Estimation from Indirect Supervision with Linear Moments

A. Additional proofs
A.1. Local privacy

Proof of Proposition 1. Because ¢ is a sufficient statistic,
by definition there exists some channel Q(y | ¢(x,y)) and
a distribution Fy(¢(z,y) | x) such that pp(y | ) = Q(y |
o(x,y))Fo(Pp(x,y) | ). If we define

S'(o| (x,y)) =D _ S| Q| d(x,y), (18)

then (8) follows by substitution and algebra: O

In order to show differential privacy of the two schemes
proposed in Section 3, we first note that it suffices to have
differential privacy of the observations o with respect to any
(possibly random) data z € Z processed given the private
variable y such that y — 2z — o forms a Markov chain. To
see this, suppose @ is an a-differentially private channel
taking the intermediate variable z to o and fix any z € X.
Let R(- | y) be the distribution of z given y € ). Now, for
the end-to-end channel S,
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< exp(a).

Differential privacy of the coordinate release mechanism
follows immediately from the above observation, together
with the fact that, once a coordinate is chosen, it is flipped
in the classical way:
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< exp(a),

where the final step is by the triangle inequality applied
twice. Privacy of per-value ¢-RR follows similarly:

Q(opv | 0)
Q(0py | ')
< exp(a).
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