, ?Columbia University, †CIFAR

Abstract
The Ladder Network is a recent new approach
to semi-supervised learning that turned out to be
very successful. While showing impressive per-
formance, the Ladder Network has many com-
ponents intertwined, whose contributions are not
obvious in such a complex architecture. This pa-
per presents an extensive experimental investiga-
tion of variants of the Ladder Network in which
we replaced or removed individual components
to learn about their relative importance. For
semi-supervised tasks, we conclude that the most
important contribution is made by the lateral con-
nections, followed by the application of noise,
and the choice of what we refer to as the ‘combi-
nator function’. As the number of labeled train-
ing examples increases, the lateral connections
and the reconstruction criterion become less im-
portant, with most of the generalization improve-
ment coming from the injection of noise in each
layer. Finally, we introduce a combinator func-
tion that reduces test error rates on Permutation-
Invariant MNIST to 0.57% for the supervised set-
ting, and to 0.97% and 1.0% for semi-supervised
settings with 1000 and 100 labeled examples, re-
spectively.

1. Introduction
Labeling data sets is typically a costly task and in many
settings there are far more unlabeled examples than labeled
ones. Semi-supervised learning aims to improve the perfor-
mance on some supervised learning problem by using in-
formation obtained from both labeled and unlabeled exam-
ples. Since the recent success of deep learning methods has

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

mainly relied on supervised learning based on very large la-
beled datasets, it is interesting to explore semi-supervised
deep learning approaches to extend the reach of deep learn-
ing to these settings.

Since unsupervised methods for pre-training layers of neu-
ral networks were an essential part of the first wave of
deep learning methods (Hinton et al., 2006; Vincent et al.,
2008; Bengio, 2009), a natural next step is to investi-
gate how ideas inspired by Restricted Boltzmann Ma-
chine training and regularized autoencoders can be used for
semi-supervised learning. Examples of approaches based
on such ideas are the discriminative RBM (Larochelle &
Bengio, 2008) and a deep architecture based on semi-
supervised autoencoders that was used for document clas-
sification (Ranzato & Szummer, 2008). More recent ex-
amples of approaches for semi-supervised deep learning
are the semi-supervised Variational Autoencoder (Kingma
et al., 2014) and the Ladder Network (Rasmus et al., 2015)
which obtained very impressive, state of the art results
(1.13% error) on the MNIST handwritten digits classifica-
tion benchmark using just 100 labeled training examples.

The Ladder Network adds an unsupervised component to
the supervised learning objective of a deep feedforward
network by treating this network as part of a deep stack
of denoising autoencoders or DAEs (Vincent et al., 2010)
that learns to reconstruct each layer (including the input)
based on a corrupted version of it, using feedback from up-
per levels. The term ’ladder’ refers to how this architecture
extends the stacked DAE in the way the feedback paths are
formed.

This paper is focusing on the design choices that lead to
the Ladder Network’s superior performance and tries to
disentangle them empirically. We identify some general
properties of the model that make it different from stan-
dard feedforward networks and compare various architec-
tures to identify those properties and design choices that are
the most essential for obtaining good performance with the
Ladder Network. While the original authors of the Ladder

Deconstructing the Ladder Network Architecture

Network paper explored some variants of their model al-
ready, we provide a thorough comparison of a large number
of architectures controlling for both hyperparameter set-
tings and data set selection. Finally, we also introduce a
variant of the Ladder Network that yields new state-of-the-
art results for the Permutation-Invariant MNIST classifica-
tion task in both semi- and fully- supervised settings.

2. The Ladder Network Architecture
In this section, we describe the Ladder Network Archi-
tecture1. Consider a dataset with N labeled examples
(x(1), y∗(1)), (x(2), y∗(2)), ..., (x(N), y∗(N)) and M
unlabeled examples x(N + 1), x(N + 2), ..., x(N +M)
where M � N . The objective is to learn a function that
models P (y|x) by using both the labeled examples and the
large quantity of unlabeled examples. In the case of the
Ladder Network, this function is a deep Denoising Auto
Encoder (DAE) in which noise is injected into all hidden
layers and the objective function is a weighted sum of the
supervised Cross Entropy cost on the top of the encoder
and the unsupervised denoising Square Error costs at each
layer of the decoder. Since all layers are corrupted by
noise, another encoder path with shared parameters is
responsible for providing the clean reconstruction targets,
i.e. the noiseless hidden activations (See Figure 1).

Through lateral skip connections, each layer of the noisy
encoder is connected to its corresponding layer in the de-
coder. This enables the higher layer features to focus on
more abstract and task-specific features. Hence, at each
layer of the decoder, two signals, one from the layer above
and the other from the corresponding layer in the encoder
are combined.

Formally, the Ladder Network is defined as follows:

x̃, z̃(1), ..., z̃(L), ỹ = Encodernoisy(x), (1)

x, z(1), ..., z(L), y = Encoderclean(x), (2)

x̂, ẑ(1), ..., ẑ(L) = Decoder(z̃(1), ..., z̃(L)), (3)

where Encoder and Decoder can be replaced by any multi-
layer architecture such as a multi-layer perceptron in this
case. The variables x, y, and ỹ are the input, the noiseless
output, and the noisy output respectively. The true target is
denoted as y∗. The variables z(l), z̃(l), and ẑ(l) are the hid-
den representation, its noisy version, and its reconstructed
version at layer l. The objective function is a weighted sum
of supervised (Cross Entropy) and unsupervised costs (Re-
construction costs).

Cost = −ΣNn=1 logP
(
ỹ(n) = y∗(n)|x(n)

)
+ (4)

ΣMn=N+1ΣLl=1λl ReconsCost(z(l)(n), ẑ(l)(n)). (5)

1Please refer to (Rasmus et al., 2015; Valpola, 2014) for more
detailed explanation of the Ladder Network architecture.

Note that while the noisy output ỹ is used in the Cross En-
tropy term, the classification task is performed by the noise-
less output y at test time.

In the forward path, individual layers of the encoder are for-
malized as a linear transformation followed by Batch Nor-
malization (Ioffe & Szegedy, 2015) and then application of
a nonlinear activation function:

z̃(l)pre = W (l) · h̃(l−1), (6)

µ(l) = mean(z̃(l)pre), (7)

σ(l) = stdv(z̃(l)pre), (8)

z̃(l) =
z̃
(l)
pre − µ(l)

σ(l)
+N (0, σ2), (9)

h̃(l) = φ
(
γ(l)(z̃(l) + β(l))

)
(10)

where h̃(l−1) is the post-activation at layer l − 1 and W (l)

is the weight matrix from layer l− 1 to layer l. Batch Nor-
malization is applied to the pre-normalization z̃(l)pre using the
mini-batch mean µ(l) and standard deviation σ(l). The next
step is to add Gaussian noise with mean 0 and variance σ2

to compute pre-activation z̃(l). The parameters β(l) and γ(l)

are responsible for shifting and scaling before applying the
nonlinearity φ(·). Note that the above equations describe
the noisy encoder. If we remove noise (N (0, σ2)) and re-
place h̃ and z̃ with h and z respectively, we will obtain the
noiseless version of the encoder.

At each layer of the decoder in the backward path, the sig-
nal from the layer ẑ(l+1) and the noisy signal z̃(l) are com-
bined into the reconstruction ẑ(l) by the following equa-
tions:

u(l+1)
pre = V (l) · ẑ(l+1), (11)

µ(l+1) = mean(u(l+1)
pre), (12)

σ(l+1) = stdv(u(l+1)
pre), (13)

u(l+1) =
u
(l+1)
pre − µ(l+1)

σ(l+1)
, (14)

ẑ(l) = g(z̃(l), u(l+1)) (15)

where V (l) is a weight matrix from layer l + 1 to layer
l. We call the function g(·, ·) the combinator function as it
combines the vertical u(l+1) and the lateral z̃(l) connections
in an element-wise fashion. The original Ladder Network
proposes the following design for g(·, ·), which we call the
vanilla combinator:

g(z̃(l), u(l+1)) = b0 + w0z � z̃(l)+
w0u � u(l+1) + w0zu � z̃(l) � u(l+1)+

wσ � Sigmoid(b1 + w1z � z̃(l)+
w1u � u(l+1) + w1zu � z̃(l) � u(l+1)),

(16)

Deconstructing the Ladder Network Architecture

where � is an element-wise multiplication operator and
each per-element weight is initialized as:

w{0,1}z ← 1

w{0,1}u ← 0

w{0,1}zu, b{0,1} ← 0

wσ ← 1

(17)

In later sections, we will explore alternative initializa-
tion schemes on the vanilla combinator. Finally, the
ReconsCost(z(l), ẑ(l)) in equation (4) is defined as the fol-
lowing:

ReconsCost(z(l), ẑ(l)) = || ẑ
(l) − µ(l)

σ(l)
− z(l)||2. (18)

where ẑ(l) is normalized using µ(l) and σ(l) which are the
encoder’s sample mean and standard deviation statistics of
the current mini batch, respectively. The reason for this
second normalization is to cancel the effect of unwanted
noise introduced by the limited batch size of Batch Nor-
malization.

3. Components of the Ladder Network
Now that the precise architecture of the Ladder Network
has been described in details, we can identify a couple
of important additions to the standard feed-forward neural
network architecture that may have a pronounced impact
on the performance. A distinction can also be made be-
tween those design choices that follow naturally from the
motivation of the ladder network as a deep autoencoder and
those that are more ad-hoc and task specific.

The most obvious addition is the extra reconstruction cost
for every hidden layer and the input layer. While it is clear
that the reconstruction cost provides an unsupervised ob-
jective to harness the unlabeled examples, it is not clear
how important the penalization is for each layer and what
role it plays for fully-supervised tasks.

A second important change is the addition of Gaussian
noise to the input and the hidden representations. While
adding noise to the first layer is a part of denoising autoen-
coder training, it is again not clear whether it is necessary
to add this noise at every layer or not. We would also like
to know if the noise helps by making the reconstruction
task nontrivial and useful or just by regularizing the feed-
forward network in a similar way that noise-based regu-
larizers like dropout (Srivastava et al., 2014) and adaptive
weight noise (Graves, 2011) do.

Finally, the lateral skip connections are the most notable
deviation from the standard denoising autoencoder archi-
tecture. The way the vanilla Ladder Network combines the
lateral stream of information z̃(l) and the downward stream

of information u(l+1) is somewhat unorthodox. For this
reason, we have conducted extensive experiments on both
the importance of the lateral connections and the precise
choice for the function that combines the lateral and down-
ward information streams (which we refer to as the combi-
nator function).

4. Experimental Setup
In this section, we introduce different variants of the Lad-
der Architecture and describe our experiment methodology.
Some variants are derived by removal of one component of
the model while other variants are derived by the replace-
ment of that component with a new one. This enables us to
isolate each component and observe its effects while other
components remain unchanged. Table 1 depicts the hierar-
chy of the different variants and the baseline models.

Table 1. Schematic ordering of the different models. All the vari-
ants of the VANILLA model are derived by either removal or re-
placement of a single component. The BASELINE is a multi-layer
feedforward neural networks with the same number of layers and
units as the vanilla model.

Models
VANILLA

Removal of a component
Noise variants

FIRSTNOISE
FIRSTRECONS
FIRSTN&R
NOLATERAL

Vanilla Combinator variants
NOSIG
NOMUL
LINEAR

Replacement of a component
Vanilla Combinator Initialization

RANDINIT
REVINIT

MLP Combinators
MLP
AUGMENTED-MLP

Gaussian Combinators
GAUSSIAN
GATEDGAUSS

Baseline models
Feedforward network
Feedforward network + noise

Deconstructing the Ladder Network Architecture

Figure 1. The Ladder Network consists of two encoders (on each side of the figure) and one decoder (in the middle). At each layer
of both encoders (equations 6 to 10), z(l) and z̃(l) are computed by applying a linear transformation and normalization on h(l−1) and
h̃(l−1), respectively. The noisy version of the encoder (left) has an extra Gaussian noise injection term. Batch normalization correction
(γl, βl) and non-linearity are then applied to obtain h(l) and h̃(l). At each layer of the decoder, two streams of information, the lateral
connection z̃(l) (gray lines) and the vertical connection u(l+1), are required to reconstruct ẑ(l) (equations 11 to 15). Acronyms CE and
RC stand for Cross Entropy and Reconstruction Cost respectively. The final objective function is a weighted sum of all Reconstruction
costs and the Cross Entropy cost.

4.1. Variants derived by removal of a component

4.1.1. NOISE VARIANTS

Different configurations of noise injection, penalizing re-
construction errors, and the lateral connection removal sug-
gest four different variants:

• Add noise only to the first layer (FIRSTNOISE).

• Only penalize the reconstruction at the first layer
(FIRSTRECONS), i.e. λ(l≥1) are set to 0.

• Apply both of the above changes: add noise and
penalize the reconstruction only at the first layer
(FIRSTN&R).

• Remove all lateral connections from FIRSTN&R.
Therefore, equivalent to to a denoising autoencoder
with an additional supervised cost at the top, the en-
coder and the decoder are connected only through the
topmost connection. We call this variant NOLAT-
ERAL.

Deconstructing the Ladder Network Architecture

4.1.2. VANILLA COMBINATOR VARIANTS

We try different variants of the vanilla combinator function
that combines the two streams of information from the lat-
eral and the vertical connections in an unusual way. As
defined in equation 16, the output of the vanilla combina-
tor depends on u, z̃, and u � z̃ 2, which are connected to
the output via two paths, one linear and the other through a
sigmoid non-linearity unit.

The simplest way of combining lateral connections with
vertical connections is to simply add them in an element-
wise fashion, similar to the nature of skip-connections in
a recently published work on Residual Learning (He et al.,
2015). We call this variant LINEAR combinator function.
We also derive two more variants NOSIG and NOMULT in
the way of stripping down the vanilla combinator function
to the simple LINEAR one:

• Remove sigmoid non-linearity (NOSIG). The corre-
sponding per-element weights are initialized in the
same way as the vanilla combinator.

• Remove the multiplicative term z̃ � u (NOMULT).

• Simple linear combination (LINEAR)

g(z̃, u) = b+ wu � u+ wz � z̃ (19)

where the initialization scheme resembles the vanilla
one in which wz is initialized to one while wu and b
are initialized to zero.

4.2. Variants derived by replacement of a component

4.2.1. VANILLA COMBINATOR INITIALIZATION

Note that the vanilla combinator is initialized in a very spe-
cific way (equation 17), which sets the initial weights for
lateral connection z̃ to 1 and vertical connection u to 0.
This particular scheme encourages the Ladder decoder path
to learn more from the lateral information stream z̃ than the
vertical u at the beginning of training.

We explore two variants of the initialization scheme:

• Random initialization (RANDINIT): all per-element
parameters are randomly initialized to N (0, 0.2).

• Reverse initialization (REVINIT): all per-element pa-
rameters w{0,1}z , w{0,1}zu, and b{0,1} are initialized
to zero while w{0,1}u and wσ are initialized to one.

2For simplicity, subscript i and superscript l are implicit from
now on.

4.2.2. GAUSSIAN COMBINATOR VARIANTS

Another choice for the combinator function with a prob-
abilistic interpretation is the GAUSSIAN combinator pro-
posed in the original paper about the Ladder Architecture
(Rasmus et al., 2015). Based on the theory in the Section
4.1 of (Valpola, 2014), assuming that both additive noise
and the conditional distribution P (z(l)|u(l+1)) are Gaus-
sian distributions, the denoising function is linear with re-
spect to z̃(l). Hence, the denoising function could be a
weighted sum over z̃(l) and a prior on z(l). The weights
and the prior are modeled as a function of the vertical sig-
nal:

g(z̃, u) = ν(u)� z̃ + (1− ν(u))� µ(u), (20)

in which

µ(u) = w1 � Sigmoid(w2 � u+ w3) + w4 � u+ w5,
(21)

ν(u) = w6 � Sigmoid(w7 � u+ w8) + w9 � u+ w10.
(22)

Strictly speaking, ν(u) is not a proper weight, because it
is not guaranteed to be positive all the time. To make the
Gaussian interpretation rigorous, we explore a variant that
we call GATEDGAUSS, where equations 20 and 21 stay the
same but 22 is replaced by:

ν(u) = Sigmoid(w6 � u+ w7). (23)

GATEDGAUSS guarantees that 0 < ν(u) < 1. We expect
that ν(u)i will be close to 1 if the information from the
lateral connection for unit i is more helpful to reconstruc-
tion, and close to 0 if the vertical connection becomes more
useful. The GATEDGAUSS combinator is similar in nature
to the gating mechanisms in other models such as Gated
Recurrent Unit (Cho et al., 2014) and highway networks
(Srivastava et al., 2015).

4.2.3. MLP (MULTILAYER PERCEPTRON)
COMBINATOR VARIANTS

We also propose another type of element-wise combinator
functions based on fully-connected MLPs. We have ex-
plored two classes in this family. The first one, denoted
simply as MLP, maps two scalars [u, z̃] to a single out-
put g(z̃, u). We empirically determine the choice of acti-
vation function for the hidden layers. Preliminary experi-
ments show that the Leaky Rectifier Linear Unit (LReLU)
(Maas et al., 2013) performs better than either the conven-
tional ReLU or the sigmoid unit. Our LReLU function is
formulated as

LReLU(x) =

{
x, if x ≥ 0,

0.1x, otherwise
. (24)

Deconstructing the Ladder Network Architecture

We experiment with different numbers of layers and hidden
units per layer in the MLP. We present results for three spe-
cific configurations: [4] for a single hidden layer of 4 units,
[2, 2] for 2 hidden layers each with 2 units, and [2, 2, 2] for
3 hidden layers. For example, in the [2, 2, 2] configuration,
the MLP combinator function is defined as:

g(z̃, u) = W3 · LReLU
(

W2 · LReLU(W1 · [u, z̃] + b1) + b2

)
+ b3

(25)

where W1, W2, and W3 are 2 × 2 weight matrices; b1, b2,
and b3 are 2× 1 bias vectors.

The second class, which we denote as AMLP (Augmented
MLP), has a multiplicative term as an augmented input
unit. We expect that this multiplication term allows the
vertical signal (u(l+1)) to override the lateral signal (z̃), and
also allows the lateral signal to select where the vertical sig-
nal is to be instantiated. Since the approximation of multi-
plication is not easy for a single-layer MLP, we explicitly
add the multiplication term as an extra input to the combi-
nator function. AMLP maps three scalars [u, z̃, u� z̃] to a
single output. We use the same LReLU unit for AMLP.

We do similar experiments as in the MLP case and include
results for [4], [2, 2] and [2, 2, 2] hidden layer configura-
tions.

Both MLP and AMLP weight parameters are randomly
initialized to N (0, η). η is considered to be a hyperparam-
eter and tuned on the validation set. Precise values for the
best η values are listed in Appendix.

4.3. Methodology

The experimental setup includes two semi-supervised clas-
sification tasks with 100 and 1000 labeled examples and a
fully-supervised classification task with 60000 labeled ex-
amples for Permutation-Invariant MNIST handwritten digit
classification. Labeled examples are chosen randomly but
the number of examples for different classes is balanced.
The test set is not used during all the hyperparameter search
and tuning. Each experiment is repeated 10 times with 10
different but fixed random seeds to measure the standard er-
ror of the results for different parameter initializations and
different selections of labeled examples.

All variants and the vanilla Ladder Network itself are
trained using the ADAM optimization algorithm (Kingma
& Ba, 2014) with a learning rate of 0.002 for 100 iterations
followed by 50 iterations with a learning rate decaying lin-
early to 0. Hyperparameters including the standard devia-
tion of the noise injection and the denoising weights at each
layer are tuned separately for each variant and each experi-
ment setting (100-, 1000-, and fully-labeled). Hyperparme-
ters are optimized by either a random search (Bergstra &

Bengio, 2012), or a grid search, depending on the num-
ber of hyperparameters involved (see Appendix for precise
configurations).

5. Results & Discussion
Table 2 collects all results for the variants and the baselines.
The results are organized into five main categories for each
of the three tasks. The BASELINE model is a simple feed-
forward neural network with no reconstruction penalty and
BASELINE+NOISE is the same network but with additive
noise at each layer. The best results in terms of average er-
ror rate on the test set are achieved by the proposed AMLP
combinator function: in the fully-supervised setting, the
best average error rate is 0.569± 0.010, while in the semi-
supervised settings with 100 and 1000 labeled examples,
the averages are 1.002 ± 0.037 and 0.974 ± 0.021 respec-
tively. A visualization of the a learned combinator function
is shown in Appendix.

5.1. Variants derived by removal

The results in the table indicate that in the fully-supervised
setting, adding noise either to the first layer only or to all
layers leads to a lower error rate with respect to the base-
lines. Our intuition is that the effect of additive noise to lay-
ers is very similar to the weight noise regularization method
(Graves, 2011) and dropout (Hinton et al., 2012).

In addition, it seems that removing the lateral connections
hurts much more than the absence of noise injection or re-
construction penalty in the intermediate layers. It is also
worth mentioning that hyperparameter tuning yields zero
weights for penalizing the reconstruction errors in all lay-
ers except the input layer in the fully-supervised task for
the vanilla model. Something similar happens for NOLAT-
ERAL as well, where hyperparameter tuning yields zero re-
construction weights for all layers including the input layer.
In other words, NOLATERAL and BASELINE+NOISE be-
come the same models for the fully-supervised task. More-
over, the weights for the reconstruction penalty of the hid-
den layers are relatively small in the semi-supervised task.
This is in line with similar observations (relatively small
weights for the unsupervised part of the objective) for the
hybrid discriminant RBM (Larochelle & Bengio, 2008).

The third part of Table 2 shows the relative performance of
different combinator functions by removal. Unsurprisingly,
the performance deteriorates considerably if we remove the
sigmoid non-linearity (NOSIG) or the multiplicative term
(NOMULT) or both (LINEAR) from the vanilla combinator.
Judging from the size of the increase in average error rates,
the multiplicative term is more important than the sigmoid
unit.

Deconstructing the Ladder Network Architecture

Table 2. PI MNIST classification results for the vanilla Ladder Network and its variants trained on 100, 1000, and 60000 (full) labeled
examples. AER and SE stand for Average Error Rate and its Standard Error of each variant over 10 different runs. BASELINE is a
multi-layer feed-forward neural network with no reconstruction penalty.

100 1000 60000

Variant AER (%) SE AER (%) SE AER (%) SE
Baseline 25.804 ± 0.40 8.734 ± 0.058 1.182 ± 0.010

Baseline+noise 23.034 ± 0.48 6.113 ± 0.105 0.820 ± 0.009
Vanilla 1.086 ± 0.023 1.017 ± 0.017 0.608 ± 0.013

FirstNoise 1.856 ± 0.193 1.381 ± 0.029 0.732 ± 0.015
FirstRecons 1.691 ± 0.175 1.053 ± 0.021 0.608 ± 0.013
FirstN&R 1.856 ± 0.193 1.058 ± 0.175 0.732 ± 0.016
NoLateral 16.390 ± 0.583 5.251 ± 0.099 0.820 ± 0.009

RandInit 1.232 ± 0.033 1.011 ± 0.025 0.614 ± 0.015
RevInit 1.305 ± 0.129 1.031 ± 0.017 0.631 ± 0.018
NoSig 1.608 ± 0.124 1.223 ± 0.014 0.633 ± 0.010

NoMult 3.041 ± 0.914 1.735 ± 0.030 0.674 ± 0.018
Linear 5.027 ± 0.923 2.769 ± 0.024 0.849 ± 0.014

Gaussian 1.064 ± 0.021 0.983 ± 0.019 0.604 ± 0.010
GatedGauss 1.308 ± 0.038 1.094 ± 0.016 0.632 ± 0.011

MLP [4] 1.374 ± 0.186 0.996 ± 0.028 0.605 ± 0.012
MLP [2, 2] 1.209 ± 0.116 1.059 ± 0.023 0.573 ± 0.016

MLP [2, 2, 2] 1.274 ± 0.067 1.095 ± 0.053 0.602 ± 0.010
AMLP [4] 1.072 ± 0.015 0.974 ± 0.021 0.598 ± 0.014

AMLP [2, 2] 1.193 ± 0.039 1.029 ± 0.023 0.569 ± 0.010
AMLP [2, 2, 2] 1.002 ± 0.038 0.979 ± 0.025 0.578 ± 0.013

5.2. Variants derived by replacements

As described in Section 4.1.2 and Equation 17, the per-
element weights of the lateral connections are initialized
to ones while those of the vertical are initialized to zeros.
Interestingly, the results are slightly worse for the RAN-
DINIT variant, in which these weights are initialized ran-
domly. The REVINIT variant is even worse than the ran-
dom initialization scheme. We suspect that the reason is
that the optimization algorithm finds it easier to reconstruct
a representation z starting from its noisy version z̃, rather
than starting from an initially arbitrary reconstruction from
the untrained upper layers. Another justification is that the
initialization scheme in Equation 17 corresponds to opti-
mizing the Ladder Network as if it behaves like a stack of
decoupled DAEs initially, therefore during early training it
is like that the Auto-Encoders are trained more indepen-
dently.

The GAUSSIAN combinator performs better than the
vanilla combinator. GATEDGAUSS, the other variant with
strict 0 < σ(u) < 1, does not perform as well as the one
with unconstrained σ(u). In the GAUSSIAN formulation, z̃

is regulated by two functions of u: µ(u) and σ(u). This
combinator interpolates between the noisy activations and
the predicted reconstruction, and the scaling parameter can
be interpreted as a measure of the certainty of the network.

Finally, the AMLP model yields state-of-the-art results
in all of 100-, 1000- and 60000-labeled experiments for
PI MNIST. It outperforms both the MLP and the vanilla
model. The additional multiplicative input unit z̃� u helps
the learning process significantly.

5.3. Probabilistic Interpretations of the Ladder
Network

Since many of the motivations behind regularized autoen-
coder architectures are based on observations about gener-
ative models, we briefly discuss how the Ladder Network
can be related to some other models with varying degrees
of probabilistic interpretability. Considering that the com-
ponents that are most defining of the Ladder Network seem
to be the most important ones for semi-supervised learn-
ing in particular, comparisons with generative models are
at least intuitively appealing to get more insight about how

Deconstructing the Ladder Network Architecture

the model learns about unlabeled examples.

By training the individual denoising autoencoders that
make up the Ladder Network with a single objective func-
tion, this coupling goes as far as encouraging the lower
levels to produce representations that are going to be easy
to reconstruct by the upper levels. We find a similar term
(-log of the top-level prior evaluated at the output of the
encoder) in hierarchical extensions of the variational au-
toencoder (Rezende et al., 2014; Bengio, 2014). While the
Ladder Network differs too much from an actual variational
autoencoder to be treated as such, the similarities can still
give one intuitions about the role of the noise and the inter-
actions between the layers. Conversely, one also may won-
der how a variational autoencoder might benefit from some
of the components of Ladder Network like Batch Normal-
ization and multiplicative connections.

When one simply views the Ladder Network as a pecu-
liar type of denoising autoencoder, one could extend the
recent work on the generative interpretation of denoising
autoencoders (Alain & Bengio, 2013; Bengio et al., 2013)
to interpret the Ladder Network as a generative model as
well. It would be interesting to see if the Ladder Network
architecture can be used to generate samples and if the ar-
chitecture’s success at semi-supervised learning translates
to this profoundly different use of the model.

6. Conclusion
The paper systematically compares different variants of the
recent Ladder Network architecture (Rasmus et al., 2015;
Valpola, 2014) with two feedforward neural networks as
the baselines and the standard architecture (proposed in the
original paper). Comparisons are done in a deconstructive
way, starting from the standard architecture. Based on the
comparisons of different variants we conclude that:

• Unsurprisingly, the reconstruction cost is crucial to
obtain the desired regularization from unlabeled data.

• Applying additive noise to each layer and especially
the first layer has a regularization effect which helps
generalization. This seems to be one of the most im-
portant contributors to the performance on the fully
supervised task.

• The lateral connection is a vital component in the Lad-
der architecture to the extent that removing it consid-
erably deteriorates the performance for all of the semi-
supervised tasks.

• The precise choice of the combinator function has a
less dramatic impact, although the vanilla combinator
can be replaced by the Augmented MLP to yield better
performance, in fact allowing us to improve the record

error rates on Permutation-Invariant MNIST for semi-
and fully-supervised settings.

We hope that these comparisons between different architec-
tural choices will help to improve understanding of semi-
supervised learning’s success for the Ladder Network and
like architectures, and perhaps even deep architectures in
general.

References
Alain, Guillaume and Bengio, Yoshua. What regularized

auto-encoders learn from the data generating distribu-
tion. In ICLR’2013. also arXiv report 1211.4246, 2013.

Bengio, Yoshua. Learning deep architectures for ai. Foun-
dations and trends R© in Machine Learning, 2(1):1–127,
2009.

Bengio, Yoshua. How auto-encoders could provide credit
assignment in deep networks via target propagation.
Technical report, arXiv:1407.7906, 2014.

Bengio, Yoshua, Yao, Li, Alain, Guillaume, and Vincent,
Pascal. Generalized denoising auto-encoders as genera-
tive models. In NIPS’2013, 2013.

Bergstra, James and Bengio, Yoshua. Random search for
hyper-parameter optimization. The Journal of Machine
Learning Research, 13(1):281–305, 2012.

Cho, Kyunghyun, van Merriënboer, Bart, Bahdanau,
Dzmitry, and Bengio, Yoshua. On the properties of neu-
ral machine translation: Encoder-decoder approaches.
arXiv preprint arXiv:1409.1259, 2014.

Graves, Alex. Practical variational inference for neural net-
works. In Advances in Neural Information Processing
Systems, pp. 2348–2356, 2011.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,
Jian. Deep residual learning for image recognition. arXiv
preprint arXiv:1512.03385, 2015.

Hinton, Geoffrey E, Osindero, Simon, and Teh, Yee-Whye.
A fast learning algorithm for deep belief nets. Neural
computation, 18(7):1527–1554, 2006.

Hinton, Geoffrey E., Srivastava, Nitish, Krizhevsky, Alex,
Sutskever, Ilya, and Salakhutdinov, Ruslan. Improving
neural networks by preventing co-adaptation of feature
detectors. Technical report, arXiv:1207.0580, 2012.

Ioffe, Sergey and Szegedy, Christian. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Deconstructing the Ladder Network Architecture

Kingma, Diederik and Ba, Jimmy. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Kingma, Diederik P, Mohamed, Shakir, Rezende,
Danilo Jimenez, and Welling, Max. Semi-supervised
learning with deep generative models. In Advances in
Neural Information Processing Systems, pp. 3581–3589,
2014.

Langley, P. Crafting papers on machine learning. In Lang-
ley, Pat (ed.), Proceedings of the 17th International Con-
ference on Machine Learning (ICML 2000), pp. 1207–
1216, Stanford, CA, 2000. Morgan Kaufmann.

Larochelle, Hugo and Bengio, Yoshua. Classification us-
ing discriminative restricted boltzmann machines. In
Proceedings of the 25th international conference on Ma-
chine learning, pp. 536–543. ACM, 2008.

Maas, Andrew L, Hannun, Awni Y, and Ng, Andrew Y.
Rectifier nonlinearities improve neural network acoustic
models. In Proc. ICML, volume 30, 2013.

Ranzato, Marc’Aurelio and Szummer, Martin. Semi-
supervised learning of compact document representa-
tions with deep networks. In Proceedings of the 25th
international conference on Machine learning, pp. 792–
799. ACM, 2008.

Rasmus, Antti, Valpola, Harri, Honkala, Mikko, Berglund,
Mathias, and Raiko, Tapani. Semi-supervised learning
with ladder network. arXiv preprint arXiv:1507.02672,
2015.

Rezende, Danilo J., Mohamed, Shakir, and Wierstra, Daan.
Stochastic backpropagation and approximate inference
in deep generative models. In ICML’2014, 2014.

Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex,
Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout:
A simple way to prevent neural networks from overfit-
ting. The Journal of Machine Learning Research, 15(1):
1929–1958, 2014.

Srivastava, Rupesh K, Greff, Klaus, and Schmidhuber,
Jürgen. Training very deep networks. In Advances in
Neural Information Processing Systems, pp. 2368–2376,
2015.

Valpola, Harri. From neural pca to deep unsupervised
learning. arXiv preprint arXiv:1411.7783, 2014.

Vincent, Pascal, Larochelle, Hugo, Bengio, Yoshua, and
Manzagol, Pierre-Antoine. Extracting and composing
robust features with denoising autoencoders. In Proceed-
ings of the 25th international conference on Machine
learning, pp. 1096–1103. ACM, 2008.

Vincent, Pascal, Larochelle, Hugo, Lajoie, Isabelle, Ben-
gio, Yoshua, and Manzagol, Pierre-Antoine. Stacked de-
noising autoencoders: Learning useful representations in
a deep network with a local denoising criterion. J. Ma-
chine Learning Res., 11, 2010.

