
Mixture Proportion Estimation via Kernel Embedding of Distributions

Mixture Proportion Estimation via Kernel Embeddings of Distributions

Supplementary Material

A. Proof of Propositions 1, 2, 3 and 4
Proposition.

d(�) = 0, 8� 2 [0,�⇤
],

bd(�) = 0, 8� 2 [0, 1].

Proof. The second equality is obvious and follows from convexity of CS and that both �( bF ) and �( bH) are in CS .

The first statement is due to the following. Let � 2 [0,�⇤
], then we have that,

d(�) = inf

w2C
k��(F ) + (1� �)�(H)� wkH

= inf

w2C
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�

�⇤ (�
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)�(H)) +
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◆
�(H)� w

����
H

= inf

w2C

����
�

�⇤ (�(G)) +

✓
1� �

�⇤

◆
�(H)� w

����
H

= 0 .

Proposition. d(.) and bd(.) are non-decreasing convex functions.

Proof. Let 0 < �
1

< �
2

. Let ✏ > 0. Let w
1

, w
2

2 C be such that

d(�
1

) � k(�
1

)�(F ) + (1� �
1

)�(H)� w
1

kH � ✏,

d(�
2

) � k(�
2

)�(F ) + (1� �
2

)�(H)� w
2

kH � ✏ .

By definition of d(.) such w
1

, w
2

exist for all ✏ > 0.

Let � 2 [0, 1], �� = (1� �)�
1

+ ��
2

and w� = (1� �)w
1

+ �w
2

. We then have that

d(��)  k(��)�(F ) + (1� ��)�(H)� w�kH
= k((1� �)�

1

+ ��
2

)�(F ) + (1� (1� �)�
1

� ��
2

)�(H)� w�kH
= k((1� �)�

1

+ ��
2

)�(F ) + ((1� �)(1� �
1

) + �(1� �
2

))�(H)� w�kH
= k(1� �) (�

1

�(F ) + (1� �
1

)�(H)� w
1

) + � (�
2

�(F ) + (1� �
2

)�(H)� w
2

)k
 (1� �) k(�

1

�(F ) + (1� �
1

)�(H)� w
1

)k+ � k(�
2

�(F ) + (1� �
2

)�(H)� w
2

)k
 (1� �)(d(�

1

) + ✏) + �(d(�
2

) + ✏)

= (1� �)d(�
1

) + �d(�
2

) + ✏ .

As the above holds for all ✏ > 0 and d(��) is independent of ✏, we have

d(��) = d((1� �)�
1

+ ��
2

)  (1� �)d(�
1

) + �d(�
2

).

Thus we have that d(.) is convex.

As C is convex and �(H),�(F ) 2 C, we have that d(�) = 0 for � 2 [0,�⇤
], and hence rd(�) = 0 for � 2 [0,�⇤

]. By
convexity, we then have that for all � � 0, all elements of the sub-differential @d(�) are non-negative and hence d(.) is a
non-decreasing function.

By very similar arguments, we can also show that bd(.) is convex and non-decreasing.
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Proposition. For all µ � 0

d(�⇤
+ µ) = inf

w2C
k�(G) + µ(�(F )� �(H))� wkH.

Proof.

d(�⇤
+ µ) = inf

w2C
k(�⇤

+ µ)�(F ) + (1� �⇤ � µ)�(H)� wkH
= inf

w2C
k�⇤�(F ) + (1� �⇤

)�(H) + µ(�(F )� �(H))� wkH
= inf

w2C
k�(�⇤F + (1� �⇤

)H) + µ(�(F )� �(H))� wkH .

Proposition. For all �, µ � 0,

d(�) � �k�(F )� �(H)k � sup

w2C
k�(H)� wk, (5)

d(�⇤
+ µ)  µk�(F )� �(H)k, . (6)

Proof. The proof of the first inequality above follows from applying triangle inequality to d(.) from Equation (1).

The proof of the second inequality above follows from Proposition 3 by setting h = �(G).

B. Proof of Lemma 5
Lemma. Let the kernel k be such that k(x, x)  1 for all x 2 X . Let � 2 (0, 1/4]. We have that, the following holds with
probability 1� 4� (over the sample x

1

, . . . , xn+m) if n > 2(�⇤
)

2

log

�
1

�

�
.

k�(F )� �( bF )kH  3

p
log(1/�)p

n
,

k�(H)� �( bH)kH  3

p
log(1/�)p

m
,

k�(G)� �( bG)kH  3

p
log(1/�)p
n/(2�⇤

)

.

The proof for the first two statements is a direct application of Theorem 2 of Smola et al. (Smola et al., 2007), along with
bounds on the Rademacher complexity. The proof of the third statement also uses Hoeffding’s inequality to show that out
of the n samples drawn from F , at least n/(2�⇤

) samples are drawn from G.
Lemma 14. Let the kernel k be such that k(x, x)  1 for all x 2 X . Then we have the following

1. For all h 2 H such that khkH  1 we have that supx2X |h(x)|  1.

2. For all distributions P over X , the Rademacher complexity of H is bounded above as follows:

Rn(H, P ) =

1

n
Ex1,...,xn⇠PE�1,...,�n

"
sup

h:khkH1

�����

nX

i=1

�ih(xi)

�����

#
 1p

n
.

Proof. The first item simply follows from Cauchy-Schwarz and the reproducing property of H
|h(x)| = |hh, k(x, .)i|  khkHkk(x, .)kH  1 .

The second item is also a standard result and follows from the reproducing property and Jensen’s inequality.

1

n
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"
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#
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=
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Theorem 15. (Smola et al., 2007) Let � 2 (0, 1/4]. Let all h 2 H with khkH  1 be such that supx2X |h(x)|  R. Let bP
be the empirical distribution induced by n i.i.d. samples from a distribution. Then with probability at least 1� �

k�(P )� �( bP )k  2Rn(H, P ) +R

s
log

�
1

�

�

n
.

Lemma 16. Let � 2 (0, 1/4]. Let n > 2(�⇤
)

2

log

�
1

�

�
. Then with at least probability 1 � � the following holds. At least

n
2�⇤ of the n samples x

1

, . . . , xn drawn from F (which is a mixture of G and H) are drawn from G.

Proof. For all 1  i  n let

zi =

(
1 if xi is drawn from G

0 otherwise
.

From the definition of F , we have that zi are i.i.d. Bernoulli random variables with a bias of 1

�⇤ . Therefore by Hoeffding’s
inequality we have that,

Pr

 
nX

i=1

zi >
n

2�⇤

!
= Pr

 
1

n

nX

i=1

zi � 1

�⇤ >
�1

2�⇤

!

= 1� Pr

 
1

n

nX

i=1

zi � 1

�⇤  �1

2�⇤

!

� 1� e
� 2n

(2�⇤)2 � 1� � .

Proof. (Proof of Lemma 5) From Theorem 15 and Lemma 14, we have that with probability 1� �

k�(F )� �( bF )kH  2

1p
n
+

s
log

�
1

�

�

n
.

We also have that with probability 1� �

k�(H)� �( bH)kH  2

1p
m

+

s
log

�
1

�

�

m
.

Let n0 be the number of samples in x
1

, . . . , xn drawn from G. From Lemma 16, we have that with probability 1 � � the
n0 � n

2�⇤ .
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We also have that with probability 1� �

k�(G)� �( bG)kH  2

1p
n0 +

s
log

�
1

�

�

n0 .

Putting the above four 1� � probability events together completes the proof.

C. Proofs of Lemmas 6 and 7
Lemma. Let k(x, x)  1 for all x 2 X . Assume E� . For all � 2 [1,�⇤

] we have that

bd(�) 
 
2� 1

�⇤ +

p
2p
�⇤

!
� · 3

p
log(1/�)p

min(m,n)

Proof. For any � 2 [1,�⇤
], let w� =

�
�⇤�( bG) + (1� �

�⇤ )�( bH) 2 CS .

bd(�) = inf

w2CS

k��( bF ) + (1� �)�( bH)� wkH

 inf

w2CS

k��(F ) + (1� �)�(H)� wkH + (2�� 1) · 3

p
log(1/�)p

min(m,n)

= inf

w2CS

k�(G) + (�� �⇤
)(�(F )� �(H))� wkH + (2�� 1) · 3

p
log(1/�)p

min(m,n)

= inf

w2CS

�����(G) +

�� �⇤

�⇤ (�(G)� �(H))� w

����
H
+ (2�� 1) · 3

p
log(1/�)p

min(m,n)


�����(G) +

�� �⇤

�⇤ (�(G)� �(H))� w�

����
H
+ (2�� 1) · 3

p
log(1/�)p

min(m,n)

=

����
�

�⇤ (�(G)� �( bG)) +

✓
1� �

�⇤

◆
(�(H)� �( bH))

����
H
+ (2�� 1) · 3

p
log(1/�)p

min(m,n)

 �

�⇤ k(�(G)� �( bG))kH +

✓
1� �

�⇤

◆
k(�(H)� �( bH))kH + (2�� 1) · 3

p
log(1/�)p

min(m,n)

 �

�⇤
3

p
log(1/�)p
n/(2�⇤

)

+

✓
1� �

�⇤

◆
3

p
log(1/�)p

m
+ (2�� 1) · 3

p
log(1/�)p

min(m,n)

 �

�⇤
p
2�⇤ 3

p
log(1/�)p

min(m,n)
+

✓
1� �

�⇤

◆
3

p
log(1/�)p

min(m,n)
+ (2�� 1) · 3

p
log(1/�)p

min(m,n)

=

 p
2p
�⇤�+ 1� �

�⇤ + 2�� 1

!
3

p
log(1/�)p

min(m,n)

=

 
2� 1

�⇤ +

p
2p
�⇤

!
� · 3

p
log(1/�)p

min(m,n)
.

Lemma. Let k(x, x)  1 for all x 2 X . Assume E� . For all � � 1, we have

bd(�) � d(�)� (2�� 1) · 3

p
log(1/�)p

min(m,n)
.

Proof.

bd(�) = inf

w2CS

k��( bF ) + (1� �)�( bH)� wkH
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� inf

w2CS

k��(F ) + (1� �)�(H)� wkH � �k�( bF )� �(F )kH � (�� 1)k�(H)� �( bH)kH

� d(�)� � · 3
p
log(1/�)p

n
� (�� 1) · 3

p
log(1/�)p

m

� d(�)� (2�� 1) · 3

p
log(1/�)p

min(m,n)
.

D. Proof of Theorem 10
Theorem. Let the kernel k, and distributions G,H satisfy the separability condition with margin ↵ > 0 and tolerance �.
Then 8µ > 0

d(�⇤
+ µ) � ↵µ

�⇤ � � .

Proof. Let g 2 H be the witness to the separability condition – (i.e.) kgkH  1 and EX⇠Gg(X)  infx g(x) + � 
EX⇠Hg(X) + ↵. Let �X denote the set of all probability distributions over X . One can show that

d(�⇤
+ µ) = inf

w2C
k�(G) + µ(�(F )� �(H))� wkH

= inf

P2�X
k�(G) +

µ

�⇤ (�(G)� �(H))� �(P )kH

= inf

P2�X
sup

h2H:khk1

D
�(P ) +

µ

�⇤ (�(H)� �(G))� �(G), h
E

= inf

P2�X
sup

h2H:khk1

EP [h(X)]�EG[h(X)] +

µ

�⇤ (EH [h(X)]�EG[h(X)])

� inf

P2�X
EP [g(X)] +

µ

�⇤EH [g(X)]�
⇣
1 +

µ

�⇤
⌘
EG[g(X)])

� inf

x
g(x) +

µ

�⇤ (↵)� (inf

x
g(x) + �)

=

↵µ

�⇤ � � .

E. Proof of Theorem 11
Theorem. Let the kernel k : X ⇥X ! [0,1) be universal. Let the distributions G,H be such that they satisfy the anchor
set condition with margin � > 0 for some family of subsets of X . Then, for all ✓ > 0, there exists a � > 0 such that the
kernel k, and distributions G,H satisfy the separability condition with margin �✓ and tolerance �, i.e.

EX⇠Gh(X)  inf

x
h(x) + �  EX⇠Hh(X)� �✓

Proof. Fix some ✓ > 0. Let A ✓ X be the witness to the anchor set condition, i.e., A is a compact set such that
A ✓ supp(H) \ supp(G) and H(A) � �. A is a compact (and hence closed) set that is disjoint from supp(G) (which is a
closed, compact set), hence there exists a continuous function f : X ! R such that,

f(x) � 0, 8x 2 X ,

f(x) = 0, 8x 2 supp(G),

f(x) � 1, 8x 2 A.

By universality of the kernel k, we have that

8✏ > 0, 9h✏ 2 H, s.t. sup

x2X
|f(x)� h✏(x)|  ✏.
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We then have the following:

EGh✏(X)  ✏, (7)
inf

x2X
h✏(x)  ✏, (8)

inf

x2X
h✏(x) � �✏, (9)

inf

x2A
h✏(x) � 1� ✏, (10)

EHh✏(X) � (�✏)(1�H(A)) + (1� ✏)H(A)

� � � ✏. (11)

From Equations (7), (8), (9) and (11), we have that

EGh✏(X)  ✏  inf

x
h✏(x) + 2✏  3✏  EHh✏(X)� (� � 4✏).

Let h✏ = h✏/kh✏kH be the normalized version of h✏. We then have that

EGh✏(X)  inf

x
h✏(x) +

2✏

kh✏kH  EHh✏(X)� � � 4✏

kh✏kH .

Setting ✏ = �
2✓+4

and � =

2�
(2✓+4)kh�/(2✓+4)kH

we get that there exists h 2 H such that khkH  1 and

EGh(X)  inf

x
h(x) + �  EHh(X)� �✓.

F. Proof of Theorem 12
Theorem. Let � 2 (0, 1

4

]. Let k(x, x)  1 for all x 2 X . Let the kernel k, and distributions G,H satisfy the separability
condition with tolerance � and margin ↵ > 0. Let the number of samples be large enough such that min(m,n) >
(12·�⇤

)

2
log(1/�)

↵2 . Let the threshold ⌧ be such that 3�⇤p
log(1/�)(2�1/�⇤

+

p
2/�⇤

)p
min(m,n)

 ⌧  6�⇤p
log(1/�)(2�1/�⇤

+

p
2/�⇤

)p
min(m,n)

. We

then have with probability 1� 4�

�⇤ � b�V
⌧  0,

b�V
⌧ � �⇤  ��⇤

↵
+ c ·

p
log(1/�) · (min(m,n))�1/2,

for constant c =
✓

6↵(�⇤
)

2
(2�1/�⇤

+

p
2/�⇤

)+2�⇤
(3↵+6�⇤

(2+↵+�))

↵2

◆
.

Lemma 17. Let k(x, x)  1 for all x 2 X . Let the kernel k, and distributions G,H satisfy the separability condition with
margin ↵ and tolerance �. Assume E� . Then

bd(�) 
 
2� 1

�⇤ +

p
2p
�⇤

!
� · 3

p
log(1/�)p

min(m,n)
, 8� 2 [1,�⇤

],

bd(�) � (�� �⇤
)↵

�⇤ � � � (2�� 1) · 3

p
log(1/�)p

min(m,n)
, 8� 2 [�⇤,1) .

Proof. The proof follows from Lemmas 7, 6 and Theorem 10. The upper bound forms the line (�, U(�)) and the lower
bound forms the line (�, L(�)) in Figure 1a.

Lemma 18. Let k(x, x)  1 for all x 2 X . Let the kernel k, and distributions G,H satisfy the separability condition with
margin ↵ and tolerance �. Assume E� . We then have

b�V
⌧ � min

 
�⇤,

⌧
p
min(m,n)

3

p
log(1/�)(2� 1/�⇤

+

p
2/�⇤

)

!
, (12)
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b�V
⌧  �⇤ · (⌧ + � + ↵)

p
min(m,n) + 3

p
log(1/�)

↵
p
min(m,n)� 6�⇤p

log(1/�)
. (13)

Proof. As bd is a continuous function, we have that bd(b�V
⌧ ) = ⌧ . If b�V

⌧  �⇤, we have from Lemma 17 that

⌧ 
 
2� 1

�⇤ +

p
2p
�⇤

!
b�V
⌧ · 3

p
log(1/�)p

min(m,n)
,

and hence

b�V
⌧ � min

 
�⇤,

⌧
p

min(m,n)

3

p
log(1/�)(2� 1/�⇤

+

p
2/�⇤

)

!
.

If b�V
⌧ � �⇤, we have

⌧ � (

b�V
⌧ � �⇤

)↵

�⇤ � � � (2

b�V
⌧ � 1) · 3

p
log(1/�)p

min(m,n)
,

=

b�V
⌧

 
↵

�⇤ � 6

p
log(1/�)p

min(m,n)

!
� ↵� � � 3

p
log(1/�)p

min(m,n)
.

Rearranging terms, we have that if b�V
⌧ � �⇤, then

b�V
⌧ 

⌧ + ↵+ � +

3

p
log(1/�)p

min(m,n)

↵
�⇤ � 6

p
log(1/�)p

min(m,n)

.

And thus

b�V
⌧  max

 
�⇤,�⇤ · (⌧ + � + ↵)

p
min(m,n) + 3

p
log(1/�)

↵
p
min(m,n)� 6�⇤p

log(1/�)

!

= �⇤ · (⌧ + � + ↵)
p
min(m,n) + 3

p
log(1/�)

↵
p
min(m,n)� 6�⇤p

log(1/�)
.

Proof. (Proof of Theorem 12)

As min(m,n) > (12·�⇤
)

2
log(1/�)

↵2 > 2(�⇤
)

2

log(1/�), we have that E� is 1� 4� probability event. Assume E� .

As ⌧ � 3�⇤p
log(1/�)(2�1/�⇤

+

p
2/�⇤

)p
min(m,n)

, we have from Equation (12)

b�V
⌧ � �⇤ .

From Equation (13), we have

b�V
⌧  �⇤ · (⌧ + ↵+ �)

p
min(m,n) + 3

p
log(1/�)

↵
p
min(m,n)� 6�⇤p

log(1/�)

= �⇤
 
⌧ + � + ↵

↵
+

(3 +

6�⇤
(⌧+↵+�)

↵ )

p
log(1/�)

↵
p
min(m,n)� 6�⇤p

log(1/�)

!

 �⇤
✓
1 +

�

↵

◆
+

⌧�⇤

↵
+

2�⇤
(3 +

6�⇤
(⌧+↵+�)

↵ )

p
log(1/�)

↵
p
min(m,n)
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 �⇤
✓
1 +

�

↵

◆
+

6(�⇤
)

2

p
log(1/�)(2� 1/�⇤

+

p
2/�⇤

)

↵
p
min(m,n)

+

2�⇤
(3↵+ 6�⇤

(⌧ + ↵+ �))
p

log(1/�)

↵2

p
min(m,n)

 �⇤
✓
1 +

�

↵

◆
+

 
6↵(�⇤

)

2

(2� 1/�⇤
+

p
2/�⇤

) + 2�⇤
(3↵+ 6�⇤

(2 + ↵+ �))

↵2

!
·
p

log(1/�) · (min(m,n))�1/2 .

The third line above follows, because min(m,n) > (12·�⇤
)

2
log(1/�)

↵2 . The last two lines follow, because ⌧ 
6�⇤p

log(1/�)(2�1/�⇤
+

p
2/�⇤

)p
min(m,n)

, which in turn is upper bounded by 2 under the conditions on min(m,n).

G. Proof of Theorem 13
Theorem. Let k(x, x)  1 for all x 2 X . Let the kernel k, and distributions G,H satisfy the separability condition with
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Lemma 19. Let k(x, x)  1 for all x 2 X . Let the kernel k, and distributions G,H satisfy the separability condition with
margin ↵ and tolerance �. Assume E� . We then have
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Lemma 20. Let k(x, x)  1 for all x 2 X . Let the kernel k, and distributions G,H satisfy the separability condition with
margin ↵ and tolerance �. Assume E� . We then have
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Proof. (Proof of Theorem 13)
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H. Experimental Results in Table Format
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KM1 KM2 alphamax ROC EN
waveform(400) 0.042 0.032 0.089⇤ 0.117⇤ 0.127⇤

waveform(800) 0.034 0.027 0.06⇤ 0.072 ⇤ 0.112⇤

waveform(1600) 0.021 0.017 0.048⇤ 0.051⇤ 0.115⇤

waveform(3200) 0.015 0.012 0.079⇤ 0.045⇤ 0.102⇤

mushroom(400) 0.193⇤ 0.123⇤ 0.084 0.148⇤ 0.125
mushroom(800) 0.096⇤ 0.129⇤ 0.041 0.074⇤ 0.066⇤

mushroom(1600) 0.042 0.096⇤ 0.039 0.053⇤ 0.055⇤

mushroom(3200) 0.039⇤ 0.067⇤ 0.023 0.024 0.035⇤

pageblocks(400) 0.098 0.16 0.218 0.193⇤ 0.078
pageblocks(800) 0.038 0.088⇤ 0.203⇤ 0.139⇤ 0.081⇤

pageblocks(1600) 0.034 0.056⇤ 0.083⇤ 0.091⇤ 0.055⇤

pageblocks(3200) 0.02 0.033⇤ 0.166⇤ 0.084⇤ 0.047⇤

shuttle(400) 0.072 0.129 0.122 0.107⇤ 0.062
shuttle(800) 0.065 0.091 0.054 0.057 0.046
shuttle(1600) 0.035 0.03 0.03 0.049⇤ 0.027
shuttle(3200) 0.023⇤ 0.014 0.02 0.041⇤ 0.025⇤

spambase(400) 0.086 0.111 0.097 0.229⇤ 0.186⇤

spambase(800) 0.079 0.067 0.096⇤ 0.166⇤ 0.171⇤

spambase(1600) 0.059 0.043 0.07⇤ 0.092⇤ 0.139⇤

spambase(3200) 0.032 0.028 0.063⇤ 0.067⇤ 0.129⇤

digits(400) 0.24⇤ 0.091 0.115 0.186⇤ 0.136
digits(800) 0.127⇤ 0.071 0.073 0.113⇤ 0.114⇤

digits(1600) 0.083⇤ 0.034 0.03 0.071⇤ 0.111⇤

digits(3200) 0.055⇤ 0.025 0.031 0.046⇤ 0.085⇤

Table 2. Average absolute error incurred in predicting the mixture proportion ⇤. The first column gives the dataset and the total number
of samples used (mixture and component) in parantheses. The best performing algorithm for each dataset and sample size is highlighted
in bold. Algorithms whose performances have been identified as significantly inferior to the best algorithm, by the Wilcoxon signed rank
test (at significance level p = 0.05), are marked with a star.


