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Appendix: Stochastic Variance Reduction for
Nonconvex Optimization

A. Nonconvex SGD: Convergence Rate

Proof of Theorem 1
Theorem. Suppose f 2 F

n

has �-bounded gradients; let
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p
T where c =

q
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Proof. We include the proof here for completeness. Please
refer to (Ghadimi & Lan, 2013) for a more general result.

The iterates of SGD satisfy the following bound:
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The first inequality follows from Lipschitz continuity of
rf . The second inequality follows from the update of SGD
and since E

it [rf
it(x
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)] = rf(xt

) (unbiasedness of the
stochastic gradient). The last step uses our assumption on
gradient boundedness. Rearranging Equation (5) we obtain
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Summing Equation (6) from t = 0 to T � 1 and using that
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The first step holds because the minimum is less than the
average. The second and third steps are obtained from
Equation (6) and the fact that f(x⇤

)  f(xT

), respectively.
The final inequality follows upon using ⌘ = c/

p
T . By set-
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in the above inequality, we get the desired result.

B. Nonconvex SVRG
In this section, we provide the proofs of the results for non-
convex SVRG. We first start with few useful lemmas and
then proceed towards the main results.
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> 0 (in Equa-
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Proof. Since f is L-smooth we have
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Using the SVRG update in Alg. 1 and its unbiasedness, the
right hand side above is further upper bounded by

E[f(xs+1
t

)� ⌘
t

krf(xs+1
t

)k2 + L⌘

2
t

2 kvs+1
t

k2]. (7)

Consider now the Lyapunov function
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The second equality follows from the unbiasedness of the
update of SVRG. The last inequality follows from a sim-
ple application of Cauchy-Schwarz and Young’s inequal-
ity. Plugging Equation (7) and Equation (8) into Rs+1

t+1 , we
obtain the following bound:
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To further bound this quantity, we use Lemma 3 to bound
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see that
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The second inequality follows from the definition of c
t
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, thus concluding the proof.

Proof of Theorem 2
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The above inequality used the fact that x̃0
= x0. Using the

above inequality and the definition of x
a

in Algorithm 1,
we obtain the desired result.

Proof of Theorem 3
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Proof of Corollary 2
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Proof. This result follows from Theorem 3 and the fact that
m = bn3↵/2/(3µ0)c. Suppose ↵ < 2/3, then m = o(n)
(little-o notation). However, n IFO calls are invested in
calculating the average gradient at the end of each epoch.
Thus, O(n) IFO calls are made for every m (inner) itera-
tions of the algorithm. Using this relationship, we get an
IFO complexity of O

�
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2 /✏)
�

in this case.

On the other hand, when ↵ � 2/3, the total number of
IFO calls made by Alg. 1 in each epoch is ⌦(n) since
m = bn3↵/2/(3µ0)c. Hence, the oracle calls required for
calculating the average gradient (per epoch) is of lower or-
der, leading to O

�
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�
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C. GD-SVRG: Convergence Rate

Proof of Theorem 4
Theorem. Suppose f 2 F

n

is ⌧ -gradient dominated
(⌧ > n1/3). Then, the iterates of Algorithm 2 with T =
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Here µ1 and ⌫1 are the constants used in Corollary 3.

Proof. Note that Algorithm 2 uses SVRG as a subroutine.
Using Corollary 3 (SVRG result), we observe that the iter-
ates of Algorithm 2 satisfy the following:
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The second inequality follows from ⌧ -gradient dominance
of the function f . This completes the proof for the first part.

The proof of second part mimics that of the first part. Now
we have the following condition on the iterates of Algo-
rithm 2:
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D. Convex SVRG: Convergence Rate

Proof of Theorem 5
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The second inequality uses unbiasedness of the SVRG up-
date and convexity of f . The third inequality follows from
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for 0  i < m. Summing over all epochs and telescoping
we then obtain
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The inequality also uses the definition of x
a

given in Alg 1.
On this inequality we use Lemma 7, which yields
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It is easy to see that we can obtain convergence rates for
E[f(x

a

)� f(x⇤
)] from the above reasoning. This leads to

a direct analysis of SVRG for convex functions.
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Algorithm 3 Mini-batch SVRG
1: Input: x̃0

= x0
m = x0 2 Rd, epoch length m, step sizes

{⌘i > 0}m�1
i=0 , S = dT/me, discrete probability distribution

{pi}mi=0, mini-batch size b
2: for s = 0 to S � 1 do
3: xs+1

0 = xs
m

4: gs+1
=

1
n

Pn
i=1 rfi(x̃

s
)

5: for t = 0 to m� 1 do
6: Choose a mini-batch (uniformly random with replace-

ment) It ⇢ [n] of size b
7: us+1

t =

1
b

P

it2It
(rfit(x

s+1
t )�rfit(x̃

s
)) + gs+1

8: xs+1
t+1 = xs+1

t � ⌘tu
s+1
t

9: end for
10: x̃s+1

=

Pm
i=0 pix

s+1
i

11: end for
12: Output: Iterate xa chosen uniformly random from

{{xs+1
t }m�1

t=0 }S�1
s=0 .

E. Mini-batch Nonconvex SVRG

Proof of Theorem 6
The proofs essentially follow along the lines of Lem. 1,
Theorem 2 and Theorem 3 with the added complexity of
mini-batch. We first prove few intermediate results before
proceeding to the proof of Theorem 6.
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i.e., Alg. 3 with mini-batch size b satisfy the bound:
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Proof. Using essentially the same argument as the proof of
Lemma. 1 until Equation (9), we have
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The second inequality follows from the definition of c
t

and
R

s+1
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, thus concluding the proof.

Our intermediate key result is the following theorem that
provides convergence rate of mini-batch SVRG.
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= ⌘ for t 2 {0, . . . ,m� 1}, using Lem. 2
and telescoping the sum, we obtain

X
m�1

t=0
E[krf(xs+1

t

)k2]  R
s+1
0 �R

s+1
m

�
n

.

This inequality in turn implies that

X
m�1

t=0
E[krf(xs+1

t

)k2]  E[f(x̃s

)� f(x̃s+1
)]

�
n

,

where we used that R
s+1
m

= E[f(xs+1
m

)] = E[f(x̃s+1
)]

(since c
m

= 0, p
m

= 1, and p
i

= 0 for i < m), and that
R

s+1
0 = E[f(x̃s

)] (since xs+1
0 = x̃s, as p

m

= 1 and p
i

= 0

for i < m). Now sum over all epochs and using the fact
that x̃0

= x0, we get the desired result.

We now present the proof of Theorem 6.

Theorem. Let f 2 F
n

and �
n

denote the following:

�
n

:= min

0tm�1

�
⌘ � ct+1⌘

�

� ⌘2L� 2c
t+1⌘

2
�
,

where c
m

= 0, c
t

= c
t+1(1 + ⌘� +

2⌘2
L

2
/b) + ⌘

2
tL

3
/b for

0  t < m. Suppose ⌘ = µ2b/(Ln
2/3

) (0 < µ2 < 1),
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� = L/n1/3, m = bn/(3bµ2)c and T is some multiple
of m. Then for b < n2/3, there exists universal constants
µ2, ⌫2 > 0 such that: �

n

� ⌫2b

Ln

2/3 and

E[krf(x
a

)k2]  Ln2/3
[f(x0

)� f(x⇤
)]

bT⌫2
,

where x⇤ is optimal for (1) and x
a

is the output of the mini-
batch version of Alg. 1.

Proof of Theorem 6. We first observe that using the speci-
fied values of � and ⌘ we obtain

✓ :=

2⌘2L2

b
+ ⌘� =

2µ2
2b

n4/3
+

µ2b

n
 3µ2b

n
.

The above inequality follows since µ2  1 and n � 1. For
our analysis, we will require the following bound on c0:

c0 =

µ2
2b

2L

bn4/3

(1 + ✓)m � 1

✓
=

µ2bL((1 + ✓)m � 1)

2bµ2 + bn1/3

 n�1/3
(µ2L(e� 1)), (15)

wherein the first equality holds due to the relation c
t

=

c
t+1(1+ ⌘

t

�
t

+

2⌘2
tL

2

b

) +

⌘

2
tL

3

b

, and the inequality follows
upon again noting that (1 + 1/l)l is increasing for l > 0

and lim

l!1(1+

1
l

)

l

= e. Now we can lower bound �
n

, as

�
n

= min

t

�
⌘ � ct+1⌘

�

� ⌘2L� 2c
t+1⌘

2
�

�
�
⌘ � c0⌘

�

� ⌘2L� 2c0⌘
2
�
� b⌫2

Ln2/3
,

where ⌫2 > 0 is a universal constant. The first inequal-
ity holds since c

t

decreases with t. The second one holds
since (a) c0/� is upper bounded by µ2(e � 1) (due to
Equation (15)), (b) ⌘2L  µ2⌘ (as b < n2/3) and (c)
2c0⌘

2  2µ2
2(e � 1)⌘ (again due to Equation (15) and the

fact b < n2/3). By choosing an appropriately small univer-
sal constant µ2, one can ensure that �

n

� b⌫2/(Ln
2/3

)

for some universal constant ⌫2. For example, choosing
µ2 = 1/4, we have �

n

� b⌫2/(Ln
2/3

) with ⌫2 = 1/40.
Substituting the above lower bound in Theorem 8, we get
the desired result.

F. MSVRG: Convergence Rate

Proof of Theorem 7
Theorem. Suppose f 2 F

n

has �-bounded gradients. Let
⌘
t

= ⌘ = max{c/pT , µ1/(Ln

2/3)} (µ1 is the constant from

Corr. 3), m = bn/(3µ1)c, and c =

q
f(x0)�f(x⇤)

2L�

2 . Fur-
ther, let T be a multiple of m, p

m

= 1, and p
i

= 0 for
0  i < m. Then, the output x

a

of Alg. 1 satisfies

E[krf(xa)k2]

 ⌫̄min

n

2

r

2(f(x0
)� f(x⇤

))L

T
�,

Ln2/3
[f(x0

)� f(x⇤
)]

T⌫1

o

,

where ⌫̄ > 0 is a universal constant, ⌫1 is the universal
constant from Corr. 3 and x⇤ is an optimal solution to (1).

Proof. First, we observe that the step size ⌘ is chosen to be
max{c/

p
T , µ1/(Ln

2/3
)} where

c =

r
f(x0

)� f(x⇤
)

2L�2
.

Suppose ⌘ = µ1/(Ln
2/3

), we obtain the convergence rate
in Corollary 3. Now, lets consider the case where ⌘ =

c/
p
T . In this case, we have the following bound:

E[kvs+1
t

k2] = E[krf
it(x

s+1
t

)�rf
it(x̃

s

) +rf(x̃s

)k2]
 2

�
E[krf

it(x
s+1
t

)k2 + krf
it(x̃

s

)�rf(x̃s

)k2]
�

 2

�
E[krf

it(x
s+1
t

)k2 + krf
it(x̃

s

)k2]
�
 4�2.

The first inequality follows from Lemma 6 with r = 2.
The second inequality follows from (a) �-bounded gradient
property of f and (b) the fact that for a random variable
⇣, E[k⇣ � E[⇣]k2]  E[k⇣k2]. The rest of the proof is
along exactly the lines as in Theorem 1. This provides a
convergence rate similar to Theorem 1. More specifically,
using step size c/

p
T , we get

E[kf(x
a

)k2]  2

r
2(f(x0

)� f(x⇤
))L

T
�. (16)

The only thing that remains to be proved is that with the
step size choice of max{c/

p
T , µ1/(Ln

2/3
)}, the mini-

mum of two bounds hold. Consider the case c/
p
T >

µ1/(Ln
2/3

). In this case, we have the following:

2

q
2(f(x0)�f(x⇤))L

T

�

Ln

2/3[f(x0)�f(x⇤)]
T⌫1

=

2⌫1�
p
2LT

Ln2/3
p
f(x0

)� f(x⇤
)

 2⌫1/µ1  ⌫̄ := max

⇢
2⌫1
µ1

,
µ1

2⌫1

�
,

where ⌫1 is the constant in Corollary 3. This inequality
holds since c/

p
T > µ1/(Ln

2/3
). Rearranging the above

inequality, we have

2

r
2(f(x0

)� f(x⇤
))L

T
�  ⌫̄Ln2/3

[f(x0
)� f(x⇤

)]

T

in this case. Note that the left hand side of the above
inequality is precisely the bound obtained by using step
size c/

p
T (see Equation (16)). Similarly, when c/

p
T 

µ1/(Ln
2/3

), the inequality holds in the other direction. Us-
ing these two observations, we have the desired result.

G. Key Lemmatta
Lemma 3. For the intermediate iterates vs+1

t

computed by
Alg. 1, we have the following:

E[kvs+1
t

k2]  2E[krf(xs+1
t

)k2] + 2L2E[kxs+1
t

� x̃sk2].



SVRG for Nonconvex Optimization

Figure 2. Neural network results for MNIST and STL-10. The leftmost result is for MNIST. The remaining two plots are of STL-10.

Proof. The proof simply follows from the proof of
Lemma 4 with I

t

= {i
t

}.

We now present a result to bound the variance of mini-batch
SVRG.

Lemma 4. Let us+1
t

be computed by the mini-batch version
of Alg. 1 i.e., Alg. 3 with mini-batch size b. Then,

E[kus+1
t

k2]  2E[krf(xs+1
t

)k2] + 2L2

b

E[kxs+1
t

� x̃sk2].

Proof. For the ease of exposition, we use the following no-
tation:

⇣s+1
t

=

1

|I
t

|
X

it2It

�
rf

it(x
s+1
t

)�rf
it(x̃

s

)

�
.

We use the definition of us+1
t

to get

E[kus+1
t

k2] = E[k⇣s+1
t

+rf(x̃s

)k2]
= E[k⇣s+1

t

+rf(x̃s

)�rf(xs+1
t

) +rf(xs+1
t

)k2]
 2E[krf(xs+1

t

)k2] + 2E[k⇣s+1
t

� E[⇣s+1
t

]k2]
= 2E[krf(xs+1

t

)k2]

+

2

b2
E

2

4
�����
X

it2It

�
rf

it(x
s+1
t

)�rf
it(x̃

s

)� E[⇣s+1
t

]

�
�����

2
3

5

The first inequality follows from Lemma 6 (with r = 2)
and the fact that E[⇣s+1

t

] = rf(xs+1
t

) � rf(x̃s

). From
the above inequality, we get

E[kus+1
t

k2]  2E[krf(xs+1
t

)k2]

+

2

b2
E
"
X

it2It

krf
it(x

s+1
t

)�rf
it(x̃

s

)k2
#

 2E[krf(xs+1
t

)k2] + 2L2

b
E[kxs+1

t

� x̃sk2]

The first inequality follows from Lemma 5 and noting that
for a random variable ⇣, E[k⇣ � E[⇣]k2]  E[k⇣k2]. The
last inequality follows from L-smoothness of f

it .

H. Experiments
Figure 2 shows the remaining plots for MNIST and STL-10
datasets. As seen in the plots, there is no significant differ-
ence in the test error of SVRG and SGD for these datasets.

I. Other Lemmas
Lemma 5. For random variables z1, . . . , zr are indepen-
dent and mean 0, we have

E
⇥
kz1 + ...+ z

r

k2
⇤
= E

⇥
kz1k2 + ...+ kz

r

k2
⇤
.

Proof. We have the following:

E
⇥
kz1 + ...+ z

r

k2
⇤

=

rX

i,j=1

E [z
i

z
j

] = E
⇥
kz1k2 + ...+ kz

r

k2
⇤
.

The second equality follows from the fact that z
i

’s are in-
dependent and mean 0.

Lemma 6. For random variables z1, . . . , zr, we have

E
⇥
kz1 + ...+ z

r

k2
⇤
 rE

⇥
kz1k2 + ...+ kz

r

k2
⇤
.

We need the next lemma (Lemma 7) for our results in the
convex case.

Lemma 7 (Johnson & Zhang (2013)). Let g : Rd ! R be
convex with L-Lipschitz continuous gradient. Then,

krg(x)�rg(y)k2  2L[g(x)� g(y)� hrg(y), x� yi],

for all x, y 2 Rd.

Proof. Consider h(x) := g(x)�g(y)�hrg(y), x�yi for
arbitrary y 2 Rd. Observe that rh is also L-Lipschitz
continuous. Note that h(x) � 0 (since h(y) = 0 and
rh(y) = 0, or alternatively since h defines a Bregman
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divergence), from which it follows that

0  min

⇢

[h(x� ⇢rh(x))]

 min

⇢

[h(x)� ⇢krh(x)k2 + L⇢

2

2 krh(x)k2]

= h(x)� 1
2Lkrh(x)k2.

Rewriting in terms of g we obtain the required result.

Lemma 8 bounds the variance of SVRG for the convex case.
Please refer to (Johnson & Zhang, 2013) for more details.

Lemma 8 ((Johnson & Zhang, 2013)). Suppose f
i

is con-
vex for all i 2 [n]. For the updates in Alg. 1 we have the
following inequality:

E[kvs+1
t

k2]  4L[f(xs+1
t

)� f(x⇤
) + f(x̃s

)� f(x⇤
)].

Proof. The proof follows upon observing the following:

E[kvs+1
t

k2 = E[krf
it(x

s+1
t

)�rf
it(x

s+1
0 ) +rf(x̃s

)k2]
 2E[krf

it(x
s+1
t

)�rf
it(x

⇤
)k2]

+ 2E[krf
it(x̃

s

)�rf
it(x

⇤
)� (rf(x̃s

)�rf(x⇤
))k2]

 2E[krf
it(x

s+1
t

)�rf
it(x

⇤
)k2]

+ 2E[krf
it(x̃

s

)�rf
it(x

⇤
)k2]

 4L[f(xs+1
t

� f(x⇤
) + f(x̃s

)� f(x⇤
)].

The first inequality follows from Cauchy-Schwarz and
Young inequality; the second one from E[k⇠ � E[⇠]k2] 
E[k⇠k2], and the third one from Lemma 7.


