SVRG for Nonconvex Optimization

Appendix: Stochastic Variance Reduction for
Nonconvex Optimization

A. Nonconvex SGD: Convergence Rate

Proof of Theorem 1

Theorem. Suppose f € F, has o-bounded gradients; let

N =n= c/\/Twhere c= W and x* is an
optimal solution to (1). Then, the iterates of SGD satisfy

min E[HVf( )||2]<\/2(f(x0);f(x*))La

0<t<T -1

Proof. We include the proof here for completeness. Please
refer to (Ghadimi & Lan, 2013) for a more general result.

The iterates of SGD satisfy the following bound:
E[f(a)] < E[f(2') +(Vf(z"),2""" —a")

+ 5l = 2] 4)
< E[f(a")] — nE[|V f (")) + ZEE NVﬁxﬁnm
< E[f(2")] — nE[|IV £ (")]?] + Lm )

The first inequality follows from Lipschitz continuity of
V f. The second inequality follows from the update of SGD
and since E;, [V f;,(z')] = Vf(a') (unbiasedness of the
stochastic gradient). The last step uses our assumption on
gradient boundedness. Rearranging Equation (5) we obtain

E[[[Vf ()] < LE[f() - f()] + Leo®. (6)
Summing Equation (6) from ¢ = 0 to 7' — 1 and using that
¢ is fixed n we obtain

Intin]E[HVf(xt)Hz]

LY EN P
AE[f(2) - f(aT)] + Llo?

75 (@) = f(@*)) + Hlo?

L (L") = F@h) + Eo?).
The first step holds because the minimum is less than the
average. The second and third steps are obtained from
Equation (6) and the fact that f(z*) < f(zT), respectively.

The final inequality follows upon using = ¢/ VT. By set-
ting

IN I/\

IN

SN EF G ()
Lo?

in the above inequality, we get the desired result. O

B. Nonconvex SVRG

In this section, we provide the proofs of the results for non-
convex SVRG. We first start with few useful lemmas and
then proceed towards the main results.

Lemma 1. Let f € F,. For ¢y, ciy1, 8¢ > 0, suppose we
have the following:

et = crp1 (L4 mBy + 207 L) + ni L.

Let ny, By and cyy1 be chosen such that T'y > 0 (in Equa-
tion (3)). The iterate xf“ in Alg. 1 satisfy the bound:

RS+1 _ RS+1
EIVf (@ ™I7) < =5
t

where R;Y = E[f(ai1) 4 ¢t — £°||2) for all 0 <
s<S5—1

Proof. Since f is L-smooth we have

E[f(z1)] < E[f(a7™) + (Vf (i), =0 —a7™)
L s+1 s+1
*”xtjtl H ]

Using the SVRG update in Alg. 1 and its unbiasedness, the
right hand side above is further upper bounded by

Ef (i) = el V£ ()12 +

Consider now the Lyapunov function

Loclos 2. ()

R = E[f (27 + el - 27,

For bounding it we will require the following:

gy = @°°) = Eflagty — o™ + a7t

= Efloify — a7 P2 + oyt - 20

T+ 2(ait - ot et - )]

i

= E[7 [l 12 + g™ — 277
= 2BV f(2ih), 27 — %)
Elng los ™17+l = 2°)°]
+ 20 |5 V@I + 3B - 2] @)
The second equality follows from the unbiasedness of the

update of SVRG. The last inequality follows from a sim-

ple application of Cauchy-Schwarz and Young’s inequal-

ity. Plugging Equation (7) and Equation (8) into Rfill, we

obtain the following bound:

S s s L LNy
Rif! <E[f(™) = ml V(@52 + 22 or )]

o+ Elevan? o} 2 _—
+ 200 1mE | g [VF (@I + $Billes ! — &2
<E[f( ) = (m - “52) |9 f )12
Ln? s
+ (4 + e ) Elller™

+ (i1 + cop1neBe) E ||zt —

+ o[l

ZIIPl. O
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To further bound this quantity, we use Lemma 3 to bound
E[||vf T ||?], so that upon substituting it in Equation (9), we
see that

Rifl < Elf(ai)

— (nt _ Ctgim _ 77t2

+ [eer1 (1 + meBe + 207 L?) + 07 LP| E

L= 2c1m? ) B[V £ )|

[Hxs—i-l ~s||2]

<Ry — (e — “5 — 7L — 2coam] [V £ (257H)]17).
The second inequality follows from the definition of ¢; and
R: ™!, thus concluding the proof. O
Proof of Theorem 2

Theorem. Let f € F,,. Letc,, = 0,9, =n >0, By =
B >0, and ¢; = cir1(1 + 1B + 2n°L?) + n?L3 such
that I'y > 0 for 0 <t < m — 1. Define the quantity v, :=
ming I'y. Further, let p; = 0 for 0 <1 <m and p,,, = 1,
and let T be a multiple of m. Then for the output x, of
Algorithm 1 we have

E[[Vf(za)lP] <
where x* is an optimal solution to (1).

Proof. Since n; = n for t € {0,...,m — 1}, using
Lemma 1 and telescoping the sum, we obtain

s+1 s+1
RO Rm

Tn

m— s+1
S BV <
This inequality in turn implies that

E[f(2°) — f(@ )]
Tn

, (10)

SRV ) <

where we used that R3H = E[f(z5H)] = E[f(z511)]

m m

(since ¢, = 0, p,y, = 1, and p; = 0 for ¢ < m), and that

Ry = E[f(7°)] (since 25t = &%, as p,,, = Land p; = 0
for 7 < m). Now sum over all epochs to obtain
S—1m-—1 0 *
- > 3 BV I < S (an

The above inequality used the fact that 7° = 2. Using the
above inequality and the definition of x, in Algorithm 1,
we obtain the desired result. [

Proof of Theorem 3

Theorem. Suppose f € F,. Letn = po/(Ln®) (0 <
o < land 0 < a < 1), p L/na/2, m =
|n39/2 /(3p0)| and T is some multiple of m. Then there

exists universal constants 1o, v > 0 such that we have the
following: ~,, > %+ in Theorem 2 and

Ln®[f(2°) = f(a¥)]
Tv ’

E[||V f(za)|?] <

where x* is an optimal solution to the problem in (1) and
T Is the output of Algorithm 1.

Proof. For our analysis, we will require an upper bound

peL (146)™—1
0

on ¢y. We observe that ¢cg = T where 6 =

2n2L? + nB. This is obtained using the relation ¢; =
cii1(1 4+ 0B+ 2n2L?) + n*L? and the fact that ¢,,, = 0.
Using the specified values of S and n we have

Mo _ 3Ho

2u
_9,2]2 215
O=20"L"+nf=—5.+ 55 < sap2-

The above inequality follows since pg < 1 and n > 1.
Using the above bound on 6, we get

gL (1L+6)™ _ HoL((+0)" —1)
n2(x 2] 2#0 +no¢/2

_ oL+ o Y10 @] 1)

> 2/,L() +na/2

<n~?(uoL(e — 1)),

(12)

wherein the second inequality follows upon noting that (1+

1)V is increasing for [ > 0 and lim;_, (1 + })' = e (here

e is the Euler’s number). Now we can lower bound ~,,, as

Ct41M
B

Yn = min(n — L — 2c1417%)

> (n— 9t —

7 n*L — 2con )

v
- L ()é’

where ¥ > 0 is a universal constant. The first inequal-
ity holds since c¢; decreases with ¢t. The second inequal-
ity holds since (a) co/8 is upper bounded by pg(e — 1)
(follows from Equation (12)), (b) 7L < pon and (c)
2con? < 2p3(e — 1)n (follows from Equation (12)). By
choosing a universal constant i appropriately, one can en-
sure that y,, > v/(Ln®) for some universal constant v.
For example, choosing po = 1/4, we have ~,, > v/(Ln®)
with v = 1/40. Substituting the above lower bound in
Equation (11), we obtain the desired result. O

Proof of Corollary 2

Corollary. Suppose f € F,. Then the IFO complexity
of Alg. 1 (with parameters from Thm. 3) for achieving an
e-accurate solution is:

O(n+(n'=2/e), ifa<2/3,

IFO calls = {O (n+ (n®/e)), ifa>2/3.
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Proof. This result follows from Theorem 3 and the fact that
m = |n>*/2/(3u0)]. Suppose a < 2/3, then m = o(n)
(little-o notation). However, n IFO calls are invested in
calculating the average gradient at the end of each epoch.
Thus, O(n) IFO calls are made for every m (inner) itera-
tions of the algorithm. Using this relationship, we get an

IFO complexity of O(n + (nlf% /€)) in this case.

On the other hand, when o > 2/3, the total number of
IFO calls made by Alg. 1 in each epoch is Q(n) since
m = [n®*/?/(3p0)|. Hence, the oracle calls required for

calculating the average gradient (per epoch) is of lower or-
der, leading to O (n + (n®/€)) IFO calls. O

C. GD-SVRG: Convergence Rate

Proof of Theorem 4

Theorem. Suppose f € F, is T-gradient dominated
(T > n'/3). Then, the iterates of Algorithm 2 with T =

2L i), m = |n/Gun))s e = g/ (Ln%) for
0<t<m,pm=1andp; =0 for0 < i < m satisfy

E[IVf@®)7] < 27 IV )17,
E[f(z") = f(2")] < 27*[f(a°) = f(2")].

Here 1y and vy are the constants used in Corollary 3.

Proof. Note that Algorithm 2 uses SVRG as a subroutine.
Using Corollary 3 (SVRG result), we observe that the iter-
ates of Algorithm 2 satisfy the following:
Ln*PPE[f(z*~") — f(a")]

E[|Vf(a")]?] < T

Substituting the specified value of 7" in the above inequal-
ity, we have the following:

E[|Vf(")]] < %(]E[f(xk*l) = f@@")])
< E[IV AP

The second inequality follows from 7-gradient dominance
of the function f. This completes the proof for the first part.

The proof of second part mimics that of the first part. Now
we have the following condition on the iterates of Algo-
rithm 2:

B/ — /()]

BV (2))?] < 2~

13)

However, f is 7-gradient dominated, so E[||V f(z*)|?] >
E[f(z*) — f(x*)]/7, which combined with Equation (13)
concludes the proof. O

D. Convex SVRG: Convergence Rate

Proof of Theorem 5

Theorem. If f € F,, and f; is convex (i € [n]), p; = 1/m
for0 <1 < m, and p,, = 0. Then for Alg. 1, we have

Lla® — 2| + 4m L2 [f (=°) — f(z")]

B[V f( T ,

DI <

where x* is optimal for (1) and x, is the output of Alg. 1.

Proof. Consider the following sequence of inequalities:
Efllzify — () = Elflag™ —noi*! -
< Efllzf ™ — 2P + P Eflv; ]

_277E[< s+1 $§+1 .’17*>]
Efloft — 7]+ PEllo; )
— 29E[f (%) — f(a")]

z*||?)

Effa;*" — 2*|*] = 2n(1 — 2Ln)E[f (27") — f(a*)]
+ALn’E[f(2°) — f(z")]

= Efl|lz;*" = 2*|°] = 2n(1 — 4ALn)E[f (27 — f(2)]

+4Ln’E[f(2°) — f(2")] — 4L E[f (i) = f(a")].

The second inequality uses unbiasedness of the SVRG up-
date and convexity of f. The third inequality follows from
Lemma 8. Defining the Lyapunov function

P = E[H‘rm - ‘I*HZ] + 4an2E[f(i‘s) - f(x*)]v

and summing the above inequality over ¢, we get
m—1
(1 —4Ln) Y E[f(xi™) — f(z7)] < P* = P
t=0

This due is to the fact that

P = Elap™ — 2! + 4mLyE[f(2°7) — f(2")]
m—1

= E[l|lz5 " —2*|*] +4Ln* Y E[f(z*") - f(27)].
t=0

The above equality uses the fact that p,,, = Oandp; = 1/m
for 0 < ¢ < m. Summing over all epochs and telescoping
we then obtain

E[f(wa) — f(a")] < PO (2Tn(1 — 4Ln))

The inequality also uses the definition of x, given in Alg 1.
On this inequality we use Lemma 7, which yields

E[IVf(za)l?] < 2LE[f(zq) — f(z*)]
L||z° = a* || + 4mL*n*[f (2°) — f(a*)]
= Tn(1 —4Ln) - U

-1

It is easy to see that we can obtain convergence rates for
E[f(z4) — f(z*)] from the above reasoning. This leads to
a direct analysis of SVRG for convex functions.
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Algorithm 3 Mini-batch SVRG

1: Input: ° = 2% = 2% € RY epoch length m, step sizes

{ni > 0}, S = [T/m], discrete probability distribution
{pi} ™0, mini-batch size b
2: fors =0to S —1do

s+1 _

3 ozl =,

£ gt =L VG

5: fort=0tom —1do

6: Choose a mini-batch (uniformly random with replace-
ment) [y C [n] of size b

7 :-H =% Z“g]t Vfi(z g+1) Vi (2°)) + gs+1

8 afl =it - nat!

9:  end for

10: =" paitt

11: end for

12: Qutput: Iterate x, chosen uniformly random from

{=" Y

E. Mini-batch Nonconvex SVRG

Proof of Theorem 6

The proofs essentially follow along the lines of Lem. 1,
Theorem 2 and Theorem 3 with the added complexity of
mini-batch. We first prove few intermediate results before
proceeding to the proof of Theorem 6.

Lemma 2. Let f € F,,. Suppose we have

—Hs+1 s - s ~5

R, =E[f(z;™) + ezt — 27,
2L3

¢t = Crr1(14+mefe + sz )+ ntb .

for 0 <s<S—1and0 <t < m—1 and the parameters
N, Br > 0 and Ty41 are chosen such that

C
(nt — t—glnf — ntL 26t+177t2> > 0.
t

+

Then the iterates x; Yin the mini-batch version of Alg. 1
i.e., Alg. 3 with mini-batch size b satisfy the bound:

—s+1 —s+1
Rt B Rt+1

E[|IVf(z*h)]?] < G 21 on p2)’
(77t — S 2 — 20t+177t>

Proof. Using essentially the same argument as the proof of
Lemma. 1 until Equation (9), we have

B+l s Ce41Mt s
Rl < Ef@) = (mo— 257 ) [V F @)
2
+ (4 + et ) Bl

+ (Ce1 + Cop1meB) E [HZES—H

@7, a4

TP

We use Lem. 4 in order to bound E[||u;} in the above

inequality. Substituting it in Equation (14), we see that

Ry <E[f(a;™h)]

_ (nt _ ngm _ ,,72
+ [Et+1 (L4 nefr +

< R:H ("7t -

L- 26t+177?) B[V £ (i)
27)t ) + m i| |:||$s+1 ~SH2]
S 2L — 9BV £ 1)

The second inequality follows from the definition of ¢; and
—=s+1
R

, thus concluding the proof. O

Our intermediate key result is the following theorem that
provides convergence rate of mini-batch SVRG.

Theorem 8. Let f € F,, and7,, denote the following:

_ . z 2 - 2
Letm=n>0andﬁt=B>Of0rallt€{O ,m—l},
Em = O, Et = Et—i—l(l + T]tﬂt 27“ ) + nt fOV t e

{0,...,m — 1} such that7, > 0. Further letpm = 1and
p; = 0for0 < i < m. Then for the output x, of mini-batch
version of Alg. 1 i.e., Alg. 3 with mini-batch size b, we have

f(a®) = (=)
v ’

n

E[|Vf(za)l?] <

where x* is an optimal solution to (1).

Proof. Since ny = nfort € {0,...,m
and telescoping the sum, we obtain

— 1}, using Lem. 2

—s+1 —s+1
m—1 Ry, —R
s+1\(12 0 7

> BV < S

This inequality in turn implies that

m—1 s S .%
> BV < = ,

where we used that ﬁf:l = E[f(:z:f,jl)] — E[f(jsﬂ)]

(since ¢,, = 0, p,, = 1, and p; = 0 for ¢ < m), and that
—s+1

Ry, =E[f(2°)] (since 2" = #°,as p,, = Land p; = 0
for ¢ < m). Now sum over all epochs and using the fact
that 70 = 29, we get the desired result. O

We now present the proof of Theorem 6.

Theorem. Let f € F,, and?7,, denote the following:

Ce41m
B

- . 2 _ 2
T 1= Jin_ (n— L —2¢n°),
where T, = 0, ¢ = Cry1(1 + 1B + 20°L? ) + niL* [y for
0 <t < m. Suppose n = usb/(Ln?/3) (0 < py < 1),
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B = L/n3, m = |n/(3buz)| and T is some multiple
of m. Then for b < n?/3, there exists universal constants
o, vo > 0 such that: 5, > #21’/3 and

Ln*/3[f(2) — f(a")]
le/Q ’

where x* is optimal for (1) and x, is the output of the mini-
batch version of Alg. 1.

E[IV.f(za)lI’] <

Proof of Theorem 6. We first observe that using the speci-
fied values of 5 and 1 we obtain

_ 2’172[/2

0 := 2’u2 MQb < 73M2b.

b +nf = 4/‘3 n - n

The above inequality follows since py < 1 and n > 1. For
our analysis, we will require the following bound on ¢y:
_ P32 L (14 0)™ — pabL((146)™ — 1)
07 pnass 4 by + bnt/3
<n V3 uzL(e — 1)), (15)

wherein the first equality holds due to the relation ¢, =
Cr1(14+n8: + ) + m , and the inequality follows
upon again notmg that 1 / I)! is increasing for [ > 0
and lim; oo (1 + 7 ) =e. Now we can lower bound 7,,, as

27],6

Vo = min(n — “2 —n’L — 2e17°)

= by

2 2 2
2(77_077] L_2C(]n)fL 2/37

where v, > 0 is a universal constant. The first inequal-
ity holds since ¢; decreases with . The second one holds
since (a) ¢o/f is upper bounded by pa(e — 1) (due to
Equation (15)), (b) 2L < pan (as b < n?/3) and (c)
2¢on? < 2u3(e — 1)n (again due to Equation (15) and the
fact b < n?/3). By choosing an appropriately small univer-
sal constant fi5, one can ensure that 7, > buvy/(Ln?/?)
for some universal constant v5. For example, choosing
p2 = 1/4, we have 7,, > buy/(Ln?/?) with vy = 1/40.
Substituting the above lower bound in Theorem 8, we get
the desired result. O

F. MSVRG: Convergence Rate

Proof of Theorem 7

Theorem. Suppose f € F, has o-bounded gradients. Let
ne = n = max{¢/VT, 1 /(Ln?/*)} (11 is the constant from

Corr. 3), m = |?/(3u1)], and ¢ = %{f;x) Fur-

ther, let T be a multiple of m, p,, = 1, and p; = 0 for
0 < ¢ < m. Then, the output x, of Alg. I satisfies

E[|IV £ (za)lI’]

o 2(f(2%) = f(z*))L  Ln*/*[f(z°) —
Summ{?\/ T o, Tor

)

f(:c*)]}

where v > 0 is a universal constant, vy is the universal
constant from Corr. 3 and x* is an optimal solution to (1).

Proof. First, we observe that the step size 7 is chosen to be
max{c/v/T, p/(Ln?/3)} where

[ —f@)
2Lo? '

Suppose 77 = p11/(Ln?/3), we obtain the convergence rate
in Corollary 3. Now, lets consider the case where =
c/ V/T. In this case, we have the following bound:

[Ilvt“H ] = E[IVfi (%) ~ Vfit(*s)Jer(”)llz}
<2 (E[IVfi, (@ DIP + [V i, (3°) = VF(@)|])
< 2 (E[IV fi, @) + 1V fi, (@) ]) < 4o,

The first inequality follows from Lemma 6 with r = 2.
The second inequality follows from (a) o-bounded gradient
property of f and (b) the fact that for a random variable
¢ E[I¢ — E[CII”] < E[|[C]|?]- The rest of the proof is
along exactly the lines as in Theorem 1. This provides a
convergence rate similar to Theorem 1. More specifically,
using step size c¢/v/T, we get

Bl (a2 < 20 L SEL, g

The only thing that remains to be proved is that with the
step size choice of max{c/v/'T,u1/(Ln?/?)}, the mini-
mum of two bounds hold. Consider the case ¢/ VT >
1/ (Ln?/3). In this case, we have the following:

20)— f(z*
WEJEDE, 9y 30T

Ln2/3[f(a%)—f(z*)] 2/3 0 _ *

LGOI Ln2/3,/F(a0) - (o)

2
<2 /u <D —max{ ! 'ul}
21/1

where v, is the constant in Corollary 3. This inequality
holds since ¢/v/T > 1 /(Ln?/3). Rearranging the above
inequality, we have

2f(@%) = F@))L
27

> < vLn?/3[f(x°) —
- T

in this case. Note that the left hand side of the above

inequality is precisely the bound obtained by using step

size ¢/\/T (see Equation (16)). Similarly, when ¢/v/T <

1/ (Ln?/3), the inequality holds in the other direction. Us-

ing these two observations, we have the desired result. [

fz)]

G. Key Lemmatta

Lemma 3. For the intermediate iterates v L computed by

Alg. 1, we have the following:

Efllo; %) < 2E[|V £ ()1 + 2L%Ef| |25+ — 2°)1%).
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Figure 2. Neural network results for MNIST and STL-10. The leftmost result is for MNIST. The remaining two plots are of STL-10.

Proof. The proof simply follows from the proof of
Lemma 4 with I, = {i;}. O

‘We now present a result to bound the variance of mini-batch
SVRG.

Lemma4. Let us+1 be computed by the mini-batch version

of Alg. 1 i.e., Alg. 3 with mini-batch size b. Then,
2 S ’“’S
Elllu;™1%) < 2B[|V f (27 )% + Z-E[llaf ™ - 2°1%).

Proof. For the ease of exposition, we use the following no-
tation:

P= e D0 (V) - VL)
‘I | it €1t
We use the definition of us+1 to get

TP =

EflG™ + V(@)%
= E[I¢iT + VF(@°) = V(™) + V™))

Effju

< 2B[| 9 I + 2E[IGH — ELG)
= 2B[| V(2]
g 3 (VAulat™) = V1a(6) ~BG )

The first inequality follows from Lemma 6 (with r = 2)
and the fact that E[¢;T!] = Vf(2;T!) — Vf(#°). From
the above inequality, we get

Eflu; %) < 2]E[||Vf(xf“)||2]

an (5t — Vfi,(a*:sﬂ]

it €14

—|— IE

< 2B[[|V £ (217 + [II s

-2

The first inequality follows from Lemma 5 and noting that
for a random variable ¢, E[||¢ — E[¢]||?] < E[||¢]|?]. The
last inequality follows from L-smoothness of f;, . O

H. Experiments

Figure 2 shows the remaining plots for MNIST and STL-10
datasets. As seen in the plots, there is no significant differ-
ence in the test error of SVRG and SGD for these datasets.

1. Other Lemmas

Lemma 5. For random variables 21, . . .,
dent and mean 0, we have

2, are indepen-

E[llz1 + .. + 23] = E[lza]|® + . + |2 ]1?] -

Proof. We have the following:

E [Hzl + ...+ zT||2]

r

= Z ]E[Z,'Zj] =E

ij=1

[zl + .+ [l 7] -

The second equality follows from the fact that z;’s are in-
dependent and mean 0. O

Lemma 6. For random variables z1, . . ., z,., we have

E [[lz1 + .. + 2 *] <rE[|lz)® + .. + [120]17] -

We need the next lemma (Lemma 7) for our results in the
convex case.

Lemma 7 (Johnson & Zhang (2013)). Let g : R* — R be
convex with L-Lipschitz continuous gradient. Then,

— Vg(y)|> < 2L[g(z) — g(y) —

forall x,y € R%

[Vg(x) (Vg(y), = —y)l,

Proof. Consider h(zx) := g(z) —g(y) — (Vg(y),z —y) for
arbitrary y € R?. Observe that Vh is also L-Lipschitz
continuous. Note that h(z) > 0 (since h(y) = 0 and
Vh(y) = 0, or alternatively since h defines a Bregman
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divergence), from which it follows that
0 < min[h(x — pVh(z))]
P
. 2
< minfh(z) = pl| V()| + 5[ V()|
= h(z) = 5 [IVh(2)||*.
Rewriting in terms of g we obtain the required result. [

Lemma 8 bounds the variance of SVRG for the convex case.
Please refer to (Johnson & Zhang, 2013) for more details.

Lemma 8 ((Johnson & Zhang, 2013)). Suppose f; is con-
vex for all i € [n]. For the updates in Alg. 1 we have the
following inequality:

Eflof ™M %) < 4L[f(27) = f(a*) + f(&°) = f(a")].
Proof. The proof follows upon observing the following:

Elllo;*HI* = E[IV fi, (2741) = Vi, (@57) + VF(@*))1%]
< 2E[[|V fi, (27") = Vi ()]
+2E[|Vf;, (&%) = Vi, (2") = (V@) = Vf(@)]*]
< 2E[[|V fi, (2777) = Vi ()]
+2E[|[V £, (#°) = V fi, (") |’
SAL[f (27 = fa*) + f(2°) = f(2")].
The first inequality follows from Cauchy-Schwarz and

Young inequality; the second one from E[||¢ — E[¢]||?] <
E[||£]|?], and the third one from Lemma 7. O



