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Abstract
We introduce three novel semi-parametric exten-
sions of probabilistic canonical correlation anal-
ysis with identifiability guarantees. We con-
sider moment matching techniques for estima-
tion in these models. For that, by drawing ex-
plicit links between the new models and a dis-
crete version of independent component analy-
sis (DICA), we first extend the DICA cumulant
tensors to the new discrete version of CCA. By
further using a close connection with indepen-
dent component analysis, we introduce general-
ized covariance matrices, which can replace the
cumulant tensors in the moment matching frame-
work, and, therefore, improve sample complexity
and simplify derivations and algorithms signifi-
cantly. As the tensor power method or orthog-
onal joint diagonalization are not applicable in
the new setting, we use non-orthogonal joint di-
agonalization techniques for matching the cumu-
lants. We demonstrate performance of the pro-
posed models and estimation techniques on ex-
periments with both synthetic and real datasets.

1. Introduction
Canonical correlation analysis (CCA), originally intro-
duced by Hotelling (1936), is a common statistical tool for
the analysis of multi-view data. Examples of such data in-
clude, for instance, representation of some text in two lan-
guages (e.g., Vinokourov et al., 2002) or images aligned
with text data (e.g., Hardoon et al., 2004; Gong et al.,
2014). Given two multidimensional variables (or datasets),
CCA finds two linear transformations (factor loading ma-
trices) that mutually maximize the correlations between
the transformed variables (or datasets). Together with its
kernelized version (see, e.g., Shawe-Taylor & Cristianini,
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2004; Bach & Jordan, 2003), CCA has a wide range of ap-
plications (see, e.g., Hardoon et al. (2004) for an overview).

Bach & Jordan (2005) provide a probabilistic interpretation
of CCA: they show that the maximum likelihood estimators
of a particular Gaussian graphical model, which we refer
to as Gaussian CCA, is equivalent to the classical CCA by
Hotelling (1936). The key idea of Gaussian CCA is to al-
low some of the covariance in the two observed variables
to be explained by a linear transformation of common in-
dependent sources, while the rest of the covariance of each
view is explained by their own (unstructured) noises. Im-
portantly, the dimension of the common sources is often
significantly smaller than the dimensions of the observa-
tions and, potentially, than the dimensions of the noise. Ex-
amples of applications and extensions of Gaussian CCA are
the works by Socher & Fei-Fei (2010), for mapping visual
and textual features to the same latent space, and Haghighi
et al. (2008), for machine translation applications.

Gaussian CCA is subject to some well-known unidentifi-
ability issues, in the same way as the closely related fac-
tor analysis model (FA; Bartholomew, 1987; Basilevsky,
1994) and its special case, the probabilistic principal com-
ponent analysis model (PPCA; Tipping & Bishop, 1999;
Roweis, 1998). Indeed, as FA and PPCA are identifiable
only up to multiplication by any rotation matrix, Gaussian
CCA is only identifiable up to multiplication by any invert-
ible matrix. Although this unidentifiability does not affect
the predictive performance of the model, it does affect the
factor loading matrices and hence the interpretability of the
latent factors. In FA and PPCA, one can enforce additional
constraints to recover unique factor loading matrices (see,
e.g., Murphy, 2012). A notable identifiable version of FA is
independent component analysis (ICA; Jutten, 1987; Jutten
& Hérault, 1991; Comon & Jutten, 2010). One of our goals
is to introduce identifiable versions of CCA.

The main contributions of this paper are as follows. We first
introduce for the first time, to the best of our knowledge,
three new formulations of CCA: discrete, non-Gaussian,
and mixed (see Section 2.1). We then provide identifiabil-
ity guarantees for the new models (see Section 2.2). Then,
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in order to use a moment matching framework for estima-
tion, we first derive a new set of cumulant tensors for the
discrete version of CCA (Section 3.1). We further replace
these tensors with their approximations by generalized co-
variance matrices for all three new models (Section 3.2).
Finally, as opposed to standard approaches, we use a par-
ticular type of non-orthogonal joint diagonalization algo-
rithms for extracting the model parameters from the cumu-
lant tensors or their approximations (Section 4).

Models. The new CCA models are adapted to applications
where one or both of the data-views are either counts, like
in the bag-of-words representation for text, or continuous
data, for instance, any continuous representation of images.
A key feature of CCA compared to joint PCA is the fo-
cus on modeling the common variations of the two views,
as opposed to modeling all variations (including joint and
marginal ones).

Moment matching. Regarding parameter estimation, we
use the method of moments, also known as “spectral meth-
ods.” It recently regained popularity as an alternative to
other estimation methods for graphical models, such as ap-
proximate variational inference or MCMC sampling. Es-
timation of a wide range of models is possible within
the moment matching framework: ICA (e.g., Cardoso &
Comon, 1996; Comon & Jutten, 2010), mixtures of Gaus-
sians (e.g., Arora & Kannan, 2005; Hsu & Kakade, 2013),
latent Dirichlet allocation and topic models (Arora et al.,
2012; 2013; Anandkumar et al., 2012; Podosinnikova et al.,
2015), supervised topic models (Wang & Zhu, 2014),
Indian buffet process inference (Tung & Smola, 2014),
stochastic languages (Balle et al., 2014), mixture of hid-
den Markov models (Sübakan et al., 2014), neural networks
(see, e.g., Anandkumar & Sedghi, 2015; Janzamin et al.,
2016), and other models (see, e.g., Anandkumar et al.,
2014, and references therein).

Moment matching algorithms for estimation in graphical
models mostly consist of two main steps: (a) construction
of moments or cumulants with a particular diagonal struc-
ture and (b) joint diagonalization of the sample estimates
of the moments or cumulants to estimate the parameters.

Cumulants and generalized covariance matrices. By us-
ing the close connection between ICA and CCA, we first
derive in Section 3.1 the cumulant tensors for the discrete
version of CCA from the cumulant tensors of a discrete
version of ICA (DICA) proposed by Podosinnikova et al.
(2015). Extending the ideas from the ICA literature (Yere-
dor, 2000; Todros & Hero, 2013), we further generalize
in Section 3.2 cumulants as the derivatives of the cumu-
lant generating function. This allows us to replace cumu-
lant tensors with “generalized covariance matrices”, while
preserving the rest of the framework. As a consequence
of working with the second-order information only, the

derivations and algorithms get significantly simplified and
the sample complexity potentially improves.

Non-orthogonal joint diagonalization. When estimating
model parameters, both CCA cumulant tensors and gener-
alized covariance matrices for CCA lead to non-symmetric
approximate joint diagonalization problems. Therefore, the
workhorses of the method of moments in similar context —
orthogonal diagonalization algorithms, such as the tensor
power method (Anandkumar et al., 2014), and orthogonal
joint diagonalization (Bunse-Gerstner et al., 1993; Cardoso
& Souloumiac, 1996) — are not applicable. As an alter-
native, we use a particular type of non-orthogonal Jacobi-
like joint diagonalization algorithms (see Section 4). Im-
portantly, the joint diagonalization problem we deal with
in this paper is conceptually different from the one con-
sidered, e.g., by Kuleshov et al. (2015) (and references
therein) and, therefore, the respective algorithms are not
applicable here.

2. Multi-view models
2.1. Extensions of Gaussian CCA

Gaussian CCA. Classical CCA (Hotelling, 1936) aims to
find projections D1 ∈ RM1×K and D2 ∈ RM2×K , of two
observation vectors x1 ∈ RM1 and x2 ∈ RM2 , each rep-
resenting a data-view, such that the projected data, D>1 x1

and D>2 x2, are maximally correlated. Similarly to classi-
cal PCA, the solution boils down to solving a generalized
SVD problem. The following probabilistic interpretation of
CCA is well known (Browne, 1979; Bach & Jordan, 2005;
Klami et al., 2013). Given that K sources are i.i.d. stan-
dard normal random variables, α ∼ N (0, IK), the Gaus-
sian CCA model is given by

x1 |α, µ1, Ψ1 ∼ N (D1α+ µ1, Ψ1),

x2 |α, µ2, Ψ2 ∼ N (D2α+ µ2, Ψ2),
(1)

where the matrices Ψ1 ∈ RM1×M1 and Ψ2 ∈ RM2×M2

are positive semi-definite. Then, the maximum likelihood
solution of (1) coincides (up to permutation, scaling, and
multiplication by any invertible matrix) with the classical
CCA solution. The model (1) is equivalent to

x1 = D1α+ ε1,

x2 = D2α+ ε2,
(2)

where the noise vectors are normal random variables, i.e.
ε1 ∼ N (µ1,Ψ1) and ε2 ∼ N (µ2,Ψ2), and the following
independence assumptions are made:

α1, . . . , αK are mutually independent,
α ⊥⊥ ε1, ε2 and ε1 ⊥⊥ ε2.

(3)

The following three models are our novel semi-parametric
extensions of Gaussian CCA (1)–(2).
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Figure 1. Graphical models for non-Gaussian (4), discrete (5),
and mixed (6) CCA.

Multi-view models. The first new model follows by drop-
ping the Gaussianity assumption on α, ε1, and ε2. In par-
ticular, the non-Gaussian CCA model is defined as

x1 = D1α+ ε1,

x2 = D2α+ ε2,
(4)

where, as opposed to (2), no assumptions are made on the
sources α and the noise ε1 and ε2 except for the indepen-
dence assumption (3).

Similarly to Podosinnikova et al. (2015), we further “dis-
cretize” non-Gaussian CCA (4) by applying the Poisson
distribution to each view (independently on each variable):

x1 |α, ε1 ∼ Poisson(D1α+ ε1),

x2 |α, ε2 ∼ Poisson(D2α+ ε2).
(5)

We obtain the (non-Gaussian) discrete CCA (DCCA)
model, which is adapted to count data (e.g., such as word
counts in the bag-of-words model of text). In this case, the
sources α, the noise ε1 and ε2, and the matricesD1 andD2

have non-negative components.

Finally, by combining non-Gaussian and discrete CCA, we
also introduce the mixed CCA (MCCA) model:

x1 = D1α+ ε1,

x2 |α, ε2 ∼ Poisson(D2α+ ε2),
(6)

which is adapted to a combination of discrete and contin-
uous data (e.g., such as images represented as continuous
vectors aligned with text represented as counts). Note that
no assumptions are made on distributions of the sources α
except for independence (3).

The plate diagram for the models (4)–(6) is presented in
Fig. 1. We call D1 and D2 factor loading matrices (see a
comment on this naming convention in Appendix A.2).

Relation between PCA and CCA. The key difference be-
tween Gaussian CCA and the closely related FA/PPCA
models is that the noise in each view of Gaussian CCA is
not assumed to be isotropic unlike for FA/PPCA. In other
words, the components of the noise are not assumed to be
independent or, equivalently, the noise covariance matrix
does not have to be diagonal and may exhibit a strong struc-
ture. In this paper, we never assume any diagonal structure

of the covariance matrices of the noises of the models (4)–
(6). The following example illustrates the mentioned re-
lation. Assuming a linear structure for the noise, (non-)
Gaussian CCA (NCCA) takes the form

x1 = D1α+ F1β1,

x2 = D2α+ F2β2,
(7)

where ε1 = F1β1 with β1 ∈ RK1 and ε2 = F2β2 with
β2 ∈ RK2 . By stacking the vectors on the top of each other

x =

(
x1

x2

)
, D =

(
D1 F1 0
D2 0 F2

)
, z =

α
β1

β2

 , (8)

we rewrite the model as x = Dz. Assuming that the noise
sources β1 and β2 have mutually independent components,
ICA is recovered. If the sources z are further assumed to
be Gaussian, x = Dz corresponds to PPCA. However, we
do not assume the noise in Gaussian CCA (and in (4)–(6))
to have a very specific low dimensional structure.

Related work. Some extensions of Gaussian CCA were
proposed in the literature: exponential family CCA (Virta-
nen, 2010; Klami et al., 2010) and Bayesian CCA (see, e.g.,
Klami et al., 2013, and references therein). Although expo-
nential family CCA can also be discretized, it assumes in
practice that the prior of the sources is a specific combina-
tion of Gaussians. Bayesian CCA models the factor loading
matrices and the covariance matrix of Gaussian CCA. Sam-
pling or approximate variational inference are used for es-
timation and inference in both models. Both models, how-
ever, lack our identifiability guarantees and are quite dif-
ferent from the models (4)–(6). Song et al. (2014) consider
a multi-view framework to deal with non-parametric mix-
ture components, while our approach is semi-parametric
with an explicit linear structure (our loading matrices) and
makes the explicit link with CCA. See also Ge & Zou
(2016) for a related approach.

2.2. Identifiability

In this section, the identifiability of the factor loading ma-
trices D1 and D2 is discussed. In general, for the type of
models considered, the unidentifiability to permutation and
scaling cannot be avoided. In practice, this unidentifiabil-
ity is however easy to handle and, in the following, we only
consider identifiability up to permutation and scaling.

ICA can be seen as an identifiable analog of FA/PPCA. In-
deed, it is known that the mixing matrix D of ICA is iden-
tifiable if at most one source is Gaussian (Comon, 1994).
The factor loading matrix of FA/PPCA is unidentifiable
since it is defined only up to multiplication by any orthog-
onal rotation matrix.

Similarly, the factor loading matrices of Gaussian CCA (1),
which can be seen as a multi-view extension of PPCA, are
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identifiable only up to multiplication by any invertible ma-
trix (Bach & Jordan, 2005). We show the identifiability
results for the new models (4)–(6): the factor loading ma-
trices of these models are identifiable if at most one source
is Gaussian (see Appendix B for a proof).

Theorem 1. Assume that matrices D1 ∈ RM1×K and
D2 ∈ RM2×K , where K ≤ min(M1, M2), have full rank.
If the covariance matrices cov(x1) and cov(x2) exist and if
at most one source αk, for k = 1, . . . ,K, is Gaussian and
none of the sources are deterministic, then the models (4)–
(6) are identifiable (up to scaling and joint permutation).

Importantly, the permutation unidentifiability does not de-
stroy the alignment in the factor loading matrices, that is,
for some permutation matrix P , if D1P is the factor load-
ing matrix of the first view, than D2P must be the factor
loading matrix of the second view. This property is impor-
tant for the interpretability of the factor loading matrices
and, in particular, is used in our experiments in Section 5.

3. The cumulants and generalized covariances
In this section, we first derive the cumulant tensors for the
discrete CCA model (Section 3.1) and then generalized co-
variance matrices (Section 3.2) for the models (4)–(6). We
show that both cumulants and generalized covariances have
a special diagonal form and, therefore, can be efficiently
used within the moment matching framework (Section 4).

3.1. From discrete ICA to discrete CCA

In this section, we derive the DCCA cumulants as an exten-
sion of the cumulants of discrete independent component
analysis (DICA; Podosinnikova et al., 2015).

Discrete ICA. Podosinnikova et al. (2015) consider the
discrete ICA model (9), where x ∈ RM has condition-
ally independent Poisson components with mean Dα and
α ∈ RK has independent non-negative components:

x |α ∼ Poisson(Dα). (9)

For estimating the factor loading matrix D, Podosinnikova
et al. (2015) propose an algorithm based on the moment
matching method with the cumulants of the DICA model.
In particular, they define the DICA S-covariance matrix and
T-cumulant tensor as

S := cov(x)− diag [Ex] ,

[T ]m1m2m3
:= cum(x)m1m2m3 + [τ ]m1m2m3 ,

(10)

where indicesm1,m2, andm3 take the values in 1, . . . ,M ,
and [τ ]m1m2m3

= 2δm1m2m3
Exm1

−δm2m3
cov(x)m1m2

−
δm1m3

cov(x)m1m2
− δm1m2

cov(x)m1m3
with δ being the

Kronecker delta. For completeness, we outline the deriva-
tion by Podosinnikova et al. (2015) below. Let y := Dα.
By the law of total expectation E(x) = E(x|y) = E(y) and
by the law of total covariance

cov(x) = E[cov(x|y)] + cov[E(x|y), E(x|y)]

= diag[E(y)] + cov(y),

since all the cumulants of a Poisson random variable with
parameter y are equal to y. Therefore, S = cov(y). Simi-
larly, by the law of total cumulance T = cum(y). Then, by
the multilinearity property for cumulants, one obtains

S = D cov(α)D>,

T = cum(α)×1 D
> ×2 D

> ×3 D
>,

(11)

where ×i denotes the i-mode tensor-matrix product (see,
e.g., Kolda & Bader, 2009). Since the covariance cov(α)
and cumulant cum(α) of the independent sources are diag-
onal, (11) is called the diagonal form. This diagonal form
is further used for estimation of D (see Section 4).

Noisy discrete ICA. The following noisy version (12) of
the DICA model reveals the connection between DICA
and DCCA. Noisy discrete ICA is obtained by adding non-
negative noise ε, such that α ⊥⊥ ε, to discrete ICA (9):

x |α, ε ∼ Poisson (Dα+ ε) . (12)

Let y := Dα+ ε and S and T are defined as in (10). Then
a simple extension of the derivations from above gives
S = cov(y) and T = cum(y). Since the covariance matrix
(cumulant tensor) of the sum of two independent multivari-
ate random variables, Dα and ε, is equal to the sum of the
covariance matrices (cumulant tensors) of these variables,
the “perturbed” version of the diagonal form (11) follows

S = Dcov(α)D> + cov(ε),

T = cum(α)×1 D
> ×2 D

> ×3 D
> + cum(ε).

(13)

DCCA cumulants. By analogy with (8), stacking the
observations x = [x1; x2], the factor loading matrices
D = [D1; D2], and the noise vectors ε = [ε1; ε2] of dis-
crete CCA (5) gives a noisy version of discrete ICA with a
particular form of the covariance matrix of the noise:

cov(ε) =

(
cov(ε1) 0

0 cov(ε2)

)
, (14)

which is due to the independence ε1 ⊥⊥ ε2. Similarly,
the cumulant cum(ε) of the noise has only two diagonal
blocks which are non-zero. Therefore, considering only
those parts of the S-covariance matrix and T-cumulant ten-
sor of noisy DICA that correspond to zero blocks of the
covariance cov(ε) and cumulant cum(ε), gives immedi-
ately a matrix and tensor with a diagonal structure similar
to the one in (11). Those blocks are the cross-covariance
and cross-cumulants of x1 and x2.

We define the S-covariance matrix of discrete CCA1 as the
cross-covariance matrix of x1 and x2:

S12 := cov(x1, x2). (15)

1 Note that S21 := cov(x2, x1) is just the transpose of S12.
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From (13) and (14), the matrix S12 has the following diag-
onal form

S12 = D1cov(α)D>2 . (16)

Similarly, we define the T-cumulant tensors of discrete
CCA ( T121 ∈ RM1×M2×M1 and T122 ∈ RM1×M2×M2 )
through the cross-cumulants of x1 and x2, for j = 1, 2:

[T12j ]m1m2m̃j
:= [cum(x1, x2, xj)]m1m2m̃j

− δmjm̃j [cov(x1, x2)]m1m2
,

(17)

where the indices m1, m2, and m̃j take the values m1 ∈
1, . . . ,M1, m2 ∈ 1, . . . ,M2, and m̃j ∈ 1, . . . ,Mj .
From (11) and the mentioned block structure (14) of
cov(ε), the DCCA T-cumulants have the diagonal form:

T121 = cum(α)×1 D
>
1 ×2 D

>
2 ×3 D

>
1 ,

T122 = cum(α)×1 D
>
1 ×2 D

>
2 ×3 D

>
2 .

(18)

In Section 4, we show how to estimate the factor loading
matrices D1 and D2 using the diagonal form (16) and (18).
Before that, in Section 3.2, we first derive the generalized
covariance matrices of discrete ICA and the CCA mod-
els (4)–(6) as an extension of the ideas by Yeredor (2000);
Todros & Hero (2013).

3.2. Generalized covariance matrices

In this section, we introduce the generalization of the S-
covariance matrix for both DICA and the CCA models (4)–
(6), which are obtained through the Hessian of the cumu-
lant generating function. We show that (a) the generalized
covariance matrices can be used for approximation of the
T-cumulant tensors using generalized derivatives and (b) in
the DICA case, these generalized covariance matrices have
the diagonal form analogous to (11), and, in the CCA case,
they have the diagonal form analogous to (16). Therefore,
generalized covariance matrices can be seen as a substitute
for the T-cumulant tensors in the moment matching frame-
work. This (a) significantly simplifies derivations and the
final expressions used for implementation of resulting algo-
rithms and (b) potentially improves the sample complexity,
since only the second-order information is used.

Generalized covariance matrices. The idea of general-
ized covariance matrices is inspired by the similar exten-
sion of the ICA cumulants by Yeredor (2000).

The cumulant generating function (CGF) of a multivariate
random variable x ∈ RM is defined as

Kx(t) = logE(et
>x), (19)

for t ∈ RM . The cumulants κs(x), for s = 1, 2, 3, . . . , are
the coefficients of the Taylor series expansion of the CGF
evaluated at zero. Therefore, the cumulants are the deriva-
tives of the CGF evaluated at zero: κs(x) = ∇sKx(0),
s = 1, 2, 3, . . . , where∇sKx(t) is the s-th order derivative
of Kx(t) with respect to t. Thus, the expectation of x is the

gradient E(x) = ∇Kx(0) and the covariance of x is the
Hessian cov(x) = ∇2Kx(0) of the CGF evaluated at zero.

The extension of cumulants then follows immediately:
for t ∈ RM , we refer to the derivatives ∇sKx(t) of
the CGF as the generalized cumulants. The respective
parameter t is called a processing point. In particular, the
gradient, ∇Kx(t), and Hessian, ∇2Kx(t), of the CGF are
referred to as the generalized expectation and generalized
covariance matrix, respectively:

Ex(t) := ∇Kx(t) =
E(xet

>x)

E(et>x)
, (20)

Cx(t) := ∇2Kx(t) =
E(xx>et

>x)

E(et>x)
− Ex(t)Ex(t)>. (21)

We now outline the key ideas of this section. When a
multivariate random variable α ∈ RK has independent
components, its CGF Kα(h) = logE(eh

>α), for some
h ∈ RK , is equal to a sum of decoupled terms: Kα(h) =∑
k logE(ehkαk). Therefore, the Hessian ∇2Kα(h) of the

CGF Kα(h) is diagonal (see Appendix C.1). Like covari-
ance matrices, these Hessians (a.k.a. generalized covari-
ance matrices) are subject to the multilinearity property for
linear transformations of a vector, hence the resulting di-
agonal structure of the form (11). This is essentially the
previous ICA work (Yeredor, 2000; Todros & Hero, 2013).
Below we generalize these ideas first to the discrete ICA
case and then to the CCA models (4)–(6).

Discrete ICA generalized covariance matrices. Like co-
variance matrices, generalized covariance matrices of a
vector with independent components are diagonal: they
satisfy the multilinearity property CDα(h) = D Cα(h)D>,
and are equal to covariance matrices when h = 0. There-
fore, we can expect that the derivations of the diagonal
form (11) of the S-covariance matrices extends to the gen-
eralized covariance matrices case. By analogy with (10),
we define the generalized S-covariance matrix of DICA:

S(t) := Cx(t)− diag[Ex(t)]. (22)

To derive the analog of the diagonal form (11) for S(t), we
have to compute all the expectations in (20) and (21) for
a Poisson random variable x with the parameter y = Dα.
To illustrate the intuition, we compute here one of these
expectations (see Appendix C.2 for further derivations):

E(xx>et
>x) = E[E(xx>et

>x | y)]

= diag[et]E(yy>ey
>(et−1))diag[et]

=
(
diag[et]D

)
E(αα>eα

>h(t))
(
diag[et]D

)>
,

where h(t) = D>(et−1) and et denotes anM -vector with
the m-th component equal to etm . This gives

S(t) =
(
diag[et]D

)
Cα (h(t))

(
diag[et]D

)>
, (23)

which is a diagonal form similar (and equivalent for t = 0)
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to (11) since the generalized covariance matrix Cα(h) of in-
dependent sources is diagonal (see (40) in Appendix C.1).
Therefore, the generalized S-covariance matrices, esti-
mated at different processing points t, can be used as a
substitute of the T-cumulant tensors in the moment match-
ing framework. Interestingly enough, the T-cumulant ten-
sor (10) can be approximated by the generalized covariance
matrix via its directional derivative (see Appendix C.5).

CCA generalized covariance matrices. For the CCA
models (4)–(6), straightforward generalizations of the ideas
from Section 3.1 leads to the following definition of the
generalized CCA S-covariance matrix:

S12(t) :=
E(x1x

>
2 e

t>x)

E(et>x)
− E(x1e

t>x)

E(et>x)

E(x>2 e
t>x)

E(et>x)
, (24)

where the vectors x and t are obtained by vertically stack-
ing x1 & x2 and t1 & t2 as in (8). In the discrete CCA case,
S12(t) is essentially the upper-right block of the general-
ized S-covariance matrix S(t) of DICA and has the form

S12(t) =
(
diag[et1 ]D1

)
Cα(h(t))

(
diag[et2 ]D2

)>
, (25)

where h(t) = D>(et − 1) and the matrix D is obtained
by vertically stacking D1 & D2 by analogy with (8). For
non-Gaussian CCA, the diagonal form is

S12(t) = D1 Cα (h(t)) D>2 , (26)

where h(t) = D>1 t1 +D>2 t2. Finally, for mixed CCA,

S12(t) = D1 Cα (h(t))
(
diag[et2 ]D2

)>
, (27)

where h(t) = D>1 t1 + D>2 (et2 − 1). Since the gener-
alized covariance matrix of the sources Cα(·) is diagonal,
expressions (25)–(27) have the desired diagonal form (see
Appendix C.4 for detailed derivations).

4. Joint diagonalization algorithms
The standard algorithms such as TPM or orthogonal joint
diagonalization cannot be used for the estimation ofD1 and
D2. Indeed, even after whitening, the matrices appearing
in the diagonal form (16)&(18) or (25)–(27) are not orthog-
onal. As an alternative, we use Jacobi-like non-orthogonal
diagonalization algorithms (Fu & Gao, 2006; Iferroudjene
et al., 2009; Luciani & Albera, 2010). These algorithms are
discussed in this section and in Appendix F.

The estimation of the factor loading matrices D1 and D2

of the CCA models (4)–(6) via non-orthogonal joint diag-
onalization algorithms consists of the following steps: (a)
construction of a set of matrices, called target matrices, to
be jointly diagonalized (using finite sample estimators), (b)
a whitening step, (c) a non-orthogonal joint diagonaliza-
tion step, and (d) the final estimation of the factor loading
matrices (Appendix E.5).

Target matrices. There are two ways to construct tar-
get matrices: either with the CCA S-matrices (15) and T-
cumulants (17) (only DCCA) or the generalized covariance
matrices (24) (D/N/MCCA). These matrices are estimated
with finite sample estimators (Appendices D.1 & D.2).

The (computationally efficient) construction of target ma-
trices from S- and T-cumulants was discussed by Podosin-
nikova et al. (2015) and we recall it in Appendix E.1. Al-
ternatively, the target matrices can be constructed by esti-
mating the generalized S-covariance matrices at P +1 pro-
cessing points 0, t1, . . . , tP ∈ RM1+M2 :

{S12 = S12(0), S12(t1), . . . , S12(tP )}, (28)
which also have the diagonal form (25)–(27). It is interest-
ing to mention the connection between the T-cumulants and
the generalized S-covariance matrices. The T-cumulant can
be approximated via the directional derivative of the gener-
alized covariance matrix (see Appendix C.5). However, in
general, e.g., S12(t) with t = [t1; 0] is not exactly the same
as T121(t1) and the former can be non-zero even when the
latter is zero. This is important since order-4 and higher
statistics are used with the method of moments when there
is a risk that an order-3 statistic is zero like for symmet-
ric sources. In general, the use of higher-order statistics
increases the sample complexity and makes the resulting
expressions quite complicated. Therefore, replacing the
T-cumulants with the generalized S-covariance matrices is
potentially beneficial.

Whitening. The matrices W1 ∈ RK×M1 and W2 ∈
RK×M2 are called whitening matrices of S12 if

W1S12W
>
2 = IK , (29)

where IK is the K-dimensional identity matrix. W1 and
W2 are only defined up to multiplication by any invertible
matrix Q ∈ RK×K , since any pair of matrices W̃1 = QW1

and W̃2 = Q−>W2 also satisfy (29). In fact, using higher-
order information (i.e. the T-cumulants or the generalized
covariances for t 6= 0) allows to solve this ambiguity.

The whitening matrices can be computed via SVD of S12

(see Appendix E.2). When M1 and M2 are too large, one
can use a randomized SVD algorithm (see, e.g., Halko
et al., 2011) to avoid the construction of the large matrix
S12 and to decrease the computational time.

Non-orthogonal joint diagonalization (NOJD). Let us
consider joint diagonalization of the generalized covariance
matrices (28) (the same procedure holds for the S- and T-
cumulants (43); see Appendix E.3). Given the whitening
matrices W1 and W2, the transformation of the generalized
covariance matrices (28) gives P + 1 matrices
{W1S12W

>
2 , W1S12(tp)W

>
2 , p = 1, . . . , P}, (30)

where each matrix is in RK×K and has reduced dimension
since K < M1,M2. In practice, finite sample estimators
are used to construct (28) (see Appendices D.1 and D.2).
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Due to the diagonal form (16) and (25)–(27), each matrix
in (28) has the form2 (W1D1) diag(·) (W2D2)>. Both D1

and D2 are (full) K-rank matrices and W1 and W2 are
K-rank by construction. Therefore, the square matrices
V1 = W1D1 and V2 = W2D2 are invertible. From (16)
and (29), we get V1cov(α)V >2 = I and hence V2 =
diag[var(α)−1]V −1

1 (the covariance matrix of the sources
is diagonal and we assume they are non-deterministic, i.e.
var(α) 6= 0). Substituting this into W1S12(t)W>2 and
using the diagonal form (25)–(27), we obtain that the
matrices in (28) have the form V1diag(·)V −1

1 . Hence,
we deal with the problem of the following type: Given
P non-defective (a.k.a. diagonalizable) matrices B =
{B1, . . . , BP }, where each matrix Bp ∈ RK×K , find and
invertible matrix Q ∈ RK×K such that

QBQ−1 = {QB1Q
−1, . . . , QBPQ

−1} (31)

are (jointly) as diagonal as possible. This can be seen as
a joint non-symmetric eigenvalue problem. This problem
should not be confused with the classical joint diagonaliza-
tion problem by congruence (JDC), where Q−1 is replaced
by Q>, except when Q is an orthogonal matrix (Luciani
& Albera, 2010). JDC is often used for ICA algorithms or
moment matching based algorithms for graphical models
when a whitening step is not desirable (see, e.g., Kuleshov
et al. (2015) and references therein). However, neither JDC
nor the orthogonal diagonalization-type algorithms (such
as, e.g., the tensor power method by Anandkumar et al.,
2014) are applicable for the problem (31).

To solve the problem (31), we use the Jacobi-like non-
orthogonal joint diagonalization (NOJD) algorithms (e.g.,
Fu & Gao, 2006; Iferroudjene et al., 2009; Luciani & Al-
bera, 2010). These algorithms are an extension of the
orthogonal joint diagonalization algorithms based on Ja-
cobi (=Givens) rotations (Golub & Van Loan, 1996; Bunse-
Gerstner et al., 1993; Cardoso & Souloumiac, 1996). Due
to the space constraint, the description of the NOJD algo-
rithms is moved to Appendix F. Although these algorithms
are quite stable in practice, we are not aware of any the-
oretical guarantees about their convergence or stability to
perturbation.

Spectral algorithm. By analogy with the orthogonal case
(Cardoso, 1989; Anandkumar et al., 2012), we can eas-
ily extend the idea of the spectral algorithm to the non-
orthogonal one. Indeed, it amounts to performing whiten-
ing as before and constructing only one matrix with the
diagonal structure, e.g., B = W1S12(t)W>2 for some t.
Then, the matrix Q is obtained as the matrix of the eigen-
vectors of B. The vector t can be, e.g., chosen as t = Wu,
where W = [W1; W2] and u ∈ RK is a vector sampled
uniformly at random.

2 Note that when the diagonal form has terms diag[et], we
simply multiply the expression by diag[e−t].

This spectral algorithm and the NOJD algorithms are
closely connected. In particular, when B has real eigen-
vectors, the spectral algorithm is equivalent to NOJD of
B. Indeed, in such case, NOJD boils down to an algo-
rithm for a non-symmetric eigenproblem (Eberlein, 1962;
Ruhe, 1968). In practice, however, due to the presence of
noise and finite sample errors, B may have complex eigen-
vectors. In such case, the spectral algorithm is different
from NOJD. Importantly, the joint diagonalization type al-
gorithms are known to be more stable in practice (see, e.g.,
Bach & Jordan, 2003; Podosinnikova et al., 2015).

While deriving precise theoretical guarantees is beyond the
scope of this paper, the techniques outlined by Anand-
kumar et al. (2012) for the spectral algorithm for latent
Dirichlet Allocation can potentially be extended. The main
difference is obtaining the analogue of the SVD accuracy
(Lemma C.3, Anandkumar et al., 2013) for the eigen de-
composition. This kind of analysis can potentially be ex-
tended with the techniques outlined in (Chapter 4, Stewart
& Sun, 1990). Nevertheless, with appropriate parametric
assumptions on the sources, we expect that the above de-
scribed extension of the spectral algorithm should lead to
similar guarantee as the spectral algorithm of Anandkumar
et al. (2012).

See Appendix E for some important implementation de-
tails, including the choice of the processing points.

5. Experiments
Synthetic data. We sample synthetic data to have ground
truth information for comparison. We sample from lin-
ear DCCA which extends linear CCA (7) such that each
view is xj ∼ Poisson(Djα + Fjβj). The sources α ∼
Gamma(c, b) and the noise sources βj ∼ Gamma(cj , bj),
for j = 1, 2, are sampled from the gamma distribution
(where b is the rate parameter). Let sj ∼ Poisson(Djα)
be the part of the sample due to the sources and nj ∼
Poisson(Fjβj) be the part of the sample due to the noise
(i.e., xj = sj + nj). Then we define the expected sample
length due to the sources and noise, respectively, as Ljs :=
E[
∑

m sjm] and Ljn := E[
∑

m njm]. For sampling, the
target values Ls = L1s = L2s and Ln = L1n = L2n

are fixed and the parameters b and bj are accordingly set
to ensure these values: b = Kc/Ls and bj = Kjcj/Ln
(see Appendix B.2 of Podosinnikova et al. (2015)). For
the larger dimensional example (Fig. 2, right), each col-
umn of the matrices Dj and Fj , for j = 1, 2, is sampled
from the symmetric Dirichlet distribution with the concen-
tration parameter equal to 0.5. For the smaller 2D exam-
ple (Fig. 2, left), they are fixed: D1 = D2 with [D1]1 =
[D1]2 = 0.5 and F1 = F2 with [F1]11 = [F1]22 = 0.9
and [F1]12 = [F1]21 = 0.1. For each experiment, Dj

and Fj , for j = 1, 2, are sampled once and, then, the x-
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Figure 2. Synthetic experiment with discrete data. Left (2D example): M1 = M2 = K1 = K2 = 2, K = 1, c = c1 = c2 = 0.1, and
Ls = Ln = 100; middle (2D data): the x1-observations and factor loading matrices for the 2D example (F1j denotes the j-th column
of the noise factor matrix F1); right (20D example): M1 = M2 = K1 = K2 = 20, K = 10, Ls = Ln = 1, 000, c = 0.3, and
c1 = c2 = 0.1.

nato otan work travail board commission nisga nisga
kosovo kosovo workers négociations wheat blé treaty autochtones
forces militaires strike travailleurs farmers agriculteurs aboriginal traité

military guerre legislation grève grain administration agreement accord
war international union emploi producers producteurs right droit

troops pays agreement droit amendment grain land nations
country réfugiés labour syndicat market conseil reserve britannique
world situation right services directors ouest national indiennes

national paix services accord western amendement british terre
peace yougoslavie negotiations voix election comité columbia colombie

Table 1. Factor loadings (a.k.a. topics) extracted from the Hansard collection for K = 20 with DCCA.

observations are sampled for different sample sizes N =
{500, 1, 000, 2, 000, 5, 000, 10, 000}, 5 times for each N .

Metric. The evaluation is performed on a matrix D ob-
tained by stacking D1 and D2 vertically (see also the
comment after Thm. 1). As in Podosinnikova et al.
(2015), we use as evaluation metric the normalized `1-
error between a recovered matrix D̂ and the true matrix
D with the best permutation of columns err1(D̂,D) :=

minπ∈PERM
1

2K

∑
k ‖d̂πk − dk‖1 ∈ [0, 1]. The minimiza-

tion is over the possible permutations π ∈ PERM of the
columns of D̂ and can be efficiently obtained with the Hun-
garian algorithm for bipartite matching. The (normalized)
`1-error takes the values in [0, 1] and smaller values of this
error indicate better performance of an algorithm.

Algorithms. We compare DCCA (implementation with
the S- and T-cumulants) and DCCAg (implementation with
the generalized S-covariance matrices and the processing
points initialized as described in Appendix E.4) to DICA
and the non-negative matrix factorization (NMF) algorithm
with multiplicative updates for divergence (Lee & Seung,
2000). To run DICA or NMF, we use the stacking trick (8).
DCCA is set to estimate K components. DICA is set to es-
timate eitherK0 = K+K1+K2 orM = M1+M2 compo-
nents (whichever is the smallest, since DICA cannot work
in the over-complete case). NMF is always set to estimate
K0 components. For the evaluation of DICA/NMF, the
K columns with the smallest `1-error are chosen. NMF◦

stands for NMF initialized with a matrix D of the form (8)
with induced zeros; otherwise NMF is initialized with (uni-
formly) random non-negative matrices. The running times

are discussed in Appendix G.5.

Synthetic experiment. We first perform an experiment
with discrete synthetic data in 2D (Fig. 2) and then repeat
the same experiment when the size of the problem is 10
times larger. In practice, we observed that for K0 < M
all models work approximately equally well, except for
NMF which breaks down in high dimensions. In the over-
complete case as in Fig. 2, DCCA works better. A con-
tinuous analogue of this experiment is presented in Ap-
pendix G.1.

Real data (translation). Following Vinokourov et al.
(2002), we illustrate the performance of DCCA by extract-
ing bilingual topics from the Hansard collection (Vinok-
ourov & Girolami, 2002) with aligned English and French
proceedings of the 36-th Canadian Parliament. In Ta-
ble 1, we present some of the topics extracted after run-
ning DCCA with K = 20 (see all the details in Ap-
pendices G.3 and G.4). The (Matlab/C++) code for re-
producing the experiments of this paper is available at
https://github.com/anastasia-podosinnikova/cca.

Conclusion

We have proposed the first identifiable versions of CCA, to-
gether with moment matching algorithms which allow the
identification of the loading matrices in a semi-parametric
framework, where no assumptions are made regarding the
distribution of the source or the noise. We also introduce
new sets of moments (our generalized covariance matri-
ces), which could prove useful in other settings.

https://github.com/anastasia-podosinnikova/cca
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