
Interacting Particle Markov Chain Monte Carlo - Supplementary Material

Tom Rainforth1* TWGR@ROBOTS.OX.AC.UK
Christian A. Naesseth2* CHRISTIAN.A.NAESSETH@LIU.SE
Fredrik Lindsten3 FREDRIK.LINDSTEN@IT.UU.SE
Brooks Paige1 BROOKS@ROBOTS.OX.AC.UK
Jan-Willem van de Meent1 JWVDM@ROBOTS.OX.AC.UK
Arnaud Doucet1 DOUCET@STATS.OX.AC.UK
Frank Wood1 FWOOD@ROBOTS.OX.AC.UK

∗ equal contribution
1 The University of Oxford, Oxford, United Kingdom
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Abstract

This is the supplementary material to the main manuscript Interacting Particle Markov Chain Monte Carlo. We
provide additional details for using all the particles and present further results on the experiments and choosing
number of conditional nodes or workers.

1. Using All Particles
The Monte Carlo estimator is given by
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RP

R∑
r=1

P∑
j=1

f(x′
j [r]) =

1

R

R∑
r=1

1

P

P∑
j=1

f(x′
j [r]), (1)

where we can note that x′
j [r] = x

bj
cj from the internal particle system at iteration r. We can however make use of all

particles to estimate expectations of interest by, for each MCMC iteration r, averaging over the sampled conditional node
indices c1:P and corresponding particle indices b1:P . This procedure is referred to as a Rao-Blackwellization of a statistical
estimator and is (in terms of variance) never worse than the original one, and often much better. For iteration r we need to
calculate the following
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where we can Rao-Blackwellize the selection of the retained particle along with each individual Gibbs update as following
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where we have made use of the knowledge that the internal particle system {(xim, w̄iT,m)} does not change between Gibbs
updates of the cj’s, whereas the ζ̂jm do. We emphasise that this is a separate Rao-Blackwellization of each Gibbs update of
the conditional node indices, such that each is conditioned upon the actual update made at j−1, rather than a simultaneous
Rao-Blackwellization of the full batch of P updates. Though the latter also has analytic form and should theoretically
be lower variance, it suffers from inherent numerical instability and so is difficult to calculate in practise. We found that
empirically there was not a noticeable difference between the performance of the two procedures. Furthermore, one can
always run additional Gibbs updates on the cj’s and obtain an improve estimate on the relative sample weightings if desired.

2. Choosing P

For the purposes of this study we assume, without loss of generality, that the indices for the conditional nodes are always
c1:P = {1, . . . , P}. Then we can show that the probability of the event that at least one conditional nodes switches with
an unconditional is given by

P({switch}) = 1− E

 P∏
j=1

Ẑj

Ẑj +
∑M
m=P+1 Ẑm

 . (2)

Now, there are some asymptotic (and experimental) results (Pitt et al., 2012; Bérard et al., 2014; Doucet et al., 2015) that
indicate that a decent approximation for the distribution of the log of the normalisation constant estimates is Gaussian.
This would mean the distributions of the conditional and unconditional normalisation constant estimates with variance σ2

can be well-approximated as follows

log

(
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Z

)
∼ N (

σ2

2
, σ2), j = 1, . . . , P, (3)

log

(
Ẑm
Z

)
∼ N (−σ

2

2
, σ2), m = P + 1, . . . ,M. (4)

A straight-forward Monte Carlo estimation of the switching probability, i.e. P({switch}), can be seen in Figure 1 for
various settings of σ and M . These results seem to indicate that letting P ≈M/2 maximises the probability of switching.



Interacting Particle Markov Chain Monte Carlo - Supplementary Material

Fraction conditional SMC
0 0.2 0.4 0.6 0.8 1

E
st

im
at

ed
 s

w
itc

hi
ng

 p
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1

M=16
M=24
M=32
M=40
M=48
M=56
M=64

(a) σ = 1
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(b) σ = 2
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(c) σ = 3
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(d) σ = 4
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(e) σ = 5

Fraction conditional SMC
0 0.2 0.4 0.6 0.8 1

E
st

im
at

ed
 s

w
itc

hi
ng

 p
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1

M=16
M=24
M=32
M=40
M=48
M=56
M=64

(f) σ = 6

Figure 1. Estimation of switching probability for various settings of σ and M .
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3. Additional Results Figures
In this section we provide figures to support those in the main paper.
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(a) Mean
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(b) Standard Deviation
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(c) Skewness
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(d) Kurtosis

Figure 2. Median error in marginal moment estimates with different choices of P and M over 10 different synthetic datasets of the linear
Gaussian state space model given in (10) after 1000 MCMC iterations. Errors are normalized by the error of a multi-start PG sampler
which is a special case of iPMCMC for which P = M (see Section 4). Error bars show the lower and upper quartiles for the errors.
It can be seen that for all the moments then P/M ≈ 1/2 give the best performance. For the mean and standard deviation estimates,
the accuracy relative to the non-interacting distribution case P = M shows a clear increase with M . This effect is also seen for the
skewness and excess kurtosis estimates except for the distinction between the M = 32 and M = 64 cases. This may be because these
metric are the same for the prior and the posterior such that good results for these metric might be achievable even when the samples
give a poor match to the true posterior.
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(b) Final error in mean
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(c) Convergence in standard deviation
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(d) Final error in standard deviation
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(e) Convergence in skewness
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(f) Final error in skewness
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(g) Convergence in kurtosis
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Figure 3. Mean squared error in latent variable mean, standard deviation, skewness and kurtosis averaged over all dimensions of the
LGSSM as a function of MCMC iteration (left) and position in the state sequence (right) for a selection of paraellelizable SMC and
PMCMC methods. See figure 3 in main paper for more details.
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(a) Convergence in mean
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(b) Final error in mean
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(c) Convergence in standard deviation
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(d) Final error in standard deviation
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(e) Convergence in skewness
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(f) Final error in skewness
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(g) Convergence in kurtosis
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Figure 4. Mean squared error in latent variable mean, standard deviation, skewness and kurtosis averaged of all dimensions of the
LGSSM as a function of MCMC iteration (left) and position in the state sequence (right) for iPMCMC, mPG, mPIMH and a number of
serialized variants. Key for legends: sPG = single PG chain, sPIMH = single PIMH chain, iPG = single PG chain run 32 times longer,
iPIMH = single PIMH chain run 32 times longer and pPG = single PG with 32 times more particles. For visualization purposes, the
chains with extra iterations have had the number of MCMC iterations normalized by 32 so that the different methods represent equivalent
total computational budget.
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(a) ESS of distributed methods for LGSSM
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(b) ESS of distributed methods for NLSSM
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(c) ESS comparison to series equivalents for LGSSM
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Figure 5. Normalized effective sample size for LGSSM (left) and NLSSM (right) for a number of distributed and series models.
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