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A. Stochastic generative process
The generative process is as follows:

1. Compute the empirical mean µµµ′′ and empirical covariance Σ′′ of Xd×n.

2. Sample the hyperparameters: µµµ′, Σ′, H ′ and σ.

3. Sample parameters for each cluster µµµk,Σk, for k = {1, ...,K}.

4. Select one of the K clusters with probabilities πππ = {π1, · · · , πK} where
∑K
k=1 πk = 1.

5. Sample cell-specific parameters for scaling mean and covariance matrix as αj , βj respectively.

6. Sample an observation xxxj from the probability distribution of the selected cluster by accounting for the scaling:
xxxj ∼ N (αjµkµkµk, βjΣk).

7. Repeat steps 4 to 6, n times to sample n i.i.d. cells.
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B. Algorithm

Algorithm 1 Inference Algorithm

for each Gibbs iteration t do
k = active clusters, ζ = auxiliary classes
ϕ−1 ∼ Gamma(1, 1)
Update mixture component parameters µk and Σk based on z and hyperparameters:
for every class k do

Σ′−1
k = (Σ′−1 + nkΣ−1

k )
µ′k = Σ′−1

k (µ′Σ′ + nkΣ−1
k x̄k)

Σ−1
µk

=
∑
i∈(zi=k)(xi − µk)(xi − µk)T

µk ∼ N (µ′k,Σ
′
k)

Σ−1
k ∼Wish(σ′ + nk, (σ

′H ′ + Σ−1
µk

)−1)
end for
Update hyper parameters based on µk and Σk:
µ′ ∼ N ((Σ′′−1 +KΣ′−1)−1(KΣ′−1µ̄+ µ′′Σ′′), (Σ′′ +KΣ′−1)−1)
Σ−1
µ′ =

∑
i∈(1,···,K)(µi − µ′)(µi − µ′)T

Σ′ ∼Wish(d+K, (dΣ′′−1 + Σ−1
µ′ )−1)

H ′ ∼Wish(d+Kσ′, dΣ′′ +
∑K
k=1 Σ−1

k )
σ′ ∼ InvGamma(1, 1

d )
for each cell i from 1 to n do

if zi is a singleton class then
Make zi an auxiliary class

end if
Construct ρρρ
∀ k: ρρρ(k) = nk−1

n−1+ϕ ∗ N (αjµµµk, βjΣk)

∀ζ : µµµζ ∼ N (µ′,Σ′),Σ−1
ζ ∼Wish((Σ′′ ∗ d)−1, d)

ρρρ(l) = ϕ/ζ
n−1+ϕ ∗ N (αjµµµζ , βjΣζ)

ρρρ = ρρρ∑
ρρρ

zi ∼ Mult(ρρρ)
Remove empty classes.

end for
for each cell j from 1 to n do
αj ∼ N (νp, δp

2

)
βj ∼ InvGamma(ωp, θp)
Impose identifiability constraints

end for
end for
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C. Derivation of posterior distributions
The conditional posterior distributions used in Gibbs sampling based on CRP have analytical forms and can be written as:

• For the component proportions πk, using Bayes’ Theorem and conjugacy of the Dirichlet prior.

f(πk|zzz, {x}(1,···,d)
∀j ,µµµ,Σ,πππ, ϕ) = f(πk|zzz,ϕϕϕ)

∝ f(πk|ϕϕϕ)f(zzz|πππ)

∼ Dir( ϕK +
∑
∀i

δ1(zi), · · · , ϕK +
∑
∀i

δK(zj))

(4)

where δi(zj) is the Kronecker delta.

• For the latent class assignment variable, zj , one integrates out πππ to get:

f(zj |zzz−j , xj ,µµµ,Σ,πππ, α, β, ϕ) = f(zj |zzz−j ,πππ, ϕ)f(xj |µµµ,Σ, α, β)

f(zj |zzz−j ,πππ, ϕ) ∝
∫
πππ

f(zj |zzz−j ,πππ)f(πππ|ϕ)d(πππ)

∝ f(zj |ϕ) ..= CRP (zj |ϕ)

The CRP (zj |ϕ) can be written as:

f(zj = k|zzz−j , ϕ) ∝ nk − 1

n− 1 + ϕ
for an existing class

f(zj = k|zzz−j , ϕ) ∝ ϕ/ζ

n− 1 + ϕ
for an auxiliary class

∴ f(zj |zzz−j , xj ,µµµ,Σ,πππ, α, β, ϕ) = CRP (zj |ϕ)f(xj |µµµ,Σ, α, β)

=
nk − 1

n− 1 + ϕ
N (xj |αjµµµk, βjΣk)

(for an existing k)

=
ϕ/ζ

n− 1 + ϕ
N (xj |αjµµµζ , βjΣζ)

(for an auxiliary class ζ)

(5)

where µµµζ and Σζ are sampled from their base distributions; µµµζ ∼ N (µ′,Σ′) and Σ−1
ζ ∼ Wish(d, 1

dΣ′′ ) (Görür & Ras-
mussen, 2010; Neal, 2000).

• For the mixing component parameters, sample µµµk and Σk conditioned on yyyk (Rasmussen, 1999; Neal, 2000):
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f(µk|µ′,Σ′,Σk, xj , αj , βj , zj = k) ∝ f(xj |µk,Σk, αj , βj , zj = k)f(µk|µ′,Σ′)
f(xj |µk,Σk, zj = k, αj , βj) ∼ N (αjµk, βjΣk)

∝ 1

2
(xj − αjµk)T (βjΣk)

−1
(xj − αjµk)

∝ (µk −
xj
αj

)T (
βj
α2
j

Σk)
−1

(µk −
xj
αj

)

f(µk|µ′,Σ′) ∼ N (µ′,Σ′)

=
1

2
(µk − µ′)TΣ′−1(µk − µ′)

f(µk|µ′,Σ′,Σk, xj , αj , βj , zj = k) ∼ N (µpk,Σ
p
k)

µpk = (Σ−1
k

α2
j

βj
+ Σ′−1)−1(Σ−1

k

αjxj
βj

+ Σ′−1µ′)

Σpk = (Σ−1
k

α2
j

βj
+ Σ′−1)−1 (6)

However, we need to sum on all cells in the same cluster, hence:

f(µk|µ′,Σ′,Σk, xk, zj = k, αj , βj) ∝ f(xk|µk,Σk, zj = k, αj , βj)f(µk|µ′,Σ′)

f(xk|µk,Σk, zj = k, αj , βj) =
∑
∀j;zj=k

1

2
(µk −

xj
αj

)T (
βj
α2
j

Σk)
−1

(µk −
xj
αj

)

∼ N ((
∑
j

{
α2
j

βj
Σ−1
k )−1}

∑
j

{xj
α2
j

α2
j

βj
Σ−1
k }, (

∑
j

{
α2
j

βj
Σ−1
k })

−1)

∼ N ((
∑
j

α2
j

βj
)−1(

∑
j

xj
βj

),Σk(
∑
j

α2
j

βj
)−1)

f(µk|µ′,Σ′) =
1

2
(µk − µ′)TΣ′−1(µk − µ′)

f(µk|µ′,Σ′,Σk, xk, αj , βj , zj = k) ∼ N (µpk,Σ
p
k)

µpk = Σpk(Σ′−1µ′ + Σ−1
k (
∑
j

xj
βj

))

Σpk = (Σ′−1 + Σ−1
k

∑
j

α2
j

βj
)−1

(7)
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Now for Σk, if xk is the set of all xjs assigned to cluster k such that zj = k:

f(Σ−1
k |σ

′, H ′, µk, xk, αj , βj , zj = k) ∝ f(xk|Σk, µk, αj , βj , zj = k)f(Σ−1
k |σ

′, H ′)

f(xk|Σ−1
k , µk, αj , βj , zj = k) ∼ N (αjµk, βjΣk)

∝
∏
∀j;zj=k

|βjΣk|−1/2exp{−1

2
(xj − αjµk)T (βjΣk)

−1
(xj − αjµk)}

f(Σ−1
k |σ

′, H ′) ∼Wish(H ′
−1
, σ′)

= |Σ−1
k |

σ′−d−1
2 exp{−

tr(H ′Σ−1
k )

2
}/(2σ

′d/2|H ′|−σ
′/2Γd(σ

′/2))

f(Σ−1
k |σ

′, H ′, µk, xj , αj , βj , zj = k) ∝ |Σk|
1−σ′+d

2 exp{−
tr(H ′Σ−1

k )

2
}/(2σ

′d/2|H ′|−σ
′/2Γd(σ

′/2))×∏
∀j;zj=k

|βjΣk|−1/2exp{−1

2
(xj − αjµk)T (βjΣk)

−1
(xj − αjµk)}

= |Σk|
1−σ′+d

2 (
∏
∀j;zj=k

|Σk|−1/2)(
∏
j

β
−d/2
j )/(2σ

′d/2|H ′|−σ
′/2Γd(σ

′/2))×

exp{−
tr(H ′Σ−1

k )

2
−
∑
j

1

2
(xj − αjµk)T (βjΣk)

−1
(xj − αjµk)}

= |Σk|(d−σ
′−nk+1)/2(

∏
j

β
−d/2
j )/(2σ

′d/2|H ′|−σ
′/2Γd(σ

′/2))×

exp{−
tr(H ′Σ−1

k )

2
−1

2

∑
j

tr((βjΣk)−1(xj − αjµk)(xj − αjµk)T )}

= |Σk|(d−σ
′−nk+1)/2(

∏
j

β
−d/2
j )/(2σ

′d/2|H ′|−σ
′/2Γd(σ

′/2))×

exp
(
−
tr(H ′Σ−1

k )

2
−1

2
tr
(

Σ−1
k

∑
j

((xj − αjµk)(xj − αjµk)T )/βj

))
= |Σ−1

k |
(σ′−d+nk−1)/2exp{−1

2
tr
(

(H ′ + Sx)Σ−1
k

)
}×

(
∏
j

β
−d/2
j )/(2σ

′d/2|H ′|−σ
′/2Γd(σ

′/2))

Sx =
∑
j

((xj − αjµk)(xj − αjµk)T )/βj)

f(Σ−1
k |σ

′, H ′, µk, xj , αj , βj , zj = k) ∼Wish(H,σ)

H = (H ′ + Sx)−1

σ = σ′ + nk
(8)

• For scaling parameters αj , if we assume Normal distributions with positive mean and narrow variance (as approxima-
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tion to the right skewed distribution of positive values), we can also derive posteriors:

f(αj |ν, δ, µk,Σk, xj , βj , zj = k) ∝ f(xj |αj , βj , µk,Σk, zj = k)f(αj |ν, δ)
f(xj |αj , βj , µk,Σk, zj = k) ∼ N (αjµk, βjΣk)

∝ 1

2
(xj − αjµk)T (βjΣk)

−1
(xj − αjµk)

=
1

2
(xj − αjµk)T (βjΣk)

−T/2
(βjΣk)

−1/2
(xj − αjµk)

=
1

2
(Axj −Aµkαj)T I(Axj −Aµkαj)

=
1

2

d∑
i=1

{((Axj)i − (Aµk)iαj)((Axj)
i − (Aµk)iαj)}

=
1

2

d∑
i=1

{((Axj)i./(Aµk)i − αj)(Aµk)i
2

((Axj)
i./(Aµk)2 − αj)}

αj ∼ N (νx, δx2)

νx = δx2
∑
i

{(Axj)i(Aµk)i}

δx2 = (
∑
i

(Aµk)i)−1

f(αj |ν, δ) ∼ N (ν, δ2)

f(αj |ν, δ, µk,Σk, xj , βj , zj = k) ∼ N (νp, δp
2

)

νp = δp2(νx/δx2 + ν/δ2)

δp2 = (1/δx2 + 1/δ2)−1

(9)

where A = (βjΣk)
−1/2, and (·)i denotes the ith elements, and ./ is element-wise division.

For βj we assume an Inverse-gamma distribution.

f(βj |ω, θ, µk,Σk, xj , αj , zj = k) ∝ f(xj |αj , βj , µk,Σk, zj = k)f(βj |ω, θ)
f(xj |αj , βj , µk,Σk, zj = k) ∼ N (αjµk, βjΣk)

∝ |βjΣk|−1/2exp{−1

2
(xj − αjµk)T (βjΣk)

−1
(xj − αjµk)}

∝ |βjΣk|−1/2exp{− 1

2βj
(xj − αjµk)TΣ−1

k (xj − αjµk)}

f(βj |ω, θ) ∼ InvGamma(ω, θ)

f(βj |ω, θ) =
θω

Γ(ω)
β−ω−1
j exp(

−θ
βj

)

f(βj |ω, θ, µk,Σk, xj , αj , zj = k) ∝ θω

Γ(ω)
β
−ω−1−d/2
j |Σk|−1/2exp{−1

βj
(θ +

1

2
(xj − αjµk)TΣ−1

k (xj − αjµk))}

∼ InvGamma(ωp, θp)

ωp = ω + d/2

θp = θ +
1

2
(xj − αjµk)TΣ−1

k (xj − αjµk)

(10)

• For the hyperparameters viz. µ′, Σ′ and H ′, sample them conditioned on the new component parameters µµµk and Σk
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(Rasmussen, 1999),(Neal, 2000):

f(µ′|µ′′,Σ′′, {µk}Kk=1, {xj}nj=1) ∝
( K∏
k=1

f(µk|µ′,Σ′)
)
f(µ′|µ′′,Σ′′)

f(µ′|µ′′,Σ′′) ∼ N (µ′|µ′′,Σ′′)

∝ |Σ′′|−
1
2 exp(− 1

2
(µ′ − µ′′)TΣ′′−1(µ′ − µ′′))( K∏

k=1

f(µk|µ′,Σ′)
)
∼ (unnormalised)N (f(µk|µ′,Σ′))

∝
K∏
k=1

|Σ′|−
1
2 exp(− 1

2
(µk − µ′)TΣ′−1(µk − µ′))

∴ f(µ′|µ′′,Σ′′, {µk}Kk=1, {xj}nj=1) ∝ |Σ′′|−
1
2 exp(− 1

2
(µ′ − µ′′)TΣ′′−1(µ′ − µ′′))×

K∏
k=1

|Σ′|−
1
2 exp(− 1

2
(µk − µ′)TΣ′−1(µk − µ′))

∝ |Σ′′|−
1
2 exp(− 1

2
(µ′ − µ′′)TΣ′′−1(µ′ − µ′′))×

|Σ′|−
K
2 exp(

K∑
k=1

−1

2
(µk − µ′)TΣ′−1(µk − µ′))

∝ |Σ′′|−
1
2 exp(− 1

2
(µ′ − µ′′)TΣ′′−1(µ′ − µ′′))×

|KΣ′|−
1
2 exp(

K∑
k=1

−1

2
(µk − µ′)TΣ′−1(µk − µ′))

∼ N (µµ′ ,Σµ′)

µµ′ = Σµ′(Σ
′′−1µ′′ +K2Σ′−1µ̄′)

Σµ′ = (Σ′′−1 +KΣ′−1)−1

(11)

where K is the number of currently populated clusters, d the data dimensionality, µ̄′ is the mean over µks and µ′′ and
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Σ′′ are the empirical mean and covariance of the data.

f(Σ′−1|µ′,Σ′′−1, {µk}Kk=1, {xj}nj=1) ∝
( K∏
k=1

f(µk|µ′,Σ′)
)
f(Σ′−1|Σ′′−1)

f(Σ′−1|Σ′′−1) ∼Wish(Σ′−1|Σ
′′−1

d
, d)

∝ |Σ′−1|
d−d−1

2 exp (− tr(dΣ′′Σ′−1)

2
)( K∏

k=1

f(µk|µ′,Σ′)
)
∼ (unnormalised)N (f(µk|µ′,Σ′))

∝
K∏
k=1

|Σ′|−
1
2 exp(− 1

2
(µk − µ′)TΣ′−1(µk − µ′))

∝ |Σ′|−
K
2 exp(

K∑
k=1

−1

2
(µk − µ′)TΣ′−1(µk − µ′))

∴ f(Σ′−1|µ′,Σ′′−1, {µk}Kk=1, {xj}nj=1) ∝ |Σ′−1|
d−d−1

2 exp (− tr(dΣ′′Σ′−1)

2
)×

|Σ′−1|
K
2 exp(

K∑
k=1

−1

2
(µk − µ′)TΣ′−1(µk − µ′))

∝ |Σ′−1|
d−d−1+K

2 exp (− tr(dΣ′′Σ′−1)

2
)×

exp(− Σ′−1
K∑
k=1

1

2
(µk − µ′)T (µk − µ′))

Substituting Σrss =

K∑
k=1

1

2
(µk − µ′)T (µk − µ′) above, we get:

f(Σ′−1|µ′,Σ′′−1, {µk}Kk=1, {xj}nj=1) ∝ |Σ′−1|
d−d−1+K

2

exp (− tr(dΣ′′Σ′−1)

2
)× exp (− Σ′−1Σrss)

∝ |Σ′−1|
d−d−1+K

2 exp (− tr(dΣ′′Σ′−1)

2
− 2tr(Σ′−1Σrss)

2
)

∝ |Σ′−1|
d−d−1+K

2 exp (− tr(dΣ′′Σ′−1 + 2Σ′−1Σrss)

2
)

∝ |Σ′−1|
d−d−1+K

2 exp
(
− tr(Σ′−1(dΣ′′ + 2Σrss))

2

)
∼ W(VΣ′−1 , dΣ′−1)

VΣ′−1 = (dΣ′′ + 2Σrss)
−1

dΣ′−1 = d+K

(12)

where K is the number of currently populated clusters, d the data dimensionality and µ′′ and Σ′′ are the empirical
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mean and covariance of the data.

f(H ′|σ′,Σ′′, {Σk}Kk=1, {xj}nj=1) ∝
( K∏
k=1

f(Σ−1
k |H

′−1, σ′)
)
f(H ′|Σ′′)

f(H ′|Σ′′) ∼Wish(H ′|Σ
′′

d
, d)

∝ |H ′|
d−n−1

2 |dΣ′′−1|−
d
2 exp (− tr(dΣ′′−1H ′)

2
)( K∏

k=1

f(Σ−1
k |H

′−1, σ′)
)
∼Wish(Σ−1

k |H
′−1, σ′)

∝
K∏
k=1

(
|Σ′−1
k |

σ′−d−1
2 |H ′|

σ′
2 exp (−

tr(H ′Σ−1
k )

2
)
)

∝ |Σ′−1
k |

K(σ′−d−1)
2 |H ′|

Kσ′
2 exp

( K∑
k=1

(−
tr(H ′Σ−1

k )

2
)
)

∝ |Σ′−1
k |

K(σ′−d−1)
2 |H ′|

Kσ′
2 exp

(
−
tr
∑K
k=1(H ′Σ−1

k )

2

)
∝ |Σ′−1

k |
K(σ′−d−1)

2 |H ′|
Kσ′
2 exp

(
−
trH ′

∑K
k=1(Σ−1

k )

2

)
∴ f(H ′|σ′,Σ′′, {Σk}Kk=1, {xj}nj=1) ∝ |H ′|

d−n−1
2 |dΣ′′−1|−

d
2 exp (− tr(dΣ′′−1H ′)

2
)×

|Σ′−1
k |

K(σ′−d−1)
2 |H ′|

Kσ′
2 exp

(
−
trH ′

∑K
k=1(Σ−1

k )

2

)
∝ |H ′|

d−n−1+Kσ′
2

exp
(
−
tr(H ′(dΣ′′−1 +

∑K
k=1(Σ−1

k )))

2

)
∼Wish(VH′ , dH′)

VH′ = (dΣ′′−1 +

K∑
k=1

(Σ−1
k ))

−1

dH′ = d+Kσ′

(13)

where K is the number of currently populated clusters, d the data dimensionality and µ′′ and Σ′′ are the empirical
mean and covariance of the data.

D. Theorems
D.1. Model Identifiability

As we intend to learn interpretable and consistent structures (rather than building a solely predictive model), we need
to insure model identifiability. Specifically, we need to set constraints on parameters αj , βj ,µµµk such that the parameter
estimates are valid.

Lemma S1. A finite mixture of multivariate Gaussian distributions f(X|mmmk, Sk) with means mmmk and covariance Sk for
component k, is identifiable with permutations in components, i.e. ΣKk=1πkf(X|mmmk, Sk) = ΣK

?

l=1π
?
l f(X|mmm?

l , S
?
l ) implies

that K = K? and mixtures are equivalent with permutations in components.

Proof. Follows results from Yakowitz & Spragins (1968) and Titterington (1985).
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Suppose we define the parameter set Θ = {∀j, k : (αjµµµk, βjΣk)} ∪ {πππ} , using Lemma 1, we have the identifiability of
f(X|Θ) with mmmk = αjµµµk and Sk = βjΣk with permutation in the components. We would like to extend this result to
identifiability of f(X|Φ) where Φ = {∀j, k : (αj ,µµµk, βj ,Σk)} ∪ {πππ}.
Theorem S2. Suppose that Θ = Θ? and for the prior distributions we have ∀j, k : f(αj ,µµµk, βj ,Σk) =
f(α?j ,µµµk

?, β?j ,Σ
?
k). If the following condition holds we have Φ = Φ?.

• ∀j : µµµk ≥ µµµ′ + diag(Σ′)(αj − ν)/δ

• ∀j : βj ≥ θ
ω+1

Proof. We present the proof sketch. According to the result from Lemma 1, αjµµµk and βjΣk are identified. Given the priors
for αj ∼ N (ν, δ2) andµµµk ∼ N (µ′,Σ′), and the identifiability of αjµµµk, to insure one solution set for the intersection of the
Normal probability distributions and αjµµµk = const., we limit the solution space such that ∀j : µµµk −µµµ′ ≥ diag(Σ′)(αj −
ν)/δ. Similarly, given the identifiability of βjΣk, we confine the space of βjs such that they are always larger than the mode
of its prior: βj ≥ θ/(ω + 1). These conditions impose truncated priors instead of the full distribution for µµµk,βββ. Given the
structure of the prior f(αj ,µµµk, βj ,Σk) and above conditions, any change in one of the parameters (e.g. αj) with respect to
their mean leads to either increasing the probabilities given priors for all parameters or decreasing the probabilities given
priors for all parameters. For example, an increase in αj will have the following effect given the conditions: αj ↑ ⇒ µµµk ↑
which given the form of priors leads to a decrease in both f(αj), and f(µµµk) and hence a decrease in f(αj ,µµµk). Therefore,
in order to guarantee ∀j, k : f(αj ,µµµk, βj ,Σk) = f(α?j ,µµµk

?, β?j ,Σ
?
k) we need to have Φ = Φ?.

D.2. Weak Posterior Consistency

Let f0(xxx) := N (αµµµ, βΣ) ∈ Rd be the true Gaussian density of xxx with identifiability constraints imposed on µµµ, α, β as
given in Theorem S2. Let P be the mixing distribution and F be the space of all density functions in Rd with respect to the
Lebesque measure. Let Π be the prior over F induced by BISCUIT i.e. F ∼ Π. Each xxxj ∼ N (αjµµµk, βjΣk), (µµµk,Σk) ∼
G,G ∼ DP (ϕ,G0) and αj , βj ∈ R. The base distribution G0 is the prior density over the distribution of the model
parameters. Weak consistency of a distribution relates to how close the posterior distribution, Π(f ∈ F|xxxni=1) concentrates
around arbitrarily small neighborhoods of f0(xxx) as n→∞. For a given radius ε, the KL-neighborhood KLε(f0) := {f ∈
F : KL(f0, f) < ε}.
Theorem S3. If f0(xxx) is compactly supported and G0 has support Rd × Rd×d

+ , then for weak consistency we show that
f0(xxx) ∈ KL(Π) every ε > 0.

Proof outline: The proof closely follows Wu & Ghosal (2010). We restate Theorem S3 in terms of Schwartz’s theorem
(Schwartz, 1965) based on the Kullback-Leibler (KL) property. It states that weak consistency conditions are equivalent
to showing that f0 ∈ KL(Π) i.e. for every ε > 0,Π(KLε(f0)) > 0 where the KL-neighborhood, KLε(f0) := {f ∈ F :

KL(f0, f) < ε} = {f ∈ F :
∫
f0(xxx)log f0(xxx)

f(xxx) dxxx < ε}. In other words, if Π puts positive probability on all KLε(f0) for
every ε > 0, then Π is weakly consistent at f0.

Let φd(xxx,Σ) be the multivariate Gaussian density for xxx. Following the assumptions in Theorem 2 in (Wu & Ghosal, 2010),
we bound Σ to βhId where Id is the identity matrix of order d, h ∈ H and H ⊂ R+ to show:∫

f0(xxx)log
f0(xxx)

f(xxx)
=

∫
f0(xxx)log

f0(xxx)∫
φd(xxx− αθ,Σ)dP (θ)

dxxx

≤
∫
f0(xxx)log

f0(xxx)∫
φd(xxx− αθ, βhId)dP (θ)

dxxx+ constant

≤ ε

Thus for all weak neighborhoods KLε(f0) < ε, meaning Π puts positive probability on all weak neighborhoods of f0.
This concludes Theorem S3.

Proposition S4. One sweep of the Gibbs sampler in BISCUIT can be computed in O(n) time.
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Proof. For every Gibbs sweep, there are principally four blocks viz. block 1 that computes the mixture component param-
eters for k components, block 2 that updates the hyperparameters, block 3 that assigns the class membership probability
to each of the n cells and block 4 that samples the cell-specific α and β. Blocks 1 and 2 run in O(1) time. The run time
for Block 3 can be computed as follows: We need to assign a class to the jth cell, given the assignments of the remaining
objects and all other parameter values. The jth cell’s assignment probabilities for all existing clusters and auxiliary clusters
are calculated based on equations in Section 5. From the resulting categorical distribution we sample a new assignment,say
znew. This procedure repeats for all cells j = 1, · · · , n. The computational cost of sampling the class assignment znew is
proportional to the number of classes, k ∴ as n→∞, k → ϕlog(n) almost surely (Korwar & Hollander, 1973; Antoniak,
1974). The time complexity for block 4 to update the scale parameters αj , βj is also constant and done for n observations.
Therefore the per-sweep time complexity for clustering n observations isO(nk+n) = O(ϕnlog(n)+n) ≈ O(ϕnlog(n)).
Given that n� k most of the time, the time complexity approaches O(n).

E. Comparison experiments.
We compared the performance of BISCUIT with a number of alternative methods including the naive HDPMM (Görür
& Rasmussen, 2010) along with two normalization methods typically used for single-cell data. a) a Generalized Linear
Model-based normalization (GLMnorm) where counts are regressed against the library size to get a residual count matrix
and b) a Mean-normalized method (MeanNorm) each cell is scaled by the average library size. Both the residual and
mean normalized matrices are log-transformed and used as input to the naive HDPMM. Additionally we compare with
non-MCMC methods such as Spectral clustering (Ng et al., 2002) and Phenograph (Levine et al., 2015).

We use a confusion matrix C to assess the quality of inferred clusters. For the MCMC methods, zs are taken from Gibbs
samples after a certain burn-in period. For graph-based methods, a series of z estimates are created by varying the nearest
neighbor parameter for Phenograph and by varying the number of clusters in Spectral clustering. The confusion matrices
for the different MCMC methods are shown in Figure 5. Next the upper triangular matrix of Ctrue (left-most in Figure
5) is used to create a binary vector h encoding the ’true’ z of each cell which is then compared with h∗met that contains
inferred zs with met referring to BISCUIT, HDPMM, GLMnorm, MeanNorm, Phenograph and Spectral clustering. When
Ctrue(i,j) = 0 and Cmet(i,j) = 0, h∗met is set to the number of valid iterations. When Ctrue(i,j) = 1 and Cmet(i,j) ≥ 1, h∗met is assigned
the value in Cmet(i,j). The agreement of h and h∗met is measured using the F-measure. The top panel in Figure S2 shows
boxplots of F-scores obtained in 15 experiments with randomly generated X for the different methods. The bottom panel
shows the outcome of a Friedman test with post-hoc analysis for assessing the significance of the pairwise differences
(Hollander & Wolfe, 1999). The better performance of BISCUIT is due to its ability to account for cell-specific scalings.

Model convergence diagnostics. Figure S4 depicts the trace of number of active clusters during Gibbs sampling in
BISCUIT for X50×100 with 3 clusters. The sampler stabilizes after roughly 150 sweeps and when initialized with one
cluster, the traceplot (Figure S4) shows an ’almost monotone’ increase during burn-in. Table S2 compares runtimes and
memory usage between the methods.
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F. Supplementary Figures & Tables

Figure S1: No clear dependence between the ratios of variances vs ratios of means motivates modeling moment-scalings
as separate cell-specific parameters.
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Figure S2: Top: Boxplots of F-scores obtained in 15 experiments with randomly-generated X for various methods. Bot-
tom: Boxplot of pairwise differences with color-coded significance (green, if multiple-testing-corrected p < 0.05) com-
puted by a Friedman test with post-hoc analysis. (Wilcoxon-Nemenyi-McDonald-Thompson test (Hollander & Wolfe,
1999)).
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Figure S3: Generative distributions used to check model mismatch assumptions. The hypothesized multivariate Gaussian
versus two heavy-tailed distributions: a non-central Student’s t and a negative binomial.
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Figure S4: Traceplot of the number of active clusters.

BISCUIT HDPMM GLMnorm MeanNorm PG SpecClust
∼ Runtime (min) 1.53 (±) 0.15 2.10 (±) 0.02 2.16 (±) 0.04 2.16 (±) 0.12 0.01 (±) 0.03 0.06 (±) 0.01
∼Memory (MB) 23.4 26.2 30.3 31.1 7.6 10.3

Table S1: For a randomly-generated X50×100, appproximate runtime comparisons and memory usages for different meth-
ods. All simulations are carried out on a computational cluster with a single core of 2.30 GHz processor and 32 GB
memory.

BISCUIT HDPMM PG SpecClust DBScan BASiCS+HDPMM BASiCS+PG BASiCS+SpecClust
F-score 0.9127 0.7913 0.7417 0.3205 0.2486 0.7125 0.6173 0.1425

Table S2: F-scores for BISCUIT versus other competing clustering techniques for 3005 cells in the Zeisel et al. (2015)
dataset.
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Figure S5: Top: Boxplots of F-scores obtained in 15 experiments with randomly-generated X from a negative binomial
distribution for BISCUIT, HDPMM, GLMnorm, MeanNorm, Phenograph (PG) and Spectral Clustering (SpecClust). Bot-
tom: Boxplot of pairwise differences together with color-coded significance (green, if multiple-testing-corrected p < 0.05)
computed by a non-parametric Friedman test with post-hoc analysis (Wilcoxon-Nemenyi-McDonald-Thompson test (Hol-
lander & Wolfe, 1999)).
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Figure S6: Top: Boxplots of F-scores obtained in 15 experiments with randomly-generated X from a non-central Stu-
dent’s t for BISCUIT, HDPMM, GLMnorm, MeanNorm, Phenograph (PG) and Spectral Clustering (SpecClust). Bottom:
Boxplot of pairwise differences together with color-coded significance (green, if multiple-testing-corrected p < 0.05) com-
puted by a non-parametric Friedman test with post-hoc analysis (Wilcoxon-Nemenyi-McDonald-Thompson test (Hollander
& Wolfe, 1999)).
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Figure S7: Confusion matrix for inferred cluster assignments using BISCUIT for 3005 cells in the Zeisel et al. (2015)
dataset (right), compared to actual cell types (left).

Figure S8: Inferred Σk showing different patterns of co-expression for genes in different inferred clusters of cells. In these
heatmaps, green shows negative and red shows positive covariance.

Figure S9: Left: Comparison of imputed values per cell per gene in a down-sampled dataset using BISCUIT to original
values. Right: Values corrected using commonly used normalization approach viz. scaling by mean library size, compared
to original values. Each point is a cell colored by its DS rate.


