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Abstract
We propose a new algorithm for minimizing reg-
ularized empirical loss: Stochastic Dual Newton
Ascent (SDNA). Our method is dual in nature: in
each iteration we update a random subset of the
dual variables. However, unlike existing methods
such as stochastic dual coordinate ascent, SDNA
is capable of utilizing all local curvature infor-
mation contained in the examples, which leads to
striking improvements in both theory and prac-
tice – sometimes by orders of magnitude. In the
special case when an L2-regularizer is used in the
primal, the dual problem is a concave quadratic
maximization problem plus a separable term. In
this regime, SDNA in each step solves a prox-
imal subproblem involving a random principal
submatrix of the Hessian of the quadratic func-
tion; whence the name of the method.

1. Introduction
Empirical risk minimization (ERM) is a fundamental
paradigm in the theory and practice of statistical infer-
ence and machine learning (Shalev-Shwartz & Ben-David,
2014). In the “big data” era it is increasingly common
in practice to solve ERM problems with a massive num-
ber of examples, which leads to new algorithmic chal-
lenges. State-of-the-art optimization methods for ERM in-
clude i) stochastic (sub)gradient descent (Shalev-Shwartz
et al., 2011; Takáč et al., 2013), ii) methods based on
stochastic estimates of the gradient with diminishing vari-
ance such as SAG (Schmidt et al., 2013), SVRG (John-
son & Zhang, 2013), S2GD (Konečný & Richtárik, 2014),
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proxSVRG (Xiao & Zhang, 2014), MISO (Mairal, 2015),
SAGA (Defazio et al., 2014), minibatch S2GD (Konečný
et al., 2014a), S2CD (Konečný et al., 2014b), and iii) vari-
ants of stochastic dual coordinate ascent (Shalev-Shwartz
& Zhang, 2013b; Zhao & Zhang, 2014; Takáč et al., 2013;
Shalev-Shwartz & Zhang, 2013a;a; Lin et al., 2014; Qu
et al., 2014).

There have been several attempts at designing methods that
combine randomization with the use of curvature (second-
order) information. For example, methods based on run-
ning coordinate ascent in the dual such as those mentioned
above and also (Richtárik & Takáč, 2014; 2015; Fercoq &
Richtárik, 2013; Tappenden et al., 2014; Richtárik & Takáč,
2013; 2015; Fercoq & Richtárik, 2015; Fercoq et al., 2014;
Qu et al., 2014; Qu & Richtárik, 2014a) use curvature infor-
mation contained in the diagonal of a bound on the Hessian
matrix. Block coordinate descent methods, when equipped
with suitable data-dependent norms for the blocks, use in-
formation contained in the block diagonal of the Hessian
(Tappenden et al., 2013). A more direct route to incor-
porating curvature information was taken by (Schraudolph
et al., 2007) in their stochastic L-BFGS method and by
(Byrd et al., 2014) and (Sohl-Dickstein et al., 2014) in their
stochastic quasi-Newton methods. Complexity estimates
are not easy to find. An exception in this regard is the work
of (Bordes et al., 2009), who give a O(1/ε) complexity
bound for a Quasi-Newton SGD method.

An alternative approach is to consider block coordinate
descent methods with overlapping blocks (Tseng & Yun,
2009; Fountoulakis & Tappenden, 2015). While typically
efficient in practice, none of the methods mentioned above
are equipped with complexity bounds (bounds on the num-
ber of iterations). Tseng and Yun (Tseng & Yun, 2009)
only showed convergence to a stationary point and focus on
non-overlapping blocks for the rest of their paper. Numer-
ical evidence that this approach is promising is provided



SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization

in (Fountoulakis & Tappenden, 2015) with some mild con-
vergence rate results but no iteration complexity.

The main contribution of this paper is the analysis of
stochastic block coordinate descent methods with over-
lapping blocks. We then instantiate this to get a new
algorithm—Stochastic Dual Newton Ascent (SDNA)—
for solving a regularized ERM problem with smooth loss
functions and a strongly convex regularizer (primal prob-
lem). Our method is stochastic in nature and has the capac-
ity to utilize all curvature information inherent in the data.
While we do our analysis for an arbitrary strongly convex
regularizer, for the purposes of the introduction we shall de-
scribe the method in the case of the L2 regularizer. In this
case, the dual problem is a concave quadratic maximization
problem with a strongly concave separable penalty.

SDNA in each iteration picks a random subset of the dual
variables (which corresponds to picking a minibatch of ex-
amples in the primal problem), following an arbitrary prob-
ability law, and maximizes, exactly, the dual objective re-
stricted to the random subspace spanned by the coordi-
nates. Equivalently, this can be seen as the solution of a
proximal subproblem involving a random principal subma-
trix of the Hessian of the quadratic function. Hence, SDNA
utilizes all curvature information available in the random
subspace in which it operates. Note that this is very differ-
ent from the update strategy of parallel / minibatch coor-
dinate descent methods. Indeed, while these methods also
update a random subset of variables in each iteration, they
instead only utilize curvature information present in the di-
agonal of the Hessian.

In the case of quadratic loss, and when viewed as a pri-
mal method, SDNA can be interpreted as a variant of the
recently introduced Iterative Hessian Sketch algorithm (Pi-
lanci & Wainwright, 2014).

SDCA-like methods need more passes through data to con-
verge as the minibatch size increases. However, SDNA
enjoys the opposite behavior: with increasing minibatch
size, up to a certain threshold , SDNA needs fewer passes
through data to converge. This observation is confirmed by
our numerical experiments.

In particular, we show that the expected duality gap de-
creases at a geometric rate which i) is better than that
of SDCA-like methods such as SDCA (Shalev-Shwartz &
Zhang, 2013b) and QUARTZ (Qu et al., 2014), and ii) im-
proves with increasing minibatch size. This improvement
does not come for free: as we increase the minibatch size,
the subproblems grow in size as they involve larger portions
of the Hessian. We find through experiments that for some,
especially dense problems, even relatively small minibatch
sizes lead to dramatic speedups in actual runtime.

En route to developing SDNA which we describe in Sec-

tion 5, we also analyze several other algorithms: two in
Section 2 where we focus on smooth problems and a novel
minibatch variant of SDCA in Section 5, for the sake of
finding suitable method to compare SDNA to. SDNA is
equivalent to applying the proximal variant of the method
developed in Section 2 to the dual of the ERM problem.
However, as we are mainly interested in solving the ERM
(primal) problem, we additionally prove that the expected
duality gap decreases at a geometric rate. Our technique for
doing this is a variant of the one use by (Shalev-Shwartz &
Zhang, 2013b), but generalized to an arbitrary sampling.

Notation. In the paper we use the following notation. By
e1, . . . , en we denote the standard basis vectors in Rn. For
any x ∈ Rn, we denote by xi the ith element of x, i.e.,
xi = e>i x. For any two vectors x, y of equal size, we write
〈x, y〉 = x>y =

∑
i xiyi . I is the identity matrix in Rn×n

and D(w) is the diagonal matrix in Rn×n with w ∈ Rn
on its diagonal. We will write M � 0 (resp. M � 0) to
indicate that M is positive semidefinite (resp. positive def-
inite). Let S be a nonempty subset of [n] := {1, 2, . . . , n}.
For any matrix M ∈ Rn×n we write MS for the matrix ob-
tained from M by retaining elements Mij for which both
i ∈ S and j ∈ S and zeroing out all other elements. For
any vector h ∈ Rn we write hS for the vector obtained by
retaining elements hi with i ∈ S and zeroing out the oth-
ers, i.e., hS := ISh =

∑
i∈S hiei. By (MS)−1 we denote

the matrix Z in Rn×n for which

ZMS = MSZ = IS and ZS = Z. (1)

That is, Z is the n × n matrix containing the inverse of
the |S| × |S| submatrix of M corresponding to elements
(i, j) ∈ S in the same position, while having all other ele-
ments equal to zero.

2. Minimization of a Smooth Function
We start by considering the following unconstrained mini-
mization problem:

min
x∈Rn

f(x). (2)

where f : Rn → R is a convex differentiable function. In
addition, we assume that there are two matrices M,G ∈
Rn×n such that for all x, h ∈ Rn,

f(x) + 〈∇f(x), h〉+ 1
2 〈Gh, h〉 ≤ f(x+ h), (3)

f(x+ h) ≤ f(x) + 〈∇f(x), h〉+ 1
2 〈Mh, h〉. (4)

Moreover, we assume that G � 0. When M = LH and
G = µH for some L ≥ µ > 0 and positive definite ma-
trix H, (3) and (4) mean that f is L-smooth and µ-strongly
convex with respect to the norm ‖h‖H = 〈Hh, h〉1/2. Usu-
ally one simply assumes that H = I. However, in many
situations we can get more information in M and G, which
we will utilize in this paper.
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2.1. Three stochastic algorithms

We now describe three algorithmic strategies for solving
problem (2). All these methods have the form

xk+1 ← xk + hk, (5)

where hki is only allowed to be nonzero for i ∈ Sk, where
{Sk}k≥0 are i.i.d. random subsets of [n] := {1, 2, . . . , n}
(“samplings”). That is, all methods in each iteration update
a random subset of the variables and only differ in how the
update elements hki for i ∈ Sk are computed. As {Sk}k≥0
are i.i.d., it will be convenient to write Ŝ for a set-valued
random variable which shares their distribution. For the
methods to work, we need to require that every coordinate
has a positive probability of being sampled. For technical
reasons that will be apparent later, we will also assume that
Ŝ is nonempty with probability 1. Thus the following con-
ditions are assumed to hold throughout the paper:

pi := P(i ∈ Ŝ) > 0, i ∈ [n] and P(Ŝ = ∅) = 0. (6)

Sampling satisfying the first (resp. second) condition will
be referred to as a proper (resp. nonvacuous) sampling.

Method 1 (overlapping-block coordinate descent). In
the first method, we compute (MSk

)−1 and set

hk = −(MSk
)−1∇f(xk). (Method 1)

Note that (MSk
)−1 is well defined if M � 0, which we

assume throughout. The computation of hk involves the
solution of a linear system involving an |Sk| × |Sk| matrix.
Equivalently (in principle, not in terms of computational
effort), the method involves inversion of a random principal
submatrix of M of size |Sk| × |Sk|. Also note that we only
need to compute elements i ∈ Sk of the gradient ∇f(xk),
since in view of (1), (MSk

)−1 only acts on those elements.
If |Sk| is reasonably small, the computation of hk is cheap.

Method 2. We compute the inverse1 of E[MŜ ] and set

hk = −ISk
(E[MŜ ])−1D(p)∇f(xk). (Method 2)

This strategy is easily implementable when |Ŝ| = 1 with
probability 1 (i.e., if we update a single variable only). This
is because then E[MŜ ] is a diagonal matrix with the (i, i)
element equal to piMii. For more complicated samplings
Ŝ, however, the matrix E[MŜ ] will be as hard to invert as
M. Hence, in many situations, Method 2 is impractical.
However, we include it in the discussion for the sake of
comparison – it will help us better understand the relation-
ship between Method 1 (which contains a key new idea of
this paper) and Method 3, which we shall describe next.

1The matrix E[MŜ ] is invertible if (6) holds and M � 0, for
a proof see the supplementary material.

In (Qu & Richtárik, 2014a) it was shown that

E
[
MŜ

]
= P ◦M, (7)

where ◦ denotes the Hadamard (element-wise) product of
two matrices, and P is the n×n matrix with entries Pij =

P({i, j} ⊆ Ŝ). It can be easily shown that P is positive
semidefinite.

Method 3 (parallel coordinate descent). Here we com-
pute a vector v ∈ Rn for which

E[MŜ ] � D(p)D(v) (8)

and then set

hk = −ISk
(D(v))−1∇f(xk). (Method 3)

It can be shown that safe (albeit conservative) choice of v
satisfying (8) is vi = τ , where τ is a number satisfying
P(|Ŝ| ≤ τ) = 1. This and tighter bounds can be found in
(Qu & Richtárik, 2014b). Hence, the update is clearly very
easy to perform, and can be equivalently written as

hki =

{
− 1
vi
〈ei,∇f(xk)〉, i ∈ Sk

0, i /∈ Sk.
(9)

We see that this method takes a coordinate descent step for
every coordinate i ∈ Sk, with stepsize 1/vi. For a calculus
allowing the computation of closed form formulas for v as
a function of the sampling Ŝ we refer the reader to (Qu &
Richtárik, 2014b). Method 3 was proposed and analyzed
in (Richtárik & Takáč, 2015) as is known as “NSync”. If
the coordinates i ∈ Sk of the gradient ∇f(xk) are avail-
able, the updates hki can be computed independently of
each other. In particular, they can be trivially computed in
parallel. For this reason, this method can be thought of as a
parallel/minibatch coordinate descent method (Richtárik &
Takáč, 2015). In fact, it is the first such method which was
analyzed for an arbitrary sampling of coordinates.

Remark 1. It is easy to see that all three methods coincide
if |Ŝ| = 1 with probability 1. Moreover, Methods 1 and 2
coincide if Ŝ = [n] with probability 1.

2.2. Three linear convergence rates

We shall now show that, putting the issue of the cost of
each iteration of the three methods aside, all enjoy a linear
rate of convergence.

Theorem 2. Let (3), (4) and (6) hold with G � 0. Let
{xk}k≥0 be the sequence of random vectors produced by
Method m, for m = 1, 2, 3 and let x∗ be the optimal solu-
tion of (2). Then

E[f(xk+1)− f(x∗)] ≤ (1− σm)E[f(xk)− f(x∗)],
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where

σ1 := λmin

(
G1/2 E

[(
MŜ

)−1]
G1/2

)
, (10)

σ2 := λmin

(
G1/2D(p)

(
E
[
MŜ

])−1
D(p)G1/2

)
, (11)

σ3 := λmin

(
G1/2D(p)D(v−1)G1/2

)
. (12)

That is,

k ≥ 1
σm

log( f(x
0)−f(x∗)
ε )⇒ E[f(xk)−f(x∗)] ≤ ε. (13)

We will show in the next section that Method 1 has the
fastest rate, followed by Method 2 and finally, Method 3.

3. Three Complexity Rates: Relationships
and Properties

In this section we give various insights into the quanti-
ties σ1, σ2 and σ3. First, in Section 3.1 we establish that
σ1 ≥ σ2 ≥ σ3, and illustrate the possible difference be-
tween these quantities on a simple example in three dimen-
sions. In Section 3.2 we study the dependence of σ2 on the
sampling Ŝ, and show how the complexity of Method 2,
which always upper bounds the complexity of Method 1,
improves as the size of Ŝ grows.

3.1. Ordering the rates

We now establish an important relationship between the
quantities σ1, σ2 and σ3, which sheds light on the conver-
gence rates of the three methods.
Lemma 3. If M � 0, then for any sampling we have
E
[
MŜ

]
� 0. If, moreover, M � 0, and Ŝ is a proper

sampling, then E
[
MŜ

]
� 0.

Lemma 4. If M � 0 and Ŝ is a proper and nonvacuous
sampling, then

0 ≺ D(p)
(
E
[
MŜ

])−1
D(p) � E

[(
MŜ

)−1]
. (14)

Lemma 5. Assume M � 0 and let S ⊆ [n] be nonempty.
Then

(MS)−1 � (M−1)S . (15)

We can now state and prove the main theorem.
Theorem 6. Under the assumptions of Theorem 2, the
quantities σ1, σ2 and σ3 satisfy the following relations:

0 < σ3 ≤ σ2 ≤ σ1 ≤ min
1≤i≤n

pi.

While the above result says that in terms of iteration com-
plexity, Method 1 is better than Method 2, which in turn is
better than Method 3, it does not quantify the difference.
We now use a simple example with a quadratic function in
3 dimensions to illustrate that σ1 can indeed be massively
larger than σ2 and σ3.

Example 7 (A quadratic in 3D). Consider the function f :
R3 → R given by f(x) = 1

2x
TMx, with

M =

1.0000 0.9900 0.9999
0.9900 1.0000 0.9900
0.9999 0.9900 1.0000

 .

Note that Assumption (4) holds, and Assumption (3) holds
with G = M. Let Ŝ be the “2-nice sampling” on
[n] = {1, 2, 3}. That is, we set P(Ŝ = {i, j}) = 1

3 for
(i, j) ∈ {(1, 2), (2, 3), (3, 1)}. It can be verified that (8)
holds with v = (2, 2, 2); see (Richtárik & Takáč, 2015) or
(Qu & Richtárik, 2014b). Therefore, D(p)D(v−1) = 1

3I
and from a straightforward calculation we obtain:

σ1 ≈ 0.3350, σ2 ≈ 1.333×10−4, σ3 ≈ 0.333×10−4.

Note that in this case, the theoretical rate, σ1, of Method 1
is 10,000 times better than the rate, σ3, of parallel coordi-
nate descent (Method 3).

This analysis is the first to prove such a good rate of con-
vergence for a coordinate-descent type method on such
an ill-conditioned problem. For instance, the algorithm
of (Fountoulakis & Tappenden, 2015) has a rate σFT ≤
1.995× 10−4.

3.2. Dependence of σ2 on the sampling

As mentioned above, in this section we shall study the de-
pendence of σ2 on the sampling Ŝ. To this goal, we shall
consider a parametric family of samplings described by a
single parameter, τ , for which it is easy to formalize the
notion of “growth”, as this coincides with the growth of the
parameter τ itself.

In particular, we consider the family of τ -nice samplings
(Richtárik & Takáč, 2015), for τ ∈ [n]. Informally, a sam-
pling Ŝ is called τ -nice, if it only picks subsets of [n] of
cardinality τ , uniformly at random. More formally, a τ -
nice sampling is defined by the probability mass function
as follows: P(Ŝ = S) = 1/

(
n
τ

)
for all S ⊆ [n] for which

|S| = τ .

Further, if Ŝ is the τ -nice sampling, define2

Cτ
def
= D(p)−1 E

[
MŜ

]
D(p)−1. (16)

This is the inverse of one of the quantities appearing in (14).
We have the following result.
Lemma 8. Assume that M � 0. Then:

(i) The mapping τ 7→ Cτ is monotone decreasing. That
is, if 1 ≤ τ2 ≤ τ1 ≤ n, then Cτ1 � Cτ2 .

(ii) If, moreover, M � 0, then the mapping τ 7→ C−1τ is
monotone increasing.

2Recall that p = (p1, . . . , pn), where pi = P(i ∈ Ŝ), and that
D(p) is the diagonal matrix with vector p on the diagonal.
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If M is positive definite (as in Assumption (4)), we have
the following result.

Theorem 9. Let Assumptions (3) and (4) hold. Further, let
Ŝ be the τ -nice sampling for τ ∈ [n] and let σ2 = σ2(τ)
be the rate of Method 2, as described in (11). Then

1
σ2(τ)

= n
n−1λmax

(
G−1/2

[(
n
τ − 1

)
DM

+
(
1− 1

τ

)
M
]
G−1/2

)
,

(17)

and moreover, σ2(τ) is monotonically increasing in τ .

Proof. In view of the definition of σ2 in (11) and
the definition of Cτ in (16), we can write σ2(τ) =
λmin

(
G1/2C−1τ G1/2

)
= 1/λmax(G−1/2CτG

−1/2). The
claim follows by plugging in for Cτ from (16) and using
Lemma 8.

The above theorem should be interpreted as follows: As we
increase the sampling size τ , the complexity of Method 2
improves. Since in view of Theorem 6 we have σ1(τ) ≥
σ2(τ), we should also expect the number of iterations of
Method 1 to decrease as τ increases. Indeed, we observe
this behavior also in our numerical experiments.

For more insight, consider now the special case when f is
a quadratic so that G = M. From (17) we then get:

1

σ2(τ)
=

n

n− 1

(
1− 1

τ
+
(n
τ
− 1
)
δf

)
, (18)

where δf
def
= λmax

(
M−1/2DMM−1/2

)
≥ 1. By inspect-

ing the expression in (18) as a function of τ , we notice that

1

σ2(τ)
≤ 1

σ2(1)τ

for all τ ≥ 1 (this is also true if in the case when G 6=
M). That is, for instance, with τ = 100, Method 1 will
need fewer than one hundredth of the number of iterations
to converge than for τ = 1. We hence obtain the following
result:

Corollary 10. Method 2 (and hence also Method 1) enjoys
superlinear speedup in τ .

This phenomenon does not occur in parallel coordinate de-
scent methods such as Method 3, where the most one can
hope for is linear speedup.

4. Minimization of a Composite Function
In this section we consider the following composite mini-
mization problem:

min
x∈Rn

F (x) ≡ f(x) +

n∑
i=1

ψi(xi). (19)

We assume that f satisfies Assumptions (3) and (4). The
difference from the setup in the previous section is in the
inclusion of the separable term

∑
i ψi. In addition, we

assume that for each i, ψi : R → R ∪ {+∞} is closed
and γi-strongly convex for some γi ≥ 0. We shall write
γ = (γ1, . . . , γn) ∈ Rn+.

4.1. Proximal overlapping-block coordinate descent

We now propose Algorithm 1, which is a variant of Method
1 applicable to problem (19). If ψi ≡ 0 for all i, the meth-
ods coincide.

This algorithm is closely related to Flexible Block Coordi-
nate Descent in (Fountoulakis & Tappenden, 2015). They
mainly differ by the fact that we concentrate on a fixed
global surrogate of the Hessian matrix while (Fountoulakis
& Tappenden, 2015) allows a line search and local surro-
gates. On the other hand, we get more precise convergence
results, as stated in Theorem 11: the method converges at a
geometric rate, in expectation.

Algorithm 1 Proximal Overlapping-Block CD

1: Parameters: proper nonvacuous sampling Ŝ
2: Initialization: choose initial point x0 ∈ Rn
3: for k = 0, 1, 2, . . . do
4: Generate a random set of blocks Sk ∼ Ŝ
5: Compute: hk = arg minh∈Rn〈∇f(xk), hSk

〉 +
1
2 〈h,MSk

h〉+
∑
i∈Sk

ψi(x
k
i + hi)

6: Update: xk+1 := xk + hkSk

7: end for

Theorem 11. The output sequence {xk}k≥0 of Algorithm 1
satisfies:

E[F (xk+1)− F (x∗)] ≤ (1− σprox1 )E[F (xk)− F (x∗)],

where x∗ is the solution of (19) and σprox1 is given by

λmin

[
D(p)

(
E[MŜ ] + D(p)D(γ)

)−1
D(p)(D(γ) + G)

]
.

Note that for positive definite matrices X,Y, we have

λmin(X−1Y) = λmin(Y1/2X−1Y1/2).

It is this latter form we have used in the formulation of
Theorem 2. If γ ≡ 0 (ψi are merely convex), we have

σprox1 = λmin(G1/2D(p)(E[MŜ ])−1D(p)G1/2).

Note that while this rate applies to a proximal/composite
variant of Method 1, its rate is best compared to the rate σ2
of Method 2. Indeed, from (11) and Theorem 6, we get

σ1 ≥ σ2 = σprox1 .

So, the rate we can prove for the composite version of
Method 1 (σprox1 ) is weaker than the rate we get for
Method 1 (σ1).
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4.2. PCDM: Parallel Coordinate Descent Method

We will now compare Algorithm 1 with the Parallel Co-
ordinate Descent Method (PCDM) of Richtárik and Takáč
(Richtárik & Takáč, 2015), which can also be applied to
problem (19).

Algorithm 2 PCDM (Richtárik & Takáč, 2015)

1: Parameters: proper sampling Ŝ; v ∈ Rn++

2: Initialization: choose initial point x0 ∈ Rn
3: for k = 0, 1, 2, . . . do
4: Generate a random set of blocks Sk ∼ Ŝ
5: Compute for each i ∈ Sk

hki = arg min
hi∈R

e>i ∇f(xk)hi+
vi
2
|hi|2+ψi(x

k
i +hi)

6: Update: xk+1 := xk +
∑
i∈Sk

hki ei
7: end for

Proposition 12. Let v ∈ Rn++ be a vector satisfying (8).
Then the output sequence {xk}k≥0 of Algorithm 2 satisfies

E[F (xk+1)− F (x∗)] ≤ (1− σprox3 )E[F (xk)− F (x∗)],

where

σprox3 := λmin

[
D(p) (D(v + γ))

−1
(D(γ) + G)

]
.

Proof. Sketch: The proof is a minor modification of the
arguments in (Richtárik & Takáč, 2015).

Applying Theorem 6 to M + D(γ) and G + D(γ), we
see that the rate of linear (geometric) convergence of our
method is better than that of PCDM.

Proposition 13. σprox1 ≥ σprox3 .

5. Empirical Risk Minimization
We now turn our attention to the empirical risk minimiza-
tion problem:

min
w∈Rd

P (w) :=
1

n

n∑
i=1

φi(a
>
i w) + λg(w). (20)

We assume that g : Rd → R is a 1-strongly convex func-
tion with respect to the L2 norm. We also assume that
each loss function φi : R → R is convex and 1/γ-smooth
(i.e., |φ′(a) − φ′(b)| ≤ (1/γ)|a − b| for all a, b ∈ R).
Each ai is a d-dimensional vector and for ease of presen-
tation we write A = [a1, . . . , an] =

∑n
i=1 aie

>
i . Let g∗

and {φ∗i }i be the Fenchel conjugate functions of g and
{φi}i, respectively. In the case of g, for instance, we have
g∗(s) = supw∈Rd〈w, s〉 − g(w). The (Fenchel) dual prob-
lem of (20) can be written as:

max
α∈Rn

D(α) := 1
n

∑n
i=1−φ∗i (−αi)−λg∗

(
1
λnAα

)
. (21)

It is well known (Shalev-Shwartz & Zhang, 2013b) that
the solution of (20) w∗ can be recovered from the solution
of (21) α∗ through the relation w∗ = ∇g∗(1/(λn)Aα∗).
Hence one can apply proximal variants of Methods 1, 2 and
3, to the dual problem (21) and then recover accordingly
the solution of (20). In particular, we obtain Algorithm 3
(SDNA) by applying the proximal variant of Method 1 (Al-
gorithm 1) to the dual problem (21).

Algorithm 3 Stochastic Dual Newton Ascent (SDNA)

1: Parameters: proper nonvacuous sampling Ŝ
2: Initialization: α0 ∈ Rn; ᾱ0 = 1

λnAα
0

3: for k = 0, 1, 2, . . . do
4: Primal update: wk = ∇g∗(ᾱk)
5: Generate a random set of blocks Sk ∼ Ŝ
6: Compute: ∆αk = arg minh∈Rn{〈(A>wk)Sk

, h〉 +
1

2λnh
>(A>A)Sk

h+
∑
i∈Sk

φ∗i (−αki − hi)}
7: Dual update: αk+1 := αk + (∆αk)Sk

8: Average update: ᾱk+1 = ᾱk + 1
λn

∑
i∈Sk

∆αki ai
9: end for

With each proper sampling Ŝ we associate the number:

θ(Ŝ) := min
i

piλγn
vi+λγn

, (22)

where v = (v1, . . . , vn) ∈ Rn++ is a vector satisfying:

E[(A>A)Ŝ ] � D(p)D(v). (23)

We can now state the main result of this section:

Theorem 14 (Complexity of SDNA). The output sequence
{wk, αk}k≥0 of Algorithm 3 satisfies:

E[P (wk)−D(αk)] ≤ (1− σprox1 )
k

θ(Ŝ)
(D(α∗)−D(α0)),

(24)
where σ̂prox1 is given by

λmin

[
D(p)

(
1
λγn E[(A>A)Ŝ ] + D(p)

)−1
D(p)

]
. (25)

When {φi}i and g are quadratic functions, then (24) holds
with σ̂prox1 replaced by the following better rate:

λmin

[
E
[((

1
λnA

>A + γI
)
Ŝ

)−1 ( 1
λnA

>A + γI
)]]

.

(26)

When applying the proximal variant of Method 3 to the
dual problem, i.e., replacing Line 6 in Algorithm 3 by:

∆αk = arg minh∈Rn

{
〈(A>wk)Sk

, h〉
+ 1

2λnh
>(D(v))Sk

h+
∑
i∈Sk

φ∗i (−αki − hi)
}
,

where v ∈ Rn+ is a parameter satisfying (23), we obtain
a new method which will be called Minibatch SDCA.
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When only one dual coordinate is updated at each iteration
(P(|Ŝ| = 1) = 1), both SDNA and Minibatch SDCA
reduce to the proximal variant of SDCA (Shalev-Shwartz
& Zhang, 2013b). The complexity of Minibatch SDCA is
given in Theorem 15.

Theorem 15 (Complexity of Minibatch SDCA). The out-
put sequence {wk, αk}k≥0 of Minibatch SDCA satisfies:

E[P (wk)−D(αk)] ≤ (1− θ(Ŝ))k

θ(Ŝ)

(
D(α∗)−D(α0)

)
.

Note that a minibatch version of standard SDCA in the
ERM setup has not been previously studied in the liter-
ature. (Takáč et al., 2013) developed such a method but
in the special case of hinge-loss (which is not smooth and
hence does not fit our setup). (Shalev-Shwartz & Zhang,
2013a) studied minibatching but in conjunction with ac-
celeration and the QUARTZ method of (Qu et al., 2014),
which has been analyzed for an arbitrary sampling Ŝ, uses
a different primal update than SDNA. Hence, in order to
compare SDNA with an SDCA-like method which is as
close a match to SDNA as possible, it was necessary to de-
velop a new method. Theorem 15 is an extension of SDCA
to allow it handle an arbitrary uniform sampling Ŝ.

We now compare the rates of SDNA and SDCA. The next
result says that the rate of SDNA is always superior to that
of SDCA. It can be derived directly from Proposition 13. In-
deed, it can be verified that θ(Ŝ) and σ̂prox1 can be obtained
respectively from σprox3 and σprox1 with M = 1

λn2A
>A,

G = 0 and γi = γ
n for all i.

Theorem 16. If Ŝ is a proper nonvacuous sampling, then
θ(Ŝ) ≤ σ̂prox1 .

6. SDNA as Iterative Hessian Sketch
We now apply SDNA to the ridge regression problem:

min
w∈Rd

1

2n
‖A>w − b‖2 +

λ

2
‖w‖2, (27)

and show that the resulting primal update can be interpreted
as an iterative Hessian sketch, alternative to the one pro-
posed by (Pilanci & Wainwright, 2014). We first need to
state a simple (and well known) duality result.

Lemma 17. Let α∗ be the optimal solution of

min
α∈Rn

1

2n
‖α‖2 − 1

n
〈b, α〉+

1

2λn2
‖Aα‖2, (28)

then the optimal solution w∗ of (27) is w∗ = 1
λnAα

∗.

Indeed, problem (27) is a special case of (20) for g(w) ≡
1
2‖w‖

2 and φi(a) ≡ 1
2 (a−bi)2 for all i ∈ [n]. Problem (28)

is the dual of (27) and the result follows from (21).

The interpretation of SDNA as a variant of the Iterative
Hessian sketch method of (Pilanci & Wainwright, 2014)
follows immediately from the following theorem.
Theorem 18. The output sequence {wk, αk}k≥0 of Algo-
rithm 3 applied on problem (27) satisfies:

wk+1 = arg min
w∈Rd

{
1

2n
‖S>k (A>w − b)‖2 +

λ

2
‖w‖2

+

〈
w,

1

n
AISk

αk − λwk
〉}

, (29)

where Sk denotes the n-by-|Sk| submatrix of the identity
matrix In with columns in the random subset Sk.

7. Numerical Experiments
Experiment 1. In our first experiment (Figure 1) we
compare SDNA and our new minibatch version of SDCA
on two real (mushrooms: d = 112, n = 8, 124; cov:
d = 54, n = 522, 911) and one synthetic (d = 1, 024,
n = 2, 048) dataset. In both cases, we used λ = 1/n as the
regularization parameter and g(w) = 1

2‖w‖
2.

As τ increases, SDNA requires less passes over data
(epochs), while SDCA requires more passes over data. It
can be shown that this behavior can be predicted from the
complexity results for these two methods. The difference
in performance depends on the choice of the dataset and
can be quite dramatic (see the two plots on the right).

Experiment 2. In the second experiment (Figure 2), we
investigate how much time it takes for the methods to pro-
cess a single epoch, using the same datasets as before. As
τ increases, SDNA does more work as the subproblems it
needs to solve in each iteration involve a τ×τ submatrix of
the Hessian of the smooth part of the dual objective func-
tion. On the other hand, the work SDCA needs to do is
much smaller, and does nearly not increase with the mini-
batch size τ . This is because the subproblems are sepa-
rable. As before, all experiments are done using a single
core (however, both methods would benefit from a parallel
implementation).

Experiment 3. Finally, in Figure 3 we put the insights
gained from the previous two experiments together: we
look at the performance of SDNA for various choices of
τ by comparing runtime and duality gap error. We should
expect that increasing τ would lead to a faster method in
terms of passes over data, but that this would also lead to
slower iterations. The question is, does the gain outweight
the loss? The answer is: yes, for small enough minibatch
sizes. Indeed, looking at Figure 3, we see that the runtime
of SDNA improved up to the point τ = 16 for the first two
datasets (and up to τ = 64 for cov), and then starts to de-
teriorate. In situations where it is costly to fetch data from
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Figure 1. Comparison of SDNA and SDCA for minibatch sizes τ = 1, 32, 256 on a real (left) and synthetic (right) dataset. The methods
coincide for τ = 1 (in theory and in practice).
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Figure 2. Processing time of one epoch for SDNA and SDCA as a function of the minibatch size τ .
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Figure 3. Runtime of SDNA for minibatch sizes τ = 1, 4, 16, 32, 64.

memory to a (fast) processor, much larger minibatch sizes
would be optimal.
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Takáč, Martin, Bijral, Avleen, Richtárik, Peter, and Srebro,
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