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Abstract
A grand challenge of the 21st century cosmol-
ogy is to accurately estimate the cosmological
parameters of our Universe. A major approach
in estimating the cosmological parameters is to
use the large scale matter distribution of the Uni-
verse. Galaxy surveys provide the means to map
out cosmic large-scale structure in three dimen-
sions. Information about galaxy locations is typ-
ically summarized in a “single” function of scale,
such as the galaxy correlation function or power-
spectrum. We show that it is possible to estimate
these cosmological parameters directly from the
distribution of matter. This paper presents the
application of deep 3D convolutional networks
to volumetric representation of dark-matter sim-
ulations as well as the results obtained using a
recently proposed distribution regression frame-
work, showing that machine learning techniques
are comparable to, and can sometimes outper-
form, maximum-likelihood point estimates using
“cosmological models”. This opens the way to
estimating the parameters of our Universe with
higher accuracy.

1. Introduction
The 21st century has brought us tools and methods to ob-
serve and analyze the Universe in far greater detail than
before, allowing us to deeply probe the fundamental prop-
erties of cosmology. We have a suite of cosmological ob-
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Figure 1. Dark matter distribution in three cubes produced using
different sets of parameters. Each cube is divided into small sub-
cubes for training and prediction. Note that although cubes in
this figure are produced using very different cosmological param-
eters in our constrained sampled set, the effect is not visually dis-
cernible.

servations that allow us to make serious inroads to the un-
derstanding of our own universe, including the cosmic mi-
crowave background (CMB) (Planck Collaboration et al.,
2015; Hinshaw et al., 2013), supernovae (Perlmutter et al.,
1999; Riess et al., 1998) and the large scale structure of
galaxies and galaxy clusters (Cole et al., 2005; Anderson
et al., 2014; Parkinson et al., 2012). In particular, large
scale structure involves measuring the positions and other
properties of bright sources in great volumes of the sky.
The amount of information is overwhelming, and modern
methods in machine learning and statistics can play an in-
creasingly important role in modern cosmology. For ex-
ample, the common method to compare large scale struc-
ture observation and theory is to compare the compressed
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two-point correlation function of the observation with the
theoretical prediction (which is only correct up to a certain
physical separation scale). We argue here that there may be
a better way to make this comparison.

The best model of the Universe is currently described by
less than 10 parameters in the standard ΛCDM cosmol-
ogy model, where CDM stands for cold dark matter and Λ
stands for the cosmological constant. The ΛCDM param-
eters that are important for this analysis include the matter
density Ωm ≈ 0.3 (normal matter and dark matter together
constitute ∼ 30% of the energy content of the Universe),
the dark energy density Ωλ ≈ 0.7 (∼70% of the energy
content of the Universe is a dark energy substance that
pushes the content of the universe apart), the variance in
the matter over densities σ8 ≈ 0.8 (measured on the matter
power spectrum smoothed over 8 h−1Mpc spheres), and
the current Hubble parameterH0 = 100h ≈ 70km/s/Mpc
(which describes the present rate of expansion of the Uni-
verse). ΛCDM also assumes a flat geometry for the Uni-
verse, which requires ΩΛ = 1 − Ωm (Dodelson, 2003).
Note that the unit of distance megaparsec/h ( h−1Mpc )
used above is time-dependent, where 1Mpc is equivalent
to 3.26×106 light years and h is the dimensionless Hubble
parameter that accounts for the expansion of the universe.

The expansion of the Universe stretches the wavelength,
or redshifts, the light that is emitted from distant galax-
ies, with the amount of change in wavelength depending
on their distances and the cosmological parameters. Con-
sequently, for a fixed cosmology we can use the directly
observed redshift z of galaxies as a proxy for their distance
away from us and/or the time at which the light was emit-
ted.

Here, we present a first attempt at using advanced ma-
chine learning to predict cosmological parameters directly
from the distribution of matter. The final goal is to apply
such models to produce better estimates for cosmological
parameters in our Universe. In the following, Section 2
presents our main results. Section 3 elaborates on the simu-
lation and cosmological analysis procedures as well as ma-
chine learning techniques used to obtain these estimates.

2. Results
To build the computational model, we rely on direct dark
matter simulations produced using different cosmological
parameters and random seeds. We sample these parame-
ters within a very narrow range that reflects the uncertainty
of our current best estimates of these parameters for our
universe from real data, in particular the Planck Collabo-
ration et al. (2015) CMB observations. Our objective is to
show that it is possible to further improve the estimates in
this range, for simulated data, using a deep convolutional

Figure 2. Prediction and ground truth of Ωm and σ8 using 3D
conv-net and analysis of the power-spectrum on 50 test cube in-
stances.

neural network (conv-net).

We consider two sets of simulations: the first set contains
only one snapshot of the dark matter distribution at the
present day. The following cosmological parameters are
varied across simulations: I) mass density Ωm; II) σ8 (or
alternatively, the amplitude of the primordial power spec-
trum, As, which can be used to predict σ8).

Here, each training and test instance is the output of an
N-body simulation with millions of particles in a box or
“cube” that is tens of h−1Mpc across. All the simulations
in this dataset are recorded at the present day – i.e., redshift
z = 0. Figure 1 shows three cubes with their corresponding
cosmological parameters. As is evident from this figure,
distinguishing the constants using visual clues is challeng-
ing. Importantly, there is substantial variation among cubes
even with similar cosmological parameters, since the initial
conditions are chosen randomly in each simulation. In all
experiments, we use 90% of the data for training and the
remaining 10% for testing.

We compare the performance of the conv-net to a stan-
dard cosmology analysis based on the standard maximum
likelihood fit to the matter power spectrum (Dodelson,
2003). Figure 2 presents our main result, the prediction
versus the ground truth for the cosmological parameters us-
ing both methods. We find that the maximum likelihood
prediction for (σ8,Ωm) has an average relative error of
(0.013, 0.072), respectively.1 In comparison, the conv-net
has an average relative error of (0.012, 0.028), which has
a clear advantage in predicting Ωm. Predictions for conv-
net are the mean-value of the predictions on smaller 128
h−1Mpc sub-cubes. On these sub-cubes, the conv-net has
a relatively small standard deviation of (0.0044, 0.0032),
indicating only small variations in predictions using much
smaller sub-cubes. We have not performed a maximum
likelihood estimate on these small sub-cubes, since the

1Relative error for ground truth Ωm and the prediction Ω̂m are
defined as

(
|Ωm − Ω̂m|

)
/Ωm.
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quality of the results would be drastically limited by sam-
ple variance.2 We also observed that changing the size of
these sub-cubes by a factor of two did not significantly af-
fect conv-net’s prediction accuracy; see the Appendix A for
details.

The second dataset contains 100 simulations using a more
sophisticated simulation code (Trac et al., 2015), where
each simulation is recorded at 13 different redshifts z ∈
[0, 6]; see Figure 3. Simulations in this set use fewer par-
ticles and since the distribution of matter at different red-
shifts is substantially different (compared to the effect of
cosmological parameters in the first dataset) we are able
to produce reasonable estimates of the redshift using the
distribution-to-real framework of Oliva et al. (2014) as well
as a 3D conv-net. Figure 4 reports both results for the train-
ing and test sets.

Figure 3. Log-density of dark matter at different redshifts. Each
row shows a slice of a different 3D cube. From left to right the
redshift increases in 1Gyr steps.

3. Methods
We review the procedure for dark matter simulations in
Section 3.1 and outline the standard cosmological likeli-
hood analysis in Section 3.2. Section 3.3 and Section 3.4
detail our deep conv-net applied to the data and our ap-
proach to predicting the redshift using a double-basis es-
timator. Section 3.5 describes the details of the redshift
estimation.

3.1. Simulations

Simulations play an important part in modern cosmology
studies, particularly in order to model the non-linear ef-
fects of general relativity and gravity, which are impossible
to take into account in a simpler analytic solution. Con-
sequently, significant effort has been made in the last few
decades to obtain a large number of realistic simulations as
a function of the cosmology parameters. The simulations
also provide a useful test for supervised machine learning
techniques.

In order to apply a Machine Learning process in cosmo-
logical parameter estimation we need to generate a huge

2For the power spectrum analysis there is a strong degeneracy
in the (σ8,Ωm) plane on small scales: larger (smaller) values of
σ8 combined with smaller (larger) Ωm predict comparable power
spectra. This provides a small bias to the maximum likelihood
estimate.

10−1 100

ground truth (z)

10−1

100

pr
ed

ic
ti

on
(z

)

conv-net
2BE

Figure 4. Prediction and ground truth of redshift z on test in-
stances for both 3D conv-net and double-basis estimator (2BE).

Figure 5. Distribution of cosmological parameters in the first set
of simulations.

amount of simulations for the training set. Moreover, it is
important to generate big volume simulation boxes in order
to accurately reproduce the statistics of large scale struc-
tures. There are several algorithms for calculating the grav-
itational acceleration in N-body simulations, ranging from
slow-and-accurate to fast-and-approximate. The equations
of motion for the N particles are solved in discrete time
steps to track the nonlinear trajectories of the particles.

As we are interested in large scale statistics, for the first
dataset we use the COmoving Lagrangian Acceleration
(COLA) code (Tassev et al., 2013; Koda et al., 2015). The
COLA code is a mixture of N-body simulation and second
order Lagrangian perturbation theory. This method con-
serves the N-body accuracy at large scale and agrees with
the non-linear power spectrum (see Section 3.2) that can
be obtained with ultra high-resolution pure N-body sim-
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ulations (Springel, 2005) at better than 95% up to k ∼
0.5hMpc−1.

For the first study we generate 500 cubic simulations with
a size of 512 h−1Mpc with 5123 dark matter particles,
evolving the simulation until redshift z = 0. The mass
of these particles varies with the value of Ωm from mp ∼
6.5 × 1010 to mp ∼ 9.5 × 1010h−1M�, where M� is a
solar mass. We start the simulations at a redshift of z ∼ 20
and use 20 steps up to the final redshift z = 0.3 Each box
is generated using a different seed for the random initial
conditions.4 The Hubble parameter used for all simulations
is H0 = 70km/s/Mpc.5

Motivated by the PLANCK results (Planck Collaboration
et al., 2015), we use a Gaussian distribution for the am-
plitude of the initial scalar perturbations ln(1010As) =
3.089±0.036 and a flat distribution in the range [0.25; 0.35]
for Ωm. Note that PLANCK results arguably give us the best
constraints on the parameters of our Universe, limiting our
simulations mostly to uncertain regions of the parameter
space. The value for σ8 is obtained by calculating the con-
volution of the linear power spectrum with a top hat win-
dow function with a radius of 8 h−1Mpc , using the CAMB
code; see Section 3.2 for power-spectrum. Figure 5 shows
the distribution of the three parameters (two independent,
one derived) that are varying across simulations.

The simulations in the second dataset are based on a
particle-particle-particle-mesh (P3M) algorithm from Trac
et al. (2015).6 Each simulation is computed in 13 time steps
of 1 gigayear (Gyr), using 1283 particles in boxes with
sizes of 128 h−1Mpc using the standard ΛCDM cosmol-
ogy.

3.2. Two-Point Correlation and Maximum Likelihood
Power Spectrum Analysis

A commonly used measurement for analysis of the distri-
bution of matter is the two-point correlation function ξ(~r),
measuring the excess probability, relative to a random dis-
tribution, of finding two points in the matter distribution
at the volume elements dV1 and dV2 separated by a vector

3Corresponding to a scale factor of a = 0.05, as advocated in
Izard et al. (2015).

4 This random seed is generated by an adjusted version of the
2LPTIC code (Koda et al., 2015).

5We use a scalar perturbation spectral index of 0.96 for all
the simulations and a cosmological constant with ΩΛ = 1− Ωm

in order to conserve a flat universe. Each simulation on average
requires 6 CPU hours on 2GHz processors and the final raw snap-
shot is about 1GB in size.

6The long-range potential is computed using a particle-mesh
algorithm where Poisson’s equation is efficiently solved using
Fast Fourier Transforms. The short-range force is computed for
particle-particle interactions using direct summation.

distance ~r – that is we have

dP12(~r) = n2 (1 + ξ(~r)) dV1dV2, (1)

where n is the mean density (number of particles divided
by the volume), and n2dV1dV2 in the equation above mea-
sures the probability of finding two points in dV1 and dV2

at vector distance ~r. Under the cosmological principle the
Universe is statistically isotropic and homogeneous, there-
fore the correlation function only depends on the distance
r = |~r|. The matter power spectrum Pm(k) is the Fourier
transform of the correlation function, where k = |k| is the
magnitude of the Fourier basis vector.

The form of the power spectrum as a function of k depends
on the cosmological parameters, in particular σ8 and Ωm.
For a larger (smaller) σ8 the amplitude of the power spec-
trum smoothed on the scale of 8 h−1Mpc increases (de-
creases). Similarly, larger Ωm shifts power into smaller
scales.

Given the output of an N-body simulation at z = 0, we
evaluate the “empirical” power spectrum P̂ (k) of the dark
matter distribution.7 For a set of cosmological parameters
Y = (σ8,Ωm) we can obtain the predicted (theoretical)
matter power spectra Pm(k, Y ).8 This theoretical average
is produced using our “physical model”, rather than the
training data. After obtaining an estimate of the covariance
using additional training simulations, for each test cube, we
can find the parameter Y that maximizes its Gaussian like-
lihood.

To define this Gaussian likelihood of the empirical power
spectra based on its theoretical value L(P̂m(k)|Pm(k, Y )),
we discretize the power spectrum to equally spaced bins in
log k. We the estimate the covariance matrix of this Gaus-
sian using 20 different simulations with the fixed cosmol-
ogy of (σ8,Ωm) = (0.812, 0.273). Note that each of these
is using different random initial conditions to obtain an es-
timate of the sample variance.9 The sample variance on
scales of k . 0.1Mpc gives a large uncertainty in the es-
timate of P̂m(k) at scales & 100 h−1Mpc in real-space,
which corresponds to approximately 20% of the entire sim-
ulation box. This limits the inferences we can draw from

7 Given the ΛCDM cosmology model, there is a constraint
in the parameter space (As, σ8,Ωm), which we utilize to only
require fitting to the parameters (σ8,Ωm) – i.e., treating As as a
deterministic derivative.

8We use the linear Boltzmann code CAMB (Lewis et al., 2000),
supplemented with the empirically calibrated non-linear correc-
tions obtained from HALOFIT (Smith et al., 2003). This is ba-
sically an accurate estimate of the average power spectra, if our
training dataset contained many simulations with the same cos-
mological parameters and different initial conditions.

9 These particular parameters provide the best-fit Lambda-
CDM values to the data from the Planck satellite telescope, which
is the state-of-the-art measurement of the cosmic microwave
background.



Cosmological Parameters from the Dark matter Distribution

large scales in the dark matter simulation.

We then maximize the likelihood function over Y using
the downhill simplex method (Nelder & Mead, 1965) to
obtain an estimate Ŷ that can be compared to the ground
truth cosmological parameter values that are known from
the simulations. 10

3.3. Invariances of the Distribution of Matter

Modern cosmology is built on the cosmological princi-
ple that states at large scales, the distribution of matter in
the Universe is homogeneous and isotropic (Ryden, 2003),
which implies shift, rotation and reflection invariance of the
distribution of matter. These invariances have also made
the two-point correlation function –as a shift, rotation and
reflection invariant measurement– an indispensable tool in
cosmological data analysis. Here, we intend to go beyond
this measure. Let X denote a cube and Y = (Ωm, σ8) the
corresponding dependent variable. The existence of invari-
ance in the data means p(Y | X) = p(Y | transform(X)),
where the invariance identifies the valid transformations.

In machine learning, and in particular deep learning, sev-
eral recent works have attempted to identify and model the
data invariances and its symmetries (e.g., Gens & Domin-
gos, 2014; Cohen & Welling, 2014). However, due to
inefficiency of current techniques, any known symmetry
beyond translation invariance is often enforced by data-
augmentation (e.g., Krizhevsky et al., 2012); see (Diele-
man et al., 2015) for an application in astronomy. Data-
augmentation is the process of replicating data by invariant
transformations.

In the original representation of cubes, particles are fully
interchangable and a source of redundancy is due to this
permutation invariance. For conv-nets, prior to data aug-
mentation, we transform this data to volumetric form,
where a 3D histogram of d3 voxels represents the nor-
malized density of the matter for each cube. For the first
and second datasets this resolution (in proportion to the
number of particles and the size of these cubes) is set to
d = 256 and d = 64 respectively, which means each voxel
is 2 h−1Mpc along each edge. A normalization step en-
sures that the model generalizes to simulations with differ-
ent number of particles as long as densities remain non-
degenerate. In the first dataset we further break down each
of the 500 simulation cubes to 643-voxel sub-cubes, corre-
sponding to 1283( h−1Mpc )3. This is in order to obtain
more training instances for our conv-net; see Figure 1

10While this differs from common cosmological analyses that
calculate the posterior probability distribution P (Y |D) using
Bayesian techniques via software such as COSMOMC (Lewis &
Bridle, 2002), it gives a reasonable point estimate of the parame-
ters that can be compared to the results of the conv-nets.

Translation invariance is addressed by shift-invariance of
the convolutional parameters. We augment both datasets
with symmetries of a cube. This symmetry group has 48
elements: 6 different 90◦ rotations and 23 = 8 different
axis-reflections of each sub-cube.

The combination of data-augmentation and us-
ing “sub”-cubes increases the training data
S = {(X(1), Y (1)), . . . , (X(N), Y (N))} to have N > 106

and N > 62000 instances for the first and second dataset
respectively, where in the following we useX ∈ Υ = R643

to denote a (sub-)cube from either dataset. To see if the
data-augmentation has indeed produced the desirable in-
variance, we predicted both Ωm and σ8 using 48 replicates
of each sub-cube. The average standard deviation in these
predictions is .0013 and .0017 respectively, i.e., small
compared to .029 and .039, their respective standard
deviations over the whole test-set.

3.4. Deep Convolutional Network for Volumetric Data

Our goal is to learn the model parameters θ∗ ∈ Θ for an ex-
pressive class of functions fθ : Υ→ R2, so as to minimize
the expected loss EX,Y [`(f(X)−Y )] where `(R2)→ R is
a loss function — e.g., we use the L1 norm. However, due
to the unavailability of p(X,Y ), a common practice is to
minimize the empirical loss

∑
(X(n),Y (n))∈S `(f(X

(n)) −
Y (n)) with an eye towards generalization to new data,
which is often enforced by regularization.

Our function class is the class of a deep convolutional neu-
ral network (LeCun et al., 2015; Bengio, 2009). Conv-nets
have been mostly applied to 2D image data in the past.
Beside applications in video processing –with two image
dimensions and time as the third dimension– application
of conv-nets to volumetric data are very recent and mostly
limited to 3D medical image segmentation (e.g., Kamnit-
sas et al., 2015; Roth et al., 2015).

Figure 6 shows the architecture of our model. A major re-
striction when moving from 2D images to volumetric data
is the substantial increase in the size of the input, which in
turn restricts the number of feature-maps at the first layers
of the conv-net. This memory usage is further amplified by
the fact that in 3D convolution the advantage of using FFT
is considerable. However, FFT-based convolution requires
larger memory compared to its time domain counterpart.

In designing our network we identified several choices that
are critical in obtaining the results reported in Section 2:
I) We use Leaky rectified linear unit (ReLU). (Maas et al.,
2013). This significantly speeds up the learning compared
to non-leaky variation. We used the leak parameter c = .01
in f(X) = max(0, X)− c.
II) We used Average pooling in our model and could not
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Figure 6. The architecture of our 3D conv-net. The model has six
convolutional and 3 fully connected layers. The first two convolu-
tional layers are followed by average pooling. All layers, except
the final layer, use leaky rectified linear units, and all the convo-
lutional layers use batch-normalization (b.n.).

learn a meaningful model using max-pooling (which is of-
ten used for image processing tasks). One explanation
is that with the combination of ReLU and average pool-
ing, activity at higher layers of the conv-net signifies the
weighted sum of the dark-matter mass at particular regions
of the cube. This information (total mass in a region) is
lost when using max-pooling. Here, both pooling layers
are sub-sampling by a factor of two along each dimension.

III) Batch normalization (Ioffe & Szegedy, 2015) is nec-
essary to undo the internal covariate shift and stabilize the
gradient calculations. The basic idea is to normalize the
output of each layer –with an online estimate of mean and
variance for all the training data at that layer– before apply-
ing the non-linearity. 11

Regularization is enforced by “drop-out” at fully connected
layers, where 50% of units are ignored during each ac-
tivation, in order to reduce overfitting by preventing co-
adaptation (Hinton et al., 2012). For training with back-
propagation, we use Adam (Kingma & Ba, 2014) with a
learning rate of .0005 and first and second moment expo-
nential decay rate of .9 and .999, respectively.

3.4.1. VISUALIZATION

A common approach to visualizing the representation
learned by a deep neural network is to maximize the acti-

11Without using batch-normalization, we observed shooting
gradients early during the training.Batch-normalization would not
be critical in a more shallow network. However, we observe con-
sistent –although sometimes marginal– improvement by increas-
ing the number of layers in our conv-net up to its current value.
In using batch-normalization, we normalize the values across all
the voxels of each feature-map. However, since due to memory
constraints the number of training instances in each mini-batch
is limited, batch-normalization across the fully connected layers
introduces relatively large oscillations during learning. For this
reason, we limit the batch-normalization to convolutional layers.

Figure 7. (top) visualization of inputs that maximize the activa-
tion of 7/1024 units (corresponding to seven rows) at the first fully
connected layer. In this figure, we have unwrapped the maximiz-
ing input sub-cubes for better visualization. (bottom) magnified
portion of the top row.

vation of a particular unit while treating the input X as the
optimization variable (Erhan et al., 2009; Simonyan et al.,
2013)

X∗ = arg max
X

s.t. Xl,i ‖X‖2 ≤ ζ

where Xl,i is the ith unit at layer l of the conv-net and
ζ > 0 is a constant. Figure 7 shows the representation
learned by seven units at the first fully connected layer of
our model.12 The visualization suggests that the conv-net
has learned to identify various patterns involving periodic
concentration of mass as a key feature in predicting Ωm and
σ8.

3.5. Estimating the Redshift

We applied the conv-net of the previous section to estimate
the redshift in our second dataset. Since this is an easier
task, we removed two fully connected layers, without los-
ing prediction power. All the other settings in training are
kept the same. For this dataset we could also obtain good
results using the Double-Basis Estimator, described in the
following section.

3.5.1. DISTRIBUTION TO REAL REGRESSION

We analyzed the use of distribution-to-real regression
(Póczos et al., 2013) and the Double-Basis Estimator (2BE)
(Oliva et al., 2014) for predicting cosmological parameters.
Here, we take sub-cubes of simulation snapshots to be sam-
ple sets from an underlying distribution, and regress a map-
ping that maps the underlying distribution to a real-value
(in this case the redshift of the simulation snapshot). In
other words, we consider our data to beD = {(Xi, Yi)}Ni=1,

where Xi = {Xij ∈ R3}nij=1
iid∼ Pi. We look to estimate a

mapping Yi = f(Pi) + εi, where εi is a noise term (Oliva
et al., 2014).

Roughly speaking, the 2BE operates in an approximate pri-

12Since the input to our conv-net is a distribution it seems more
appropriate to bound X by ‖X‖1 = 1 and Xi > 0 ∀i. How-
ever, using penalty method for this optimization did not produce
visually meaningful features.
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mal space that allows one to use a kernelized estimator on
distributions without computing a Gram matrix. The 2BE
uses:

I) An orthonormal basis so that we can estimate the L2 dis-
tance on two distributions, ‖Pi−Pj‖2, as the Euclidean dis-
tance of finite vectors of their projection coefficients onto a
finite subset of the orthonormal basis, ‖~a(Pi)− ~a(Pj)‖.
II) A random basis to approximate kernel evaluations on
distributions K(Pi, Pj) as the dot product of finite vectors
of random features on the respective projection coefficients
of the distributions, z(~a(Pi))

T z(~a(Pj)).

Using these two bases, the 2BE is able to regress a non-
parametric mapping efficiently. In short, the 2BE estimates
a real valued response, Yi, as Yi ≈ ψT z(~a(Pi)), where
z(~a(Pi)) are the aforementioned random features of pro-
jection coefficients, and ψ is a vector of model parameters
that are optimized over. We expound on the details below.

Orthonormal Basis. We use orthonormal basis projection
estimators (Tsybakov, 2008) for estimating densities of Pi
from a sampleXi. Let Υ = [a, b] and suppose that Υl ⊆ Rl
is the domain of input densities. If {ϕi}i∈Z is an orthonor-
mal basis for L2(Υ), then the tensor product of {ϕi}i∈Z
serves as an orthonormal basis for L2(Υl); that is,

{ϕα}α∈Zl where ϕα(x) =

l∏
i=1

ϕαi(xi), x ∈ Υl (2)

serves as an orthonormal basis (so we have ∀α, ρ ∈
Zl, 〈ϕα, ϕρ〉 = I{α = ρ}).
Let P ∈ I ⊆ L2(Υl), then

p(x) =
∑
α∈Zl

aα(P )ϕα(x) where (3)

aα(P ) = 〈ϕα, p〉 =

∫
Υl
ϕα(z)dP (z) ∈ R.

Here, p(x) denotes the probability density function of the
distribution P . If the space of input densities, I, is in a
Sobolov ellipsoid type space; see (Ingster & Stepanova,
2011; Laurent, 1996; Oliva et al., 2014) for details. We can
effectively approximate input densities using a finite set of
empirically estimated projection coefficients. Given a sam-
ple Xi = {Xi1, . . . , Xini} where Xij

iid∼ Pi ∈ I, let P̂i be
the empirical distribution of Xi; i.e. P̂i(X = Xij) = 1

ni
.

Our estimator for pi will be:

p̃i(x) =
∑
α∈M

aα(P̂i)ϕα(x) where (4)

aα(P̂i) =

∫
Υl
ϕα(z)dP̂i(z) =

1

ni

ni∑
j=1

ϕα(Xij). (5)

Choosing M optimally can be shown to lead to E[‖p̃i −
pi‖22] = O(n

− 2

2+γ−1

i ), where γ−1 is a smoothing constant
(Nussbaum, 1983).

Random Basis. Next, we use random basis functions from
Random Kitchen Sinks (RKS) (Rahimi & Recht, 2007) to
compute our estimate of the response. In particular, we
consider the RBF kernel

Kδ(x, y) = exp

(
−‖x− y‖

2

2δ2

)
where x, y ∈ Rd and δ ∈ R is a bandwidth parameter.
Rahimi & Recht (2007) shows that for a shift-invariant ker-
nel, such as Kδ:

Kδ(x, y) ≈ z(x)T z(y), where (6)

z(x) ≡
√

2
D

[
cos(ωT1 x+ b1) · · · cos(ωTDx+ bD)

]T
(7)

with ωi
iid∼ N (0, δ−2Id), bi

iid∼ Unif[0, 2π]. The quality of
the approximation will depend on the number of random
features D as well as other factors, see (Rahimi & Recht,
2007) for details.

Below we consider the RBF kernel on distributions,

Kδ(Pi, Pj) = exp

(
−‖pi − pj‖

2

2δ2

)
,

where pi, pj are the respective densities and ‖pi−pj‖ is the
L2 norm on functions. We will take the class of mappings
we regress to be:

Yi =

N∑
j=1

θiKδ(Gj , Pi) + εi, (8)

where ‖θ‖1 < ∞, Gj ∈ I’s are unknown distributions
and εi is a noise term (Oliva et al., 2014). Note that this
model is analogous to a linear smoother on some unknown
infinite dataset, and is nonparametric. We show that (8) can
be approximated with the 2BE below.

Double-Basis Estimator. First note that:

〈p̃i, p̃j〉 =

〈∑
α∈M

aα(P̂i)ϕα,
∑
α∈M

aα(P̂j)ϕα

〉
=
∑
α∈M

∑
β∈M

aα(P̂i)aβ(P̂j) 〈ϕα, ϕβ〉

=
∑
α∈M

aα(P̂i)aα(P̂j) =
〈
~a(P̂i),~a(P̂j)

〉
,

where ~a(P̂i) = (aα1
, . . . , aαs), M = {α1, . . . , αs}, and

the last inner product is the vector dot product. Thus,

‖p̃i − p̃j‖2 =
∥∥∥~at(P̂i)− ~at(P̂j)∥∥∥

2
,
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where the norm on the LHS is the L2 norm and the `2 on
the RHS.

Consider a fixed δ. Let ωi
iid∼ N (0, δ−2Is), bi

iid∼
Unif[0, 2π], be fixed. Then,

∞∑
i=1

θiKδ(Gi, P0) ≈
∞∑
i=1

θiKδ(~a(Gi),~a(P0))

≈
∞∑
i=1

θiz(~a(Gi))
T z(~a(P̂0))

=

( ∞∑
i=1

θiz(~a(Gi))

)T
z(~at(P̂0))

=ψT z(~a(P̂0)) (9)

where ψ =
∑∞
i=1 θiz(~a(Gi)) ∈ RD. Thus, we consider

estimators of the form (9). I.e. we use a linear estima-
tor in the non-linear space induced by z(~a(·)). In par-
ticular, we consider the OLS estimator using the data-set
{(z(~a(P̂i)), Yi)}Ni=1 :

f̂(P̃0) ≡ψ̂T z(~a(P̂0)) where (10)

ψ̂ ≡ arg min
β
‖~Y − Zβ‖22 = (ZTZ)−1ZT ~Y (11)

for ~Y = (Y1, . . . , YN )T , and with Z being the N × D

matrix: Z = [z(~at(P̂1)) · · · z(~at(P̂N ))]T .

A straightforward extension to (10) is to use a ridge regres-
sion estimate on features z(~a(·)) rather than a OLS esti-
mate. That is, for λ ≥ 0 let

ψ̂Tλ ≡ arg min
β
‖~Y − Zβ‖22 + λ‖β‖2 (12)

=(ZTZ + λI)−1ZT ~Y . (13)

3.5.2. ALGORITHM

We summarize the basic steps for training the 2BE in prac-
tice given a data-set of empirical functional observations
D = {(Xi, Yi)}Ni=1, parameters δ and D (which may
be cross-validated), and an orthonormal basis {ϕi}i∈Z for
L2([a, b]).

1. Determine the sets of basis functions M for approx-
imating p. This may be done via cross validation of
density estimates (see (Oliva et al., 2014) for more de-
tails).

2. Let s = |M |, draw ωi
iid∼ N (0, δ−2Is), bi

iid∼
Unif[0, 2π] for i ∈ {1, . . . , D}; keep the set
{(ωi, bi)}Di=1 fixed henceforth.

3. Let {α1, . . . , αs} = M . Generate the data-set of
random kitchen sink features, output projection co-
efficient vector, response pairs {(z(~a(P̂i)), Yi)}Ni=1.

Let ψ̂ = (ZTZ + λI)−1ZT ~Y ∈ RD where Z =

[z(~a(P̂1)) · · · z(~a(P̂N ))]T ∈ RN×D, and λ may be
chosen via cross validation. Note that ZT ~Y and ZTZ
can be computed efficiently using parallelism.

4. For all future query input functional observations
P̂0, estimate the corresponding response as f̂(p0) =

ψ̂T z(~a(P̂0)).

3.6. 2BE for Redshift Prediction

We divide simulation snapshots into 16 h−1Mpc length
sub-cubes, for a total of 512 sub-cubes per simulation snap-
shot. Each sub-cube is then rescaled to be the unit box. We
treat each sub-cube as a sample Xi with a response Yi, of
the redshift it was observed at. In total, a training set of ap-
proximately 600K (sample Xi, response Yi) pairs was used
for constructing our model. A total of 130 simulation snap-
shots were held out. Test accuracies were assessed by aver-
aging the predicted response in the boxes of each held-out
snapshot.

We used 20K random features, D, as in Eq. (7). We used
the cosine basis, i.e., the tensor product in Eq. (2) of:
ϕ0(x) = 1, and ϕk(x) =

√
2 cos(kπx) for k ≥ 1. The

set of basis functions, M (5), was taken to be M = {α ∈
N3 : ‖α‖ ≤ 18} via rule of thumb. The free parameters
δ, the bandwidth, and λ, the regularizer, were chosen by
validation on a held-out portion of the training set. In total
the 2BE model’s parameters ψ, totaled 20K dimensions.

Future Directions
We demonstrated that machine learning techniques can
produce accurate estimates of the cosmological parameters
from simulated dark matter distributions, which are highly
competitive with standard analysis techniques. In particu-
lar the advantage of conv-nets on small-scale boxes shows
that convolutional features that carry higher order correla-
tion information provide high fidelity and could produce
low variance estimates of the cosmological parameters.

The eventual goal is to use such models to estimate the pa-
rameters of our own Universe, where we only have access
to the distribution of “visible” matter. This introduces ex-
tra complexities as galaxies and clusters are biased tracers
of the underlying matter distribution. Furthermore, the di-
rect simulation of galaxy clusters are highly complex. In
the next step, we would like to evaluate and establish the
robustness of these models to variations across simulation
settings, before applying proper models to Sloan Digital
Sky Survey data (Alam et al., 2015) that observes the dis-
tribution of galaxies at large scales.
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Póczos, Barnabás, Rinaldo, Alessandro, Singh, Aarti, and
Wasserman, Larry. Distribution-free distribution regres-
sion. AISTATS, 2013.

Rahimi, Ali and Recht, Benjamin. Random features for
large-scale kernel machines. Advances in neural infor-
mation processing systems, pp. 1177–1184, 2007.

Riess, Adam G. et al. Observational evidence from su-
pernovae for an accelerating universe and a cosmolog-
ical constant. Astron. J., 116:1009–1038, 1998. doi:
10.1086/300499.

Roth, Holger R, Farag, Amal, Lu, Le, Turkbey, Evrim B,
and Summers, Ronald M. Deep convolutional networks
for pancreas segmentation in ct imaging. In SPIE Medi-
cal Imaging, pp. 94131G–94131G. International Society
for Optics and Photonics, 2015.

Ryden, Barbara Sue. Introduction to cosmology, volume 4.
Addison-Wesley San Francisco USA, 2003.

Simonyan, Karen, Vedaldi, Andrea, and Zisserman, An-
drew. Deep inside convolutional networks: Visualising
image classification models and saliency maps. arXiv
preprint arXiv:1312.6034, 2013.

Smith, R. E., Peacock, J. A., Jenkins, A., White, S. D. M.,
Frenk, C. S., Pearce, F. R., Thomas, P. A., Efstathiou,
G., and Couchmann, H. M. P. Stable clustering, the halo
model and nonlinear cosmological power spectra. Mon.
Not. Roy. Astron. Soc., 341:1311, 2003. doi: 10.1046/j.
1365-8711.2003.06503.x.

Springel, V. The cosmological simulation code GADGET-
2. mnras, 364:1105–1134, December 2005. doi: 10.
1111/j.1365-2966.2005.09655.x.

Tassev, S., Zaldarriaga, M., and Eisenstein, D. J. Solv-
ing large scale structure in ten easy steps with COLA.
jcap, 6:036, June 2013. doi: 10.1088/1475-7516/2013/
06/036.

Trac, H., Cen, R., and Mansfield, P. SCORCH I: The
Galaxy-Halo Connection in the First Billion Years. apj,
813:54, November 2015. doi: 10.1088/0004-637X/813/
1/54.

Tsybakov, Alexandre B. Introduction to nonparametric es-
timation. Springer, 2008.


