Supplementary Material of Fast Rate Analysis of Some Stochastic Optimization Algorithms

The following two lemmas are Lemma 3 and Lemma 4 in [1], we present here for completeness.

Lemma A. 1. Suppose X_{1}, \ldots, X_{T} is a martingale difference sequence with $\left|X_{t}\right| \leq b$. Let

$$
\operatorname{Var}_{t} X_{t}=\operatorname{Var}\left(X_{t} \mid X_{1}, \ldots, X_{t-1}\right)
$$

Let $V=\sum_{t=1}^{T} V^{T} r_{t} X_{t}$ be the sum of conditional variance of $X_{t}^{\prime} s$. Further, let $\sigma=\sqrt{V}$. Then we have for any $\delta<1 / e$ and $T \geq 3$,

$$
\operatorname{Prob}\left(\sum_{t=1}^{T} X_{t}>\max \{2 \sigma, 3 b \sqrt{\ln (1 / \delta)}\} \sqrt{\ln (1 / \delta)}\right) \leq 4 \ln (T) \delta
$$

Lemma A. 2. Suppose $s, r, d, b, \Delta \geq 0$ and we have

$$
s-r \leq \max \{4 \sqrt{d s}, 6 b \Delta\} \Delta .
$$

Then, it follows that

$$
s \leq r+4 \sqrt{d r} \Delta+\max \{16 d, 6 b\} \Delta^{2}
$$

Regularized Dual Averaging Method

Now we begin the proof of convergence rate of RDA. We define the following conjugate type function used in the proof.

$$
V_{t}(s)=\max _{w}\left[\left\langle s, w-w_{0}\right\rangle-\operatorname{tr}(w)-\gamma \sum_{\tau=1}^{t}\left\|w_{\tau}-w\right\|_{2}^{2}-\beta_{t} h(w)\right]
$$

Lemma A. 3. The function $V_{t}(\cdot)$ is convex and differentiable. $\nabla V\left(s_{t}\right)=$ $w_{t+1}-w_{0}$, where $s_{t}=\sum_{\tau=1}^{t} f^{\prime}\left(w_{\tau}, z_{\tau}\right)$. The gradient is Lipschitz continuous with constant $\frac{1}{2 \gamma t+\beta_{t}}$, which is

$$
\left\|\nabla V_{t}\left(s_{1}\right)-\nabla V_{t}\left(s_{2}\right)\right\|_{2} \leq \frac{1}{2 \gamma t+\beta_{t}}\left\|s_{1}-s_{2}\right\|_{2}
$$

Proof. Because $\gamma \sum_{\tau=1}^{t}\left\|w_{\tau}-w\right\|_{2}^{2}+\beta_{t} h(w)$ is strongly convex with convexity parameter $2 \gamma t+\beta_{t}$. It is a direct result from theorem 1 in [2].

A property of $V_{t}(\cdot)$ with Lipschitz continuous gradient is

$$
V_{t}(s+\delta) \leq V_{t}(s)+\left\langle\delta, \nabla V_{t}(s)\right\rangle+\frac{1}{2\left(2 \gamma t+\beta_{t}\right)}\|\delta\|_{2}^{2}
$$

We refer to [2] for more details.

Proof of Lemma 3.

$$
\begin{align*}
& \operatorname{Reg}_{t}-\gamma \sum_{\tau=1}^{t}\left\|w_{\tau}-w\right\|_{2}^{2} \\
& \leq \sum_{\tau=1}^{t}\left\langle f^{\prime}\left(w_{\tau}, z_{\tau}\right), w_{\tau}-w\right\rangle+\sum_{\tau=1}^{t} r\left(w_{\tau}\right)-\operatorname{tr}(w)-\gamma \sum_{\tau=1}^{t}\left\|w_{\tau}-w\right\|_{2}^{2} \\
& =\sum_{\tau=1}^{t}\left\langle f^{\prime}\left(w_{\tau}, z_{\tau}\right), w_{\tau}-w_{0}\right\rangle+\sum_{\tau=1}^{t} r\left(w_{\tau}\right)-\operatorname{tr}(w)-\gamma \sum_{\tau=1}^{t}\left\|w_{\tau}-w\right\|_{2}^{2} \tag{1}\\
& +\sum_{\tau=1}^{t}\left\langle f^{\prime}\left(w_{\tau}, z_{\tau}\right), w_{0}-w\right\rangle
\end{align*}
$$

where the first inequity holds from the convexity of $f(\cdot, z)$.
Before we bound above terms, we relate $V_{t-1}\left(-s_{t}\right)$ and $V_{t}\left(-s_{t}\right)$ in the following way

$$
\begin{align*}
& V_{t-1}\left(-s_{t}\right)=\max _{w}\left[\left\langle-s_{t}, w-w_{0}\right\rangle-(t-1) r(w)-\gamma \sum_{\tau=1}^{t-1}\left\|w_{\tau}-w\right\|_{2}^{2}-\beta_{t-1} h(w)\right] \\
& \geq\left\langle-s_{t}, w_{t+1}-w_{0}\right\rangle-(t-1) r\left(w_{t+1}\right)-\gamma \sum_{\tau=1}^{t-1}\left\|w_{\tau}-w_{t+1}\right\|_{2}^{2}-\beta_{t-1} h\left(w_{t+1}\right) \\
& =\left\langle-s_{t}, w_{t+1}-w_{0}\right\rangle-\operatorname{tr}\left(w_{t+1}\right)-\gamma \sum_{\tau=1}^{t}\left\|w_{\tau}-w_{t+1}\right\|_{2}^{2}-\beta_{t} h\left(w_{t+1}\right)+r\left(w_{t+1}\right) \\
& +\gamma\left\|w_{t}-w_{t+1}\right\|_{2}^{2}-\left(\beta_{t-1}-\beta_{t}\right) h\left(w_{t+1}\right) \tag{2}
\end{align*}
$$

Notice the summation of first four terms is $V_{t}\left(-s_{t}\right)$.
When $t>1$, since β_{t} is an increasing sequence, we have

$$
V_{t}\left(-s_{t}\right)+r\left(w_{t+1}\right)+\gamma\left\|w_{t}-w_{t+1}\right\|_{2}^{2} \leq V_{t-1}\left(-s_{t}\right)
$$

We then upper bound $V_{t-1}\left(-s_{t}\right)$

$$
\begin{align*}
V_{t-1}\left(-s_{t}\right) & =V_{t-1}\left(-s_{t-1}-f^{\prime}\left(w_{t}, z_{t}\right)\right) \\
& \leq V_{t-1}\left(-s_{t-1}\right)-\left\langle\nabla V_{t-1}\left(-s_{t-1}\right), f^{\prime}\left(w_{t}, z_{t}\right)\right\rangle+\frac{1}{2\left(2 \gamma(t-1)+\beta_{t-1}\right)}\left\|f^{\prime}\left(w_{t}, z_{t}\right)\right\|_{2}^{2} \tag{3}
\end{align*}
$$

where the inequality holds from the property of Lipschitz continuous of $\nabla V_{t}(\cdot)$.

Now we have

$$
\begin{align*}
V_{t}\left(-s_{t}\right)-V_{t-1}\left(-s_{t-1}\right) & \leq-\left\langle\nabla V_{t-1}\left(s_{t-1}\right), f^{\prime}\left(w_{t}, z_{t}\right)\right\rangle+\frac{1}{2\left(2 \gamma(t-1)+\beta_{t-1}\right)}\left\|f^{\prime}\left(w_{t}, z_{t}\right)\right\|_{2}^{2} \\
& -r\left(w_{t+1}\right)-\gamma\left\|w_{t}-w_{t+1}\right\|_{2}^{2} \\
& \leq-\left\langle w_{t}-w_{0}, f^{\prime}\left(w_{t}, z_{t}\right)\right\rangle+\frac{1}{2\left(2 \gamma(t-1)+\beta_{t-1}\right)}\left\|f^{\prime}\left(w_{t}, z_{t}\right)\right\|_{2}^{2} \\
& -r\left(w_{t+1}\right) \tag{4}
\end{align*}
$$

where the second inequality uses the fact $\nabla V\left(s_{t}\right)=w_{t+1}-w_{0}$ from Lemma A. 3
When $t=1$, we have

$$
\begin{equation*}
V_{1}\left(-s_{1}\right)-0 \leq-\left\langle w_{1}-w_{0}, f^{\prime}\left(w_{1}, z_{1}\right)\right\rangle+\frac{\left\|f^{\prime}\left(w_{1}, z_{1}\right)\right\|_{2}^{2}}{2 \beta_{0}}-r\left(w_{2}\right)+\left(\beta_{0}-\beta_{1}\right) h\left(w_{2}\right) . \tag{5}
\end{equation*}
$$

Sum both sides of $V_{\tau}\left(s_{\tau}\right)$ from $\tau=1$ to t, we have
$V_{t}\left(-s_{t}\right) \leq-\sum_{\tau=1}^{t}\left\langle w_{\tau}-w_{0}, f^{\prime}\left(w_{\tau}, z_{\tau}\right)\right\rangle+\sum_{\tau=1}^{t} \frac{\left\|f^{\prime}\left(w_{\tau}, z_{\tau}\right)\right\|_{2}^{2}}{2\left(2 \gamma(\tau-1)+\beta_{\tau-1}\right)}-\sum_{\tau=2}^{t+1} r\left(w_{\tau}\right)+$ $\left(\beta_{0}-\beta_{1}\right) h\left(w_{2}\right)$.
We then bound $\operatorname{Reg}_{t}-\gamma \sum_{\tau=1}^{t}\left\|w_{\tau}-w\right\|_{2}^{2}$ for all $w \in \mathcal{F}_{D}$ using above result,

$$
\begin{align*}
\operatorname{Reg}_{t}-\gamma \sum_{\tau=1}^{t}\left\|w_{\tau}-w\right\|_{2}^{2} & \leq \sum_{\tau=1}^{t} r\left(w_{\tau}\right)+\sum_{\tau=1}^{t}\left\langle f^{\prime}\left(w_{\tau}, z_{\tau}\right), w_{\tau}-w_{0}\right\rangle+\max _{w \in \mathcal{F}_{D}}\left[\left\langle-s_{t}, w-w_{0}\right\rangle-\operatorname{tr}(w)\right. \\
& \left.-\gamma \sum_{\tau=1}^{t}\left\|w_{\tau}-w\right\|_{2}^{2}\right] \\
& \leq \sum_{\tau=1}^{t} r\left(w_{\tau}\right)+\sum_{\tau=1}^{t}\left\langle f^{\prime}\left(w_{\tau}, z_{\tau}\right), w_{\tau}-w_{0}\right\rangle+V_{t}\left(-s_{t}\right)+\beta_{t} D^{2} \\
& \leq r\left(w_{1}\right)-r\left(w_{t+1}\right)+\left(\beta_{0}-\beta_{1}\right) h\left(w_{2}\right)+\sum_{\tau=1}^{t} \frac{\left\|f^{\prime}\left(w_{\tau}, z_{\tau}\right)\right\|_{2}^{2}}{2\left(2 \gamma(\tau-1)+\beta_{\tau-1}\right)} \\
& +\beta_{t} D^{2}, \tag{6}
\end{align*}
$$

where the second inequality holds from the fact that

$$
\max _{w \in \mathcal{F}_{D}}\left[\left\langle s_{t}, w-w_{0}\right\rangle-\operatorname{tr}(w)-\gamma \sum_{\tau=1}^{t}\left\|w_{\tau}-w\right\|_{2}^{2}\right] \leq V_{t}\left(-s_{t}\right)+\beta_{t} D^{2}
$$

Since $\arg \min _{w} h(w)=\arg \min _{w} r(w)$ and $w_{1}=\arg \min h(w), r\left(w_{1}\right)-r\left(w_{t+1}\right) \leq$ 0 . We set $\beta_{0}=\beta_{1}=\gamma$ and $\beta_{t}=\gamma(1+\ln t)$, then we have
$R e g_{T}-\gamma \sum_{t=1}^{T}\left\|w_{t}-w\right\|_{2}^{2} \leq \gamma D^{2}(1+\ln (T))+\sum_{t=1}^{T} \frac{L^{2}}{2 \gamma(2 t-1+\ln t)} \leq\left(C_{1} \gamma D^{2}+\frac{C_{2} L^{2}}{\gamma}\right)(1+\ln T)$.

Proof of Theorem 2. Since we have already known $\operatorname{Reg}_{T}-\gamma \sum_{t=1}^{T} \| w_{t}-$ $w \|_{2}^{2} \leq C_{1} \ln T+C_{2}$, using similar steps in the proof of Theorem 1, we have,

$$
\frac{1}{2} D i f f_{T} \leq \sum_{t=1}^{T} \xi_{t}+C_{1} \ln T+C_{2}
$$

Then we apply Lemma 2, Lemma A. 1 and Lemma A. 2 to get the result.

OPG-ADMM

The following Lemma is extracted from Theorem 4 in the appendix of [3].
Lemma A. 4. Let $\left\{x_{t}\right\}_{t=1}^{T},\left\{y_{t}\right\}_{t=1}^{T}$ and $\left\{\lambda_{t}\right\}_{t=1}^{T}$ be the sequence generated by the algorithm. For all $\hat{x} \in \mathcal{X}, \hat{y} \in \mathcal{Y}$ and $\hat{\lambda} \in R^{l}$ and f is weakly convex, we have

$$
\begin{align*}
& \sum_{t=1}^{T}\left(f\left(x_{t}, z_{t}\right)+\psi\left(y_{t}\right)\right)-\sum_{t=1}^{T}\left(f\left(\hat{x}, z_{t}\right)+\psi(\hat{y})\right)+\sum_{t=1}^{T}\left(\begin{array}{c}
-A^{T} \tilde{\lambda}_{t} \\
-B^{T} \tilde{\lambda}_{t} \\
A x_{t}+B y_{t}-b
\end{array}\right)^{T}\left(\begin{array}{l}
x_{t}-\hat{x} \\
y_{t}-\hat{y} \\
\tilde{\lambda}_{t}-\hat{\lambda}
\end{array}\right) \\
& +\sum_{t=1}^{T} \frac{\left\|\lambda_{t}-\lambda_{t+1}\right\|_{2}^{2}}{2 \rho}+\frac{\left\|\lambda_{T+1}-\hat{\lambda}\right\|_{2}^{2}}{2 \rho} \\
& \leq \frac{\|\hat{x}\|_{G_{1}}^{2}}{2 \eta_{1}}+\sum_{t=2}^{T}\left(\frac{\gamma}{2 \eta_{t}}-\frac{\gamma}{2 \eta_{t-1}}\right)\left\|x_{t}-\hat{x}\right\|_{2}^{2}+\sum_{t=1}^{T} \frac{\eta_{t}}{2}\left\|g_{t}\right\|_{G_{t}^{-1}}^{2}+\frac{\rho}{2}\|b-B \hat{y}\|_{2}^{2} \\
& +\frac{\|\hat{\lambda}\|_{2}^{2}}{2 \rho}+\left\langle A x_{T+1}, \hat{\lambda}\right\rangle+\left\langle B\left(\hat{y}-y_{T+1}\right), \lambda_{T+1}-\hat{\lambda}\right\rangle-\langle B \hat{y}-b, \hat{\lambda}\rangle \tag{7}
\end{align*}
$$

where g_{t} denotes $f^{\prime}\left(x_{t}, z_{t}\right)$ for short.
Proof of Lemma 4. We subtract $\sum_{t=1}^{T} \frac{\beta}{4}\left\|x_{t}-\hat{x}\right\|_{2}^{2}$ at both side of Lemma A.4. Notice $\left\langle\hat{y}-y_{T+1}, B^{T}\left(\lambda_{T+1}-\hat{\lambda}\right)\right\rangle \leq\left\langle\hat{y}-y_{T+1}, \nabla \psi\left(y_{T+1}\right)-B^{T} \hat{\lambda}\right\rangle$ using the optimality of y_{t+1} in the algorithm, i.e., $\left\langle\nabla \psi\left(y_{t}\right)-B^{T} \lambda_{t}, y-y_{t}\right\rangle \geq 0$. So this term can also be bounded if $\hat{\lambda}$ is bounded, in particular we choose $\hat{\lambda}=0$. Notice $G_{t} \succeq I$ in the algorithm by choosing γ, ρ, η_{t}. Similar to the proof of Lemma 1, the term $\sum_{t=2}^{T}\left(\frac{\gamma}{2 \eta_{t}}-\frac{\gamma}{2 \eta_{t-1}}\right)\left\|x_{t}-\hat{x}\right\|_{2}^{2}+\sum_{t=1}^{T} \frac{\eta_{t}}{2}\left\|g_{t}\right\|_{G_{t}^{-1}}^{2}-\sum_{t=1}^{T} \frac{\beta}{4} \| x_{t}-$ $\hat{x} \|_{2}^{2}$ is bounded by $C_{1} \ln T+C_{2}$, if we choose $\eta_{t}=\frac{2 \gamma}{\beta t}$.
We choose $\hat{\lambda}=0$ to simplify the left hand side. For all \hat{x}, \hat{y} such that $A \hat{x}+B \hat{y}=b$, we have

$$
\begin{align*}
\sum_{t=1}^{T}\left(\begin{array}{c}
-A^{T} \tilde{\lambda}_{t} \\
-B^{T} \tilde{\lambda}_{t} \\
A x_{t}+B y_{t}-b
\end{array}\right)^{T}\left(\begin{array}{c}
x_{t}-\hat{x} \\
y_{t}-\hat{y} \\
\hat{\lambda}_{t}-\hat{\lambda}
\end{array}\right) & =\sum_{t=1}^{T}\left(\begin{array}{c}
A^{T} \hat{\lambda} \\
B^{T} \hat{\lambda} \\
A \hat{x}+B \hat{y}-b
\end{array}\right)^{T}\left(\begin{array}{c}
\hat{x}-x^{t} \\
\hat{y}-y_{t} \\
\tilde{\lambda}_{t}-\hat{\lambda}
\end{array}\right) \\
& =\sum_{t=1}^{T}\left\langle\hat{\lambda}, A\left(\hat{x}-x_{t}\right)+B\left(\hat{y}-y_{t}\right)\right\rangle \\
& =\sum_{t=1}^{T}\left\langle\hat{\lambda}, b-A x_{t}-B y_{t}\right\rangle \tag{8}\\
& =\sum_{t=1}^{T}\left\langle\hat{\lambda},\left(\lambda_{t}-\lambda_{t-1}\right)\right\rangle \\
& =\left\langle\frac{1}{\rho} \hat{\lambda}, \lambda_{T}-\lambda_{1}\right\rangle,
\end{align*}
$$

where last two equality hold from the fact that $b-A x_{t}-B y_{t}=\frac{\lambda_{t}-\lambda_{t-1}}{\rho}$ and $A x_{1}+B y_{1}-b=0$.
We set $\hat{\lambda}=0$, so the third term on the left side in Lemma 4 is 0 .
Also notice $\frac{\|\hat{\|}\|_{G_{1}}^{2}}{2 \eta_{1}}$ and $\frac{\rho}{2}\|b-B \hat{y}\|_{2}^{2}$ are bounded under our assumption. Thus the RHS of the Lemma 4 is bounded by $C_{1} \ln T+C_{2}$ when $\hat{\lambda}=0$.

Similar to the previous proof, we define

$$
\text { Diff }=\sum_{t=1}^{T}\left(F\left(x_{t}\right)+\psi\left(y_{t}\right)\right)-\sum_{t=1}^{T}\left(F\left(x^{*}\right)+\psi\left(y^{*}\right)\right)
$$

and

$$
\operatorname{Reg}=\sum_{t=1}^{T}\left(f\left(x_{t}, z_{t}\right)+\psi\left(y_{t}\right)\right)-\sum_{t=1}^{T}\left(f\left(x^{*}, z_{t}\right)+\psi\left(y^{*}\right)\right)
$$

where $F(x)=E f(x, z), G(x, y)=F(x)+\psi(y)$. Remind that $A x_{t}+B y_{t}-b \neq 0$ in general, thus we use $y_{t}^{\prime}=B^{-1}\left(b-A x_{t}\right)$ as an estimator of y at the t-th step.

Proof of Theorem 3. Similar to the previous proof in OPG, we define

$$
\begin{align*}
\xi_{t} & =F\left(x_{t}\right)+\psi\left(y_{t}\right)-F\left(x^{*}\right)-r\left(y^{*}\right)-\left(f\left(x_{t}, z_{t}\right)+r\left(y_{t}\right)-f\left(x^{*}, z_{t}\right)-\psi\left(y^{*}\right)\right) \\
& =F\left(x_{t}\right)-F\left(x^{*}\right)-\left(f\left(x_{t}, z_{t}\right)-f\left(x^{*}, z_{t}\right)\right) \tag{9}
\end{align*}
$$

ξ_{t} is a martingale difference, since x_{t} just depends on the data from time step $1, \ldots, t-1, E_{t-1} f\left(x^{*}, z_{t}\right)=F\left(x^{*}\right), E_{t-1} f\left(x_{t}, z_{t}\right)=F\left(x_{t}\right)$. Using Lemma 2, $\operatorname{Var}_{t-1} \xi_{t}=E_{t-1} \xi_{t}^{2} \leq L^{2}\left\|x_{t}-x^{*}\right\|_{2}^{2}$.
Next we relate Diff to $\sum_{t=1}^{T} \operatorname{Var}_{t-1} \xi_{t}$.

$$
\begin{align*}
\text { Diff } & \geq \sum_{t=1}^{T}\left\langle\nabla F\left(x^{*}\right), x_{t}-x^{*}\right\rangle+\frac{\beta}{2}\left\|x_{t}-x^{*}\right\|_{2}^{2}+\left\langle\nabla \psi\left(y^{*}\right), y_{t}-y^{*}\right\rangle \\
& =\sum_{t=1}^{T}\left[\left\langle\nabla F\left(x^{*}\right), x_{t}-x^{*}\right\rangle+\left\langle\nabla \psi\left(y^{*}\right), y_{t}^{\prime}-y^{*}\right\rangle+\left\langle\nabla \psi\left(y^{*}\right), y_{t}-y_{t}^{\prime}\right\rangle+\frac{\beta}{2}\left\|x_{t}-x^{*}\right\|_{2}^{2}\right], \tag{10}
\end{align*}
$$

where the first inequality holds from the convexity of F and ψ.
Recall that $y_{t}^{\prime}=B^{-1}\left(b-A x_{t}\right)$ and $A x^{*}+B y^{*}-b=0$, so $\left\langle\nabla F\left(x^{*}\right), x_{t}-\right.$ $\left.x^{*}\right\rangle+\left\langle\nabla \psi\left(y^{*}\right), y_{t}^{\prime}-y^{*}\right\rangle \geq 0$ using the optimality of $\left(x^{*}, y^{*}\right)$. Thus we have the following relation.
$\operatorname{Diff}+\frac{1}{\rho}\left\langle B^{-T} \nabla \psi\left(y^{*}\right), \lambda_{T}-\lambda_{1}\right\rangle=\operatorname{Diff}+\sum_{t=1}^{T}\left\langle\nabla \psi\left(y^{*}\right), y_{t}^{\prime}-y_{t}\right\rangle \geq \sum_{t=1}^{T} \frac{\beta}{2}\left\|x_{t}-x^{*}\right\|_{2}^{2}$,
where the first equality holds from the fact that $B\left(y_{t}^{\prime}-y_{t}\right)=b-A x_{t}-B y_{t}=$ $\frac{\lambda_{t}-\lambda_{t-1}}{\rho}$ and $A x_{1}+B y_{1}-b=0$.
We denote $\frac{1}{\rho}\left\langle B^{-T} \nabla \psi\left(y^{*}\right), \lambda_{T}-\lambda_{1}\right\rangle$ as N_{T}, and discuss two conditions.
When $N_{T} \leq 0$, we have Diff $\geq \sum_{t=1}^{T} \frac{\beta}{2}\left\|x_{t}-x^{*}\right\|_{2}^{2}$.
When $N_{T} \geq 0$, we need a upper bound of N_{T}.

$$
\begin{align*}
N_{T} & =\frac{1}{\rho}\left\langle B^{-T} \nabla \psi\left(y^{*}\right), \lambda_{T}-\lambda_{1}\right\rangle \\
& \leq \frac{3}{2 \rho}\left\|B^{-T} \nabla \psi\left(y^{*}\right)\right\|_{2}^{2}+\frac{1}{6 \rho}\left\|\lambda_{T}-\lambda_{1}\right\|_{2}^{2} \\
& =\frac{3}{2 \rho}\left\|B^{-T} \nabla \psi\left(y^{*}\right)\right\|_{2}^{2}+\frac{1}{6 \rho}\left\|\lambda_{T}-\lambda_{T+1}+\lambda_{T+1}-\lambda_{1}\right\|_{2}^{2} \tag{12}\\
& \leq \frac{3}{2 \rho}\left\|B^{-T} \nabla \psi\left(y^{*}\right)\right\|_{2}^{2}+\frac{1}{2 \rho}\left(\left\|\lambda_{T}-\lambda_{T+1}\right\|_{2}^{2}+\left\|\lambda_{T+1}\right\|_{2}^{2}+\left\|\lambda_{1}\right\|_{2}^{2}\right),
\end{align*}
$$

where the first and second inequalities holds from the Cauchy-Schwarz inequality. Notice $\frac{3}{2 \rho}\left\|B^{-T} \nabla \psi\left(y^{*}\right)\right\|_{2}^{2}$ can be bounded by our assumption.
Remind that instead of evaluating $F\left(\bar{x}_{T}\right)+\psi\left(\bar{y}_{T}\right)-F\left(x^{*}\right)-\psi\left(y^{*}\right)$, our aim is to bound $F\left(\bar{x}_{T}\right)+\psi\left(\bar{y}_{T}^{\prime}\right)-F\left(x^{*}\right)-\psi\left(y^{*}\right)$.

$$
\begin{align*}
T\left(F\left(\bar{x}_{T}\right)+\psi\left(\bar{y}_{T}^{\prime}\right)-F\left(x^{*}\right)-\psi\left(y^{*}\right)\right) & \leq T\left(F\left(\bar{x}_{T}\right)+\psi\left(\bar{y}_{T}\right)-F\left(x^{*}\right)-\psi\left(y^{*}\right)\right) \\
& +T\left\langle\nabla \psi\left(\bar{y}_{T}^{\prime}\right), \bar{y}_{T}^{\prime}-\bar{y}_{T}\right\rangle \\
& \leq \operatorname{Diff}+T\left\langle B^{-T} \nabla \psi\left(\bar{y}_{T}^{\prime}\right), B\left(\bar{y}_{T}^{\prime}-\bar{y}_{T}\right)\right\rangle \\
& =\operatorname{Diff}+\frac{1}{\rho}\left\langle B^{-T} \nabla \psi\left(\bar{y}_{T}^{\prime}\right), \lambda_{T}-\lambda_{1}\right\rangle, \tag{13}
\end{align*}
$$

where the first inequality holds from the convexity of ψ, the second inequality uses the convexity of F and ψ, and the last equality holds from the fact $B\left(y_{t}^{\prime}-\right.$ $\left.y_{t}\right)=b-A x_{t}-B y_{t}=\frac{\lambda_{t}-\lambda_{t-1}}{\rho}$ and $A x_{1}+B y_{1}-b=0$.
We also need to consider two cases, i.e., $\left\langle B^{-T} \nabla \psi\left(\bar{y}_{T}^{\prime}\right), \lambda_{T}-\lambda_{1}\right\rangle$ is negative or not.
If it is negative, $T\left(F\left(\bar{x}_{T}\right)+\psi\left(\bar{y}_{T}^{\prime}\right)-F\left(x^{*}\right)-\psi\left(y^{*}\right)\right) \leq \operatorname{Diff}$.
If it is not negative, we need to bound it

$$
\begin{align*}
& \text { Diff }+\frac{1}{\rho}\left\langle B^{-T} \nabla \psi\left(\bar{y}_{T}^{\prime}\right), \lambda_{T}-\lambda_{1}\right\rangle \\
& \leq \text { Diff }+\frac{1}{2 \rho}\left(6\left\|B^{-T} \nabla \psi\left(\bar{y}_{T}^{\prime}\right)\right\|_{2}^{2}+\frac{1}{6}\left\|\lambda_{T}-\lambda_{1}\right\|_{2}^{2}\right) \tag{14}\\
& \leq \text { Diff }+\frac{3}{\rho}\left\|B^{-T} \nabla \psi\left(\bar{y}_{T}^{\prime}\right)\right\|_{2}^{2}+\frac{1}{4 \rho}\left(\left\|\lambda_{T}-\lambda_{T+1}\right\|_{2}^{2}+\left\|\lambda_{T+1}\right\|_{2}^{2}+\left\|\lambda_{1}\right\|_{2}^{2}\right) .
\end{align*}
$$

Notice $\frac{3}{\rho}\left\|B^{-T} \nabla \psi\left(\bar{y}_{T}^{\prime}\right)\right\|_{2}^{2}$ can be bounded by our assumption.
Totally, we need to consider four cases.
Case $1 N_{T} \leq 0,\left\langle B^{-T} \nabla \psi\left(\bar{y}_{T}^{\prime}\right), \lambda_{T}-\lambda_{1}\right\rangle \leq 0$.
In this case, $\operatorname{Diff} \geq \sum_{t=1}^{T} \frac{\beta}{2}\left\|x_{t}-x^{*}\right\|_{2}^{2}$.
Using the similar technique in the proof of Theorem 1, we have following condition with probability at least $1-4 \delta \ln T$.
$\frac{1}{2}$ Diff $-\left(\right.$ Reg $\left.-\frac{\beta}{4} \sum_{t=1}^{T}\left\|x_{t}-x^{*}\right\|_{2}^{2}\right) \leq \xi_{t} \leq \max \left\{2 \sqrt{\frac{2 L^{2}}{\beta}(\text { Diff })}, 6 B \sqrt{\ln (1 / \delta)}\right\} \sqrt{\ln (1 / \delta)}$, which implies
$\frac{1}{2} \operatorname{Diff}-\left(\operatorname{Reg}-\frac{\beta}{4} \sum_{t=1}^{T}\left\|x_{t}-x^{*}\right\|_{2}^{2}\right) \leq \max \left\{2 \sqrt{\frac{2 L^{2}}{\beta}(\text { Diff })}, 6 B \sqrt{\ln (1 / \delta)}\right\} \sqrt{\ln (1 / \delta)}$.

Notice Reg $-\frac{\beta}{4} \sum_{t=1}^{T}\left\|x_{t}-x^{*}\right\|_{2}^{2}$ is bounded by $C_{1} \ln T+C_{2}$ in Lemma 4 with $\hat{\lambda}=0\left(\sum_{t=1}^{T} \frac{\left\|\lambda_{t}-\lambda_{t+1}\right\|_{2}^{2}}{2 \rho}+\frac{\left\|\lambda_{T+1}\right\|_{2}^{2}}{2 \rho}\right.$ is a positive term). Following similar steps in the proof of Theorem 1, we solve this inequality using Lemma A.2. Then we get Diff $\leq C_{3} \ln T+C_{4}$ with high probability. In this case $T\left(F\left(\bar{x}_{T}\right)+\psi\left(\bar{y}_{T}^{\prime}\right)-\right.$ $\left.F\left(x^{*}\right)-\psi\left(y^{*}\right)\right) \leq$ Diff, thus $F\left(\bar{x}_{T}\right)+\psi\left(\bar{y}_{T}^{\prime}\right)-F\left(x^{*}\right)-\psi\left(y^{*}\right) \leq O\left(\frac{\ln T}{T}\right)$ with high probability.
Case $2 N_{T} \geq 0,\left\langle B^{-T} \nabla \psi\left(\bar{y}_{T}^{\prime}\right), \lambda_{T}-\lambda_{1}\right\rangle \leq 0$.
We have following relation by (11) with probability at least $1-4 \delta \ln T$.

$$
\begin{align*}
& \frac{1}{2}\left(\text { Diff }+N_{T}\right)-\left(\operatorname{Reg}-\frac{\beta}{4} \sum_{t=1}^{T}\left\|x_{t}-x^{*}\right\|_{2}^{2}+\frac{N_{T}}{2}\right) \\
& \leq \max \left\{2 \sqrt{\frac{2 L^{2}}{\beta}\left(\text { Diff }+N_{T}\right)}, 6 B \sqrt{\ln (1 / \delta)}\right\} \sqrt{\ln (1 / \delta)} \tag{16}
\end{align*}
$$

Notice Reg $-\frac{\beta}{4} \sum_{t=1}^{T}\left\|x_{t}-x^{*}\right\|_{2}^{2}+\frac{N_{T}}{2}$ is bounded by $C_{1} \ln T+C_{2}$, using the Lemma 4 and (12) with $\hat{\lambda}=0$. Solve above inequality using Lemma A.2, we have

Diff $+N_{T} \leq C_{3} \ln T+C_{4}$ with high probability which implies Diff $\leq O(\ln T)$.
Since $T\left(F\left(\overline{x_{T}}\right)+\psi\left(\bar{y}_{T}^{\prime}\right)-F\left(x^{*}\right)-\psi\left(y^{*}\right)\right) \leq$ Diff, we have $F\left(\bar{x}_{T}\right)+\psi\left(\bar{y}_{T}^{\prime}\right)-$ $F\left(x^{*}\right)-\psi\left(y^{*}\right) \leq O\left(\frac{\ln T}{T}\right)$ with high probability.
Case $3 N_{T} \leq 0,\left\langle B^{-T} \nabla \psi\left(\bar{y}_{T}^{\prime}\right), \lambda_{T}-\lambda_{1}\right\rangle \geq 0$.
We have following relation with probability at least $1-4 \delta \ln T$.

$$
\begin{align*}
& \frac{1}{2}\left(\text { Diff }+\frac{1}{\rho}\left\langle B^{-T} \nabla \psi\left(\bar{y}_{T}^{\prime}\right), \lambda_{T}-\lambda_{1}\right\rangle\right)-\left(\operatorname{Reg}-\frac{\beta}{4} \sum_{t=1}^{T}\left\|x_{t}-x^{*}\right\|_{2}^{2}+\frac{1}{2 \rho}\left\langle B^{-T} \nabla \psi\left(\bar{y}_{T}^{\prime}\right), \lambda_{T}-\lambda_{1}\right\rangle\right) \\
& \leq \max \left\{2 \sqrt{\left.\frac{2 L^{2}}{\beta}(\text { Diff }), 6 B \sqrt{\ln (1 / \delta)}\right\} \sqrt{\ln (1 / \delta)}}\right. \\
& \leq \max \left\{2 \sqrt{\frac{2 L^{2}}{\beta}\left(\text { Diff }+\frac{1}{\rho}\left\langle B^{-T} \nabla \psi\left(\bar{y}_{T}^{\prime}\right), \lambda_{T}-\lambda_{1}\right\rangle\right)}, 6 B \sqrt{\ln (1 / \delta)}\right\} \sqrt{\ln (1 / \delta)} . \tag{17}
\end{align*}
$$

$\operatorname{Reg}-\frac{\beta}{4} \sum_{t=1}^{T}\left\|x_{t}-x^{*}\right\|_{2}^{2}+\frac{1}{2 \rho}\left\langle\nabla B^{-T} \psi\left(\bar{y}_{T}^{\prime}\right), \lambda_{T}-\lambda_{1}\right\rangle$ is bounded by $C_{1} \ln T+C_{2}$ by Lemma 4 and (14) with $\hat{\lambda}=0$. We get Diff $+\frac{1}{\rho}\left\langle B^{-T} \nabla \psi\left(\bar{y}_{T}^{\prime}\right), \lambda_{T}-\lambda_{1}\right\rangle \leq$ $C_{3} \ln T+C_{4}$ with high probability. Thus we have $T\left(F\left(\bar{x}_{T}\right)+\psi\left(\bar{y}_{T}^{\prime}\right)-F\left(x^{*}\right)-\right.$ $\left.\psi\left(y^{*}\right)\right) \leq C_{3} \ln T+C_{4}$ by (13).
Case $4 N_{T} \geq 0,\left\langle B^{-T} \nabla \psi\left(\bar{y}_{T}^{\prime}\right), \lambda_{T}-\lambda_{1}\right\rangle \geq 0$
We have following relation with probability at least $1-4 \delta \ln T$.

$$
\begin{align*}
& \frac{1}{2}\left(\text { Diff }+N_{T}+\frac{1}{\rho}\left\langle B^{-T} \nabla \psi\left(\bar{y}_{T}^{\prime}\right), \lambda_{T}-\lambda_{1}\right\rangle\right)-\left(\text { Reg }-\frac{\beta}{4} \sum_{t=1}^{T}\left\|x_{t}-x^{*}\right\|_{2}^{2}+\frac{N_{T}}{2}\right. \\
& \left.+\frac{1}{2 \rho}\left\langle B^{-T} \nabla \psi\left(\bar{y}_{T}^{\prime}\right), \lambda_{T}-\lambda_{1}\right\rangle\right) \\
& \leq \max \left\{2 \sqrt{\frac{2 L^{2}}{\beta}\left(D i f f+N_{T}\right)}, 6 B \sqrt{\ln (1 / \delta)}\right\} \sqrt{\ln (1 / \delta)} \\
& \leq \max \left\{2 \sqrt{\frac{2 L^{2}}{\beta}\left(D i f f+N_{T}+\frac{1}{\rho}\left\langle B^{-T} \nabla \psi\left(\bar{y}_{T}^{\prime}\right), \lambda_{T}-\lambda_{1}\right\rangle\right)}, 6 B \sqrt{\ln (1 / \delta)}\right\} \sqrt{\ln (1 / \delta)} . \tag{18}
\end{align*}
$$

Notice Reg $-\frac{\beta}{4} \sum_{t=1}^{T}\left\|x_{t}-x^{*}\right\|_{2}^{2}+\frac{N_{T}}{2}+\frac{1}{2 \rho}\left\langle B^{-T} \nabla \psi\left(\bar{y}_{T}^{\prime}\right), \lambda_{T}-\lambda_{1}\right\rangle$ is bounded by $C_{1} \ln T+C_{2}$, using Lemma 4, (12) and (14) with $\hat{\lambda}=0$. Solve the inequality, we get $\operatorname{Diff}+N_{T}+\frac{1}{\rho}\left\langle B^{-T} \nabla \psi\left(\bar{y}_{T}^{\prime}\right), \lambda_{T}-\lambda_{1}\right\rangle \leq C_{3} \ln T+C_{4}$ with high probability. Thus $T\left(F\left(\bar{x}_{T}\right)+\psi\left(\bar{y}_{T}^{\prime}\right)-F\left(x^{*}\right)-\psi\left(y^{*}\right)\right) \leq C_{3} \ln T+C_{4}$ with high probability by (13) and the fact that $N_{T} \geq 0$.
In all cases, we have $G\left(\bar{x}_{T}, \bar{y}_{T}^{\prime}\right)-G\left(x^{*}, y^{*}\right) \leq O\left(\frac{\ln T}{T}\right)$ with high probability, thus we finish our proof.

References

[1] Sham M Kakade and Ambuj Tewari. On the generalization ability of online strongly convex programming algorithms. In Advances in Neural Information Processing Systems, pages 801-808, 2009.
[2] Yu Nesterov. Smooth minimization of non-smooth functions. Mathematical programming, 103(1):127-152, 2005.
[3] Taiji Suzuki. Dual averaging and proximal gradient descent for online alternating direction multiplier method. In Proceedings of the 30th International Conference on Machine Learning, pages 392-400, 2013.

