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Abstract

We study nonconvex finite-sum problems and
analyze stochastic variance reduced gradient
(SVRG) methods for them. SVRG and related
methods have recently surged into prominence
for convex optimization given their edge over
stochastic gradient descent (SGD); but their theo-
retical analysis almost exclusively assumes con-
vexity. In contrast, we obtain non-asymptotic
rates of convergence of SVRG for nonconvex op-
timization, showing that it is provably faster than
SGD and gradient descent. We also analyze a
subclass of nonconvex problems on which SVRG
attains linear convergence to the global optimum.
We extend our analysis to mini-batch variants,
showing (theoretical) linear speedup due to mini-
batching in parallel settings.

1. Introduction

We study nonconvex finite-sum problems of the form

1 n
min f(z):= - fi®), (1)
where both f and f; (¢ € [n]) may be nonconvex and have
Lipschitz continuous gradients. We denote the class of such
finite-sum Lipschitz smooth functions by ,,. We optimize
functions in F,, in the Incremental First-order Oracle (IFO)
framework (Agarwal & Bottou, 2014) defined below.

Definition 1. For [ € F,, an IFO takes an index i € [n]
and a point x € R?, and returns the pair (fi(x),V fi(2)).

IFO based analysis was introduced to study lower bounds
for finite-sum problems. Algorithms that use IFOs are fa-
vored in large-scale applications as they, usually, require
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only a small amount of first-order information at each it-
eration. Two fundamental models in machine learning that
profit from IFO algorithms are (i) empirical risk minimiza-
tion, which typically uses convex finite-sum models; and
(i) deep learning, which uses nonconvex ones.

The prototypical IFO algorithm, stochastic gradient de-
scent (SGD),! has witnessed tremendous progress in the
recent years. By now a variety of accelerated, parallel,
and faster converging variants are known. Among these, of
particular importance are variance reduced (VR) stochas-
tic methods (Schmidt et al., 2013; Johnson & Zhang, 2013;
Defazio et al., 2014a), which have delivered progress such
as linear convergence rates (for strongly convex functions)
as opposed to sublinear rates of ordinary SGD (Robbins &
Monro, 1951; Nemirovski et al., 2009). Similar (but not
same) benefits of VR methods can also be seen in smooth
convex functions. The SVRG algorithm of (Johnson &
Zhang, 2013) is particularly attractive here because of its
low storage requirement in comparison to the algorithms
in (Schmidt et al., 2013; Defazio et al., 2014a).

Despite the meteoric rise of VR methods, their analysis for
general nonconvex problems is largely missing. Johnson
& Zhang (2013) remark on convergence of SVRG when
f € F, is locally strongly convex and provide compelling
experimental results (Fig. 4 in (Johnson & Zhang, 2013)).
However, problems encountered in practice are typically
not even locally convex, let alone strongly convex. The cur-
rent analysis of SVRG does not extend to nonconvex func-
tions as it relies heavily on convexity for controlling the
variance. Given the dominance of stochastic gradient meth-
ods in optimizing deep neural nets and other large noncon-
vex models, theoretical investigation of faster nonconvex
stochastic methods is much needed.

Convex VR methods are known to enjoy the faster conver-
gence rate of batch gradient descent (GRADDESCENT) but

"'We use ‘incremental gradient’ and ‘stochastic gradient” inter-
changeably, though we are only interested in finite-sum problems.
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Algorithm Nonconvex Convex Gradient Dominated Fixed Step Size?
SGD O (1/€) 0 (1/€) O (1/€) X
GRADIENTDESCENT O (n/e) O (n/e) O (ntlog(1/¢)) Vv
SVRG O(n+ (n*?/e)) O(n+ (v/n/e)) O((n+n*?1)log(1/e€)) Vv
MSVRG O(min {1/€*,n*/*/e}) | O(min{1/€®, v/n/e}) - x

Table 1. Table comparing the best IFO complexity of different algorithms discussed in the paper. The complexity is measured in terms
of the number of oracle calls required to achieve an e-accurate solution (see Definition 2). Here, by fixed step size, we mean that the step
size of the algorithm is fixed and does not depend on € (or alternatively on 7', the total number of iterations). The complexity of gradient
dominated functions refers to the number of IFO calls required to obtain an e-accurate solution for a 7-gradient dominated function
(see Sec. 2 for the definition). For SGD, we are not aware of any specific results for gradient dominated functions. Also, we hide the
dependence of IFO complexity on the Lipschitz constant L (see Section 2), [f(x°) — f(z*)] and ||z° — 2*|| (where z° is the initial point
and =™ is an optimal solution to (1)) to make a cleaner comparison. The results marked in red are the contributions of this paper.

with a much weaker dependence on n, without compromis-
ing the rate like SGD. However, it is not clear if these ben-
efits carry beyond convex problems, prompting the central
question of this paper:

For nonconvex functions in F,, can one ob-
tain convergence rates faster than both SGD and
GRADDESCENT using an I[FO?

Perhaps surprisingly, we provide an affirmative answer to
this question and show how a careful selection of parame-
ters in SVRG indeed yields faster convergence rates.

Main Contributions. We summarize our main contribu-
tions below and also list the key results in Table 1.

e We analyze nonconvex stochastic variance reduced gra-
dient (SVRG), and prove that it has faster rates of con-
vergence than GRADDESCENT and ordinary SGD. We
show that SVRG is faster than GRADDESCENT by a fac-
tor of n'/3 (see Table 1).

e We provide new theoretical insights into the interplay be-
tween step-size, iteration complexity and convergence of
nonconvex SVRG (see Corr. 2).

e We analyze mini-batch nonconvex SVRG and show that
it provably benefits from mini-batching. Specifically, we
show theoretical linear speedups in parallel settings for
large mini-batch sizes. By using a mini-batch of size b
(< n?/3), we show that mini-batch nonconvex SVRG is
faster by a factor of b (Thm. 6). We are not aware of any
prior work on mini-batch first-order stochastic methods
that shows linear speedup in parallel settings for noncon-
vex optimization.

e For an interesting nonconvex subclass of F,, called gra-
dient dominated functions (Polyak, 1963; Nesterov &
Polyak, 2006), we propose a variant of SVRG that at-
tains a global linear rate of convergence. We improve
upon many prior results for this subclass of functions

(see Section 3.1). To the best of our knowledge, ours is
the first work that shows a stochastic method with linear
convergence for gradient dominated functions.
e Our analysis yields as a byproduct a direct convergence
analysis for SVRG for smooth convex functions (Sec. 4).
e We examine a variant of SVRG (called MSVRG) that has
faster rates than both SGD and GRADDESCENT.

Concurrent to our work, Allen-Zhu & Hazan (2016) have
also obtained an SVRG-based O(n'/?) improvement over
GRADDESCENT. However, both our algorithm and anal-
ysis are somewhat simpler; our analysis also yields better
minibatching with speedups linear in b, and an interesting
hybrid variant MSVRG. Moreover, we also provide global
linear convergence rate analysis of SVRG for the class of
gradient-dominated functions.

1.1. Other Related Work

Convex. Bertsekas (2011) surveys several incremental
gradient methods for convex problems. A key reference
for stochastic convex optimization (for min E,[F(x, z)])
is (Nemirovski et al., 2009). Faster rates of convergence are
attained for problems in F,, by VR methods, see e.g., (De-
fazio et al., 2014a; Johnson & Zhang, 2013; Schmidt et al.,
2013; Konec¢ny et al., 2015; Shalev-Shwartz & Zhang,
2013; Defazio et al., 2014b). Asynchronous VR frame-
works are developed in (Reddi et al., 2015). Agarwal &
Bottou (2014); Lan & Zhou (2015) study lower-bounds
for convex finite-sum problems. Shalev-Shwartz (2015)
prove linear convergence of stochastic dual coordinate as-
cent when the individual f; (i € [n]) are nonconvex but f
is strongly convex. They do not study the general noncon-
vex case. Moreover, even in their special setting our results
improve upon theirs for the high condition number regime.

Nonconvex. SGD dates at least to the seminal work (Rob-
bins & Monro, 1951); and since then it has been developed
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in several directions (Poljak & Tsypkin, 1973; Ljung, 1977,
Bottou, 1991; Kushner & Clark, 2012). In the (nonsmooth)
finite-sum setting, Sra (2012) considers proximal splitting
methods, and analyzes asymptotic convergence (without
rates) with nonvanishing gradient errors.

The first nonasymptotic convergence (with rate) analysis
for SGD is in (Ghadimi & Lan, 2013), who show O(1/€?)
convergence for SGD. A similar rate for parallel and dis-
tributed SGD was shown in (Lian et al., 2015). GRAD-
DESCENT’s O(1/€) convergence is well-known (Nesterov,
2003, Chap. 1.2.3). The first analysis of nonconvex SVRG
is due to Shamir (2014), who considers the special problem
of computing a few top eigenvectors (e.g., for PCA); see
also (Shamir, 2015). As sequels to this paper, we now also
have extensions to nonconvex SAGA and proximal nons-
mooth nonconvex VR methods (Reddi et al., 2016a;b).

2. Background & Problem Setup

We say f is L-smooth if there is a constant L such that

IVf(x) = Vi)l < Lilz—yll,

Throughout, we assume that the f; are L-smooth, so that
IVfi(@) - V@I < Lz — il G € [n]). Such an as-
sumption is common in the analysis of first-order methods.
We say f is A-strongly convex if there is a A > 0, such that

f@) = fy)+(Viy),z—y)+3lle—yl|> Vz,yeR™

The quantity x := L/\ is called the condition number of
f, whenever f is L-smooth and A-strongly convex. We say
f is non-strongly convex when f is 0-strongly convex.

v,y e RY

We also recall the class of gradient dominated func-
tions (Polyak, 1963; Nesterov & Polyak, 2006), where a
function f is called 7-gradient dominated if for any x € R?

fl@) = f@*) <7V ()], 2

where z* is a global minimizer of f. Note that such a func-
tion f need not be convex. It is also easy to show that a
A-strongly convex function is 1/2\-gradient dominated.

We analyze convergence rates for the above classes of func-
tions. Following Nesterov (2003); Ghadimi & Lan (2013)
we use ||V f(x)||* < € to judge when is iterate 2 approx-
imately stationary. Contrast this with SGD for convex f,
where one uses [f(x) — f(x*)] or ||z — *||? as a conver-
gence criteria. Unfortunately, such criteria cannot be used
for nonconvex functions due to the hardness of the prob-
lem. While the quantities ||V f(z)||? and f(z) — f(z*) or
||z — 2*||* are not comparable in general (see (Ghadimi
& Lan, 2013)), they are typically assumed to be of similar
magnitude. Throughout our analysis, we do not assume n
to be constant, and report dependence on it in our results.
For our analysis, we need the following definition.

Definition 2. A point x is called e-accurate if |V f (z)]|* <
€. A stochastic iterative algorithm is said to achieve e-
accuracy in t iterations if E[||[V f(x!)||?] < € where the
expectation is over the stochasticity of the algorithm.

We measure the efficiency of the algorithms in terms of
the number of IFO calls made by the algorithm (IFO com-
plexity) to achieve an e-accurate solution. Throughout the
paper, we hide the dependence of IFO complexity on the
Lipschitz constant L, and the initial point (in terms of
|2° — 2*||? and f(z") — f(z*)) for a clean comparison.
We introduce one more definition, useful in the analysis of
SGD methods for bounding the variance.

Definition 3. We say f € F,, has o-bounded gradients if
|V fi(@)| < oforalli€ [n] and x € R

2.1. Nonconvex SGD: Convergence Rate

Stochastic gradient descent (SGD) is one of the simplest
algorithms for solving (1). The update at the ¢ iteration of
SGD is of the following form:

gttt =t — eV fi, (). (SGD)

By using a uniformly randomly chosen (with replacement)
index i; from [n], SGD uses an unbiased estimate of the
gradient at each iteration. Under appropriate conditions,
Ghadimi & Lan (2013) establish convergence rate of SGD
to a stationary point of f. Their results include the follow-
ing theorem.

Theorem 1. Suppose f € F,, has o-bounded gradients;

letmy =n = c/\/Twhere c= W and x* is
an optimal solution to (1). Then, the iterates of SGD satisfy

min B[V < L@ S@IL,

0<t<T—1 T

For completeness we present a proof in the appendix. Note
that our choice of step size 7 requires knowing the total
number of iterations 7" in advance. A more practical ap-
proach is to use a 7; oc 1/+/t or 1/t. A bound on IFO calls
made by SGD follows as a corollary of Thm. 1.

Corollary 1. For a function f € F,, with o-bounded gra-
dient, the IFO complexity of SGD to obtain an e-accurate
solution is O(1/€2).

As seen in Thm. 1, SGD has a convergence rate of O(1/vT).
This rate is not improvable in general, even when the
function is (non-strongly) convex (Nemirovski & Yudin,
1983). This barrier is due to the variance introduced by
the stochasticity of the gradients.

3. Nonconvex SVRG

We now turn our focus to variance reduced methods. We
use SVRG (Johnson & Zhang, 2013), an algorithm recently
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Algorithm 1 SVRG (2, T, m, {p:}l"o, {n:}7"5 ")
1: Input: ° = 2% = z° € RY epoch length m, step sizes
{ni > 0}, S = [T/m], discrete probability distribution
{pi}iZo
2: fors=0to S —1do
3: ac8+ =z,
4 g7t =LY ViI(E)
5: fort=0tom —1do
6.
7
8

Uniformly randomly pick i from {1,...,n}

'Uerl =V (forl) = Vfi (%) + gs+1
s+1

— NtV

10: @t =" !
11: end for
12: Output: Iterate xz, chosen uniformly random from

{{= " o

shown to be very effective for reducing variance in convex
problems. As aresult, it has gained considerable interest in
both machine learning and optimization communities. We
seek to understand its benefits for nonconvex optimization.
Alg. 1 presents SVRG’s pseudocode.

Observe that Alg. 1 operates in epochs. At the end of epoch
s, a full gradient is calculated at the point £°, requiring n
calls to the IFO. Within its inner loop SVRG performs m
stochastic updates. The total number of IFO calls for each
epoch is thus ©(m + n). For m = 1, the algorithm re-
duces to the classic GRADDESCENT algorithm. Suppose
m is chosen to be O(n) (typically used in practice), then
the total IFO calls per epoch is ©(n). To enable a fair com-
parison with SGD, we assume that the total number of in-
ner iterations across all epochs in Alg. 1 is 7. Also note
a simple but important implementation detail: as written,
Alg. 1 requires storing all the iterates x; Ho<t<m).
This storage can be avoided by keeping a running average
with respect to the probability distribution {p; }1,.

Alg. 1 attains linear convergence for strongly convex
f (Johnson & Zhang, 2013); for non-strongly convex
functions, rates faster than SGD can be shown by using
an indirect perturbation argument—see e.g., (Kone¢ny &
Richtarik, 2013; Xiao & Zhang, 2014).

We first state an intermediate result for the iterates of non-
convex SVRG. To ease exposition, we define

Ct t
ry= (7]t — f—;m — 77t2L - 26t+177t2), 3)

for some parameters ¢;1 and 3; (to be defined shortly).

Our first main result is the following theorem that provides
convergence rate of Alg. 1.

Theorem 2. Let f € F,,. Letc,, = 0, pr = n > 0,
B =B >0, and c; = cip1(1 +nB + 202L2) + n°L3
such that Ty > 0 for 0 <t <m — 1. Define the quantity
Yn = ming ['y. Further, let p; = 0 for 0 < i <m and

Pm = 1, and let T' be a multiple of m. Then for the output
T, of Alg. 1 we have

B[V (@) < L&)

where x* is an optimal solution to (1).

Furthermore, we can also show that nonconvex SVRG ex-
hibits expected descent (in objective) after every epoch.
The condition that 7" is a multiple of m is solely for con-
venience and can be removed by slight modification of the
theorem statement. Note that the value ,, above can de-
pend on n. To obtain an explicit dependence, we simplify
it using specific choices for 7 and 3, as formalized below.

Theorem 3. Suppose f € F,. Letn = po/(Ln®)
0 < po <land0 < a < 1), = L/n*? m =
|739/2 /(3p0)| and T is some multiple of m. Then there
exists universal constants [y, v > 0 such that we have the

v

following: v, > + in Thm. 2 and

B(9 (a2 < 220D D)

where x* is an optimal solution to the problem in (1) and
T is the output of Alg. 1.

By rewriting the above result in terms IFO calls, we get the
following general corollary for nonconvex SVRG.

Corollary 2. Suppose f € F,. Then the IFO complexity
of Alg. 1 (with parameters from Thm. 3) for achieving an
e-accurate solution is:

IFO calls = {O (n+(n'=%/0), ifa<2/s

O (n+ (n%/e)), ifa>2/3.
Corr. 2 shows the interplay between step size and the IFO
complexity. We observe that the number of IFO calls is
minimized in Corr. 2 when v = 2/3. This gives rise to the
following key results of the paper.
Corollary 3. Suppose f € F,. Letn = ui/(Ln??)
0 < p <1),8 =LY m = |n/Bu)| and T is
some multiple of m. Then there exists universal constants
p1,v1 > 0 such that we have the following: vy, > 5375 in
Theorem 2 and

Ln*B[f () — f(z")]

Tl/1 ’
where z* is an optimal solution to the problem in (1) and
T, is the output of Alg. 1.

Corollary 4. If f € F,, then the IFO complexity of Alg. 1
(with parameters in Corr. 3) to obtain an e-accurate solu-
tion is O(n + (n?/3 /¢)).

E[|V£(za)l?] <

Note the rate of O(1/T) in the above results, as opposed
to slower O(1/v/T) rate of SGD (Thm. 1). For a more
comprehensive comparison of the rates, refer to Sec. 6.
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Algorithm 2 GD-SVRG (20, K, T, m, {p;} ™0, {1: 175"

Input: z° € R, K, epoch length m, step sizes {n; > 0},
discrete probability distribution {p; }i%
for k =0to K do
a¥ = SVRG(«" ", T, m, {p: } 720, {mi }75")
end for
Output: =%

3.1. Gradient Dominated Functions

Before ending our discussion on convergence of noncon-
vex SVRG, we prove a linear convergence rate for the
class of T-gradient dominated functions (2). In fact, for 7-
gradient dominated functions we can prove a stronger re-
sult of global linear convergence. For ease of exposition,
assume that 7 > n'/3, a property analogous to the “high
condition number regime” for strongly convex functions
typical in machine learning. Note that gradient dominated
functions can be nonconvex.

Theorem 4. Suppose f € F,, is T-gradient dominated
(1 > n'/3). Then, the iterates of Alg. 2 with T =
2L i), m = /()]s m = g/ (Ln2/3) for
0<t<m, pym =1andp; =0 for 0 < i < m satisfy

E[IVf )7 < 27 IV )17,
E[f(z") = f(2")] < 27*[f(2°) = f(2")].

Here 111 and vy are the constants used in Corr. 3.

An immediate consequence is the following.

Corollary 5. If f € F,, is T-gradient dominated, the IFO
complexity of Alg. 2 (with parameters from Thm. 4) to com-
pute an e-accurate solution is O((n + tn*/3)log(1/€)).

Note that GRADDESCENT can also achieve linear con-
vergence rate for gradient dominated functions (Polyak,
1963). However, GRADDESCENT requires O(n +
n7log(1/¢€)) IFO calls to obtain an e-accurate solution as
opposed to O(n + n?/37log(1/e)) for SVRG. Similar (but
not the same) gains can be seen for SVRG for strongly con-
vex functions (Johnson & Zhang, 2013). Also notice that
we did not assume anything except smoothness on the in-
dividual functions f; in the above results. In particular, the
following corollary is also an immediate consequence.

Corollary 6. If f € F,, is A\-strongly convex and the func-
tions {f;}_, are possibly nonconvex, then the IFO com-
plexity of Alg. 2 (with parameters from Thm. 4) to compute
an e-accurate solution is O((n + n?/3k) log(1/¢)).

Recall that here x denotes the condition number L/\
for a A-strongly convex function. Corr. 6 follows from
Corr. 5 upon noting that A-strongly convex function is
1/2X-gradient dominated. Thm. 4 generalizes the linear
convergence result in (Johnson & Zhang, 2013) since it al-
lows nonconvex f;. Observe that Corr. 6 also applies when

fi is strongly convex (¢ € [n]), though in this case a more
refined result can be proved (Johnson & Zhang, 2013).

Finally, we note that our result also improves on a recent
result on SDCA in the setting of Corr. 6 when the condi-
tion number k is reasonably large. More precisely, for /5-
regularized empirical loss minimization, Shalev-Shwartz
(2015) show that SDCA requires O((n + x2) log(1/e) iter-
ations when the f;’s are possibly nonconvex but their sum
f is strongly convex. In comparison, we show that Alg. 2
requires O((n + n?/3k)log(1/€)) iterations, which is an
improvement over SDCA when x > n?/3,

4. Convex Case

In the previous section, we showed nonconvex SVRG con-
verges to a stationary point at the rate O(n?/3/T). A nat-
ural question is whether this rate can be improved if we
assume convexity? We provide an affirmative answer. For
non-strongly convex functions, this yields a direct analy-
sis (i.e., not based on strongly convex perturbations) for
SVRG. While we state our results in terms of stationar-
ity gap ||V f(z)||? for the ease of comparison, our analy-
sis also provides rates with respect to the optimality gap
[f(z) = f(x*)] (see the proof of Thm. 5 in the appendix).

Theorem 5. If f € F, and f; is convex (i € [n]), p; =
1/mfor0 < i < m, and p,, = 0. Then for Alg. I, we have

L|jz°® — *||* + 4mL*n?[f («°) — f(z")]
Tn(1 — 4Ln) ’

E[[[Vf(za)|*] <

where x* is optimal for (1) and x, is the output of Alg. 1.

We now state corollaries of this theorem that explicitly
show the dependence on n in the convergence rates.

Corollary 7. Ifm = nandn = 1/(8L+/n) in Thm. 5, then
we have the following bound:

Lyn(16La" — 2*|* + [f(z”) — f(=")])

E[IVf(za)|*] < T ,

where x* is optimal for (1) and x, is the output of Alg. 1.

The above result uses a step size that depends on n. For the
convex case, we can also use step sizes independent of n.
The following corollary states the associated result.

Corollary 8. If m = nand n = 1/(8L) in Thm. 5, then
we have the following bound:

L6L|2” — =" |* + n[f(z") — f(=")])

E[|Vf(za)]*] < T ,

where x* is optimal for (1) and x,, is the output of Alg. 1.

We can rewrite these corollaries in terms of IFO complexity
to get the following corollaries.

Corollary 9. If f € F,, and f; is convex for all i € [n],
then the IFO complexity of Alg. 1 (with parameters from
Corr. 7) to compute an e-accurate solution is O(n++/n/e).
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Corollary 10. If f € F,, and f; is convex for all i € [n],
then the IFO complexity of Alg. 1 (with parameters from
Corr. 8) to compute e-accurate solution is O(n/e).

These results follow from Corr. 7 and Corr. 8 and noting
that for m = O(n), the total IFO calls made by Alg. 1
is O(n). It is instructive to quantitatively compare Corr. 9
and Corr. 10. With a step size independent of n, the conver-
gence rate of SVRG has a dependence that is in the order of
n (Corr. 8). But this dependence can be reduced to /n by
either carefully selecting a step size that diminishes with n
(Corr. 7) or by using a good initial point 2° obtained by,
say, running O(n) iterations of SGD.

We emphasize that the convergence rate for convex case
can be improved significantly by slightly modifying the al-
gorithm (either by adding an appropriate strongly convex
perturbation (Xiao & Zhang, 2014) or by using a choice
of m that changes with epoch (Zhu & Yuan, 2015)). How-
ever, it is not clear if these strategies provide any theoretical
gains for the general nonconvex case.

5. Mini-batch Nonconvex SVRG

In this section, we study the mini-batch version of Alg. 1.
Mini-batching is a popular strategy, especially in multicore
and distributed settings as it greatly helps one exploit par-
allelism and reduce the communication costs. The pseu-
docode for mini-batch nonconvex SVRG (Alg. 3) is pro-
vided in the supplement due to lack of space. The key dif-
ference between the mini-batch SVRG and Alg. 1 lies in
lines 6 to 8. To use mini-batches we replace line 6 with
sampling (with replacement) a mini-batch I; C [n] of size
b; lines 7 to 8 are replaced with the following updates:

wit =g, (V) = V.6) + 9,

et = ot —
When b = 1, this reduces to Alg. 1. Mini-batch is typically
used to reduce the variance of the stochastic gradient and
increase the parallelism. Lem. 4 (in Sec. G of the appendix)
shows the reduction in the variance of stochastic gradients
with mini-batch size b. Using this lemma, one can derive
the mini-batch equivalents of Lem. 1, Thm. 2 and Thm. 3.
However, for the sake of brevity, we directly state the fol-
lowing main result for mini-batch SVRG.

Theorem 6. Let f € F,, and 75,, denote the following:

= min —
Tn 0<t<m—1 (77

agm —°L — 26111%),

where €, = 0, & = Ciy1(1 + 1B + 20°L?v) 4 0 L% [y, for
0 <t < m. Suppose n = usb/(In??) (0 < pg < 1),
B = L/n'3, m = |n/(3buz)| and T is some multiple
of m. Then for b < n?/3, there exists universal constants

o, vo > 0 such that: 7, > #Qb/g and

Ln®/3[f () — f(z")]

B[V (aa)]f) € i R,

where x* is optimal for (1) and x, is the output of the mini-
batch version of Alg. 1.

It is important to compare this result with mini-batched
SGD. For a mini-batch size of b, SGD obtains a rate of
O(1/VbT + 1/T) (Dekel et al., 2012) (obtainable by a
modification of Thm. 1). Specifically, SGD has a 1/v/b de-
pendence on the batch size. In contrast, Thm. 6 shows that
SVRG has a much better dependence of 1/b on the batch
size. Hence, compared to SGD, SVRG allows more efficient
mini-batching. More formally, in terms of IFO queries we
have the following result.

Corollary 11. If f € F,, then the IFO complexity of the
mini-batch version of Alg. 1 (with parameters from Thm. 6

and mini-batch size b < n?/3) to obtain an e-accurate so-
lution is O(n 4 (n?/3 /¢)).

Corr. 11 shows an interesting property of mini-batch SVRG.
First, note that b IFO calls are required for calculating the
gradient on a mini-batch of size b. Hence, SVRG does not
gain on IFO complexity by using mini-batches. However,
if the b gradients are calculated in parallel, then this leads
to a theoretical linear speedup in multicore and distributed
settings. In contrast, SGD does not yield an efficient mini-
batch strategy (Li et al., 2014).

6. Comparison of the convergence rates

In this section, we give a comprehensive comparison of re-
sults obtained in this paper. In particular, we compare key
aspects of the convergence rates for SGD, GRADDESCENT,
and SVRG. The comparison is based on IFO complexity to
achieve an e-accurate solution.

Dependence on n: The number of IFO calls of SVRG
and GRADDESCENT depend explicitly on n. In con-
trast, the number of oracle calls of SGD is independent
of n (Thm. 1). However, this comes at the expense of
worse dependence on e. The number of IFO calls in
GRADDESCENT is proportional to n. But for SVRG this
dependence reduces to n'/? for convex (Corr. 7) and n2/3
for nonconvex (Corr. 3) problems. Whether this difference
in dependence on n is due to nonconvexity or just an arti-
fact of our analysis is an interesting open problem.

Dependence on ¢: The dependence on ¢ (or alternatively
T) follows from the convergence rates of the algorithms.
SGD is seen to depend as O(1/€?) on ¢, regardless of con-
vexity or nonconvexity. In contrast, for both convex and
nonconvex settings, SVRG and GRADDESCENT converge
as O(1/e). Furthermore, for gradient dominated func-
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tions, SVRG and GRADDESCENT have global linear con-
vergence. This speedup in convergence over SGD is espe-
cially significant when medium to high accuracy solutions
are required (i.e., € is small).

Assumptions used in analysis: It is important to under-
stand the assumptions used in deriving the convergence
rates. All algorithms assume Lipschitz continuous gra-
dients. However, SGD requires two additional subtle but
important assumptions: o-bounded gradients and advance
knowledge of T" (since its step sizes depend on T"). On the
other hand, both SVRG and GRADDESCENT do not require
these assumptions, and thus, are more flexible.

Step size / learning rates: It is valuable to compare the
step sizes used by the algorithms. The step sizes of SGD
shrink as the number of iterations T' increases—an un-
desirable property. On the other hand, the step sizes of
SVRG and GRADDESCENT are independent of 7". Hence,
both these algorithms can be executed with a fixed step
size. However, SVRG uses step sizes that depend on n (see
Corr. 3 and Corr. 7). A step size independent of n can be
used for SVRG for convex f, albeit at cost of worse depen-
dence on n (Corr. 8). GRADDESCENT does not have this
issue as its step size is independent of both n and T'.

Dependence on initial point and mini-batch: SVRG is
more sensitive to the initial point in comparison to SGD.
This can be seen by comparing Corr. 3 (of SVRG) to Thm. 1
(of SGD). Hence, it is important to use a good initial point
for SVRG. Similarly, a reasonably large mini-batch can be
beneficial to SVRG. For SVRG, mini-batches not only pro-
vides parallelism but also good theoretical guarantees (see
Thm. 6). In contrast, the performance gain in SGD with
mini-batches is not very pronounced (see Sec. 5).

7. Best of two worlds

We have seen in the previous section that SVRG combines
the benefits of both GRADDESCENT and SGD. We now
show that these benefits of SVRG can be made more pro-
nounced by an appropriate step size under additional as-
sumptions. In this case, the IFO complexity of SVRG is
lower than those of SGD and GRADDESCENT. This vari-
ant of SVRG (MSVRG) chooses a step size based on the
total number of iterations 7' (or alternatively €). For our
discussion below, we assume that T' > n.

Theorem 7. Suppose f € F, has o-bounded gradients.
Let ny = n = max{¢/VT, 1 /(Ln?/®)} (p1 is the constant
from Corr. 3), m = |?/(3uw)], and ¢ = %f;z*)

Further, let T be a multiple of m, p,, = 1, and p; = 0 for
0 < ¢ < m. Then, the output x, of Alg. I satisfies

E[|IV £ (za)lI’]

< pmin {2 \/Q(f(:co) @)L, Ln2/3[f<;‘;>1— Sy,

where v > 0 is a universal constant, vy is the universal
constant from Corr. 3 and x* is an optimal solution to (1).

Corollary 12. If f € F,, has o-bounded gradients, the
IFO complexity of Alg. 1 (with parameters from Thm. 7) to
achieve an e-accurate solution is O(min{1/e?, n?/3/¢}).

An almost identical reasoning can be applied when f is
convex to get the bounds specified in Table 1. Hence, we
omit the details and directly state the following result.

Corollary 13. Suppose f € F,, has o-bounded gradients
and f; is convex for i € [n], then the IFO complexity of
Alg. 1 (with step size 1 = max{1/(L\/T),1/(8L/n)},
m=mnandp;, =1/mfor0<i<m—1andp, =0)to
achieve an e-accurate solution is O(min{1/€2, \/n/e}).

MSVRG has a convergence rate faster than those of both
SGD and SVRG, though this benefit is not without cost.
MSVRG, in contrast to SVRG, uses the additional assump-
tion of o-bounded gradients. Furthermore, its step size
is not fixed since it depends on the number of iterations
T. While it is often difficult to compute the step size of
MSVRG (Thm. 7) in practice, it is typical to try multiple
step sizes and choose the one with the best results.

8. Experiments

We present our empirical results in this section. In par-
ticular, we study multiclass classification using neural net-
works. This is typical nonconvex problem encountered in
machine learning.

Experimental Setup. We train neural networks with one
fully-connected hidden layer of 100 nodes and 10 softmax
output nodes. We use ¢5-regularization for training. We use
CIFAR-10%, MNIST?, and STL-10* datasets for our exper-
iments. These datasets are standard in the neural networks
literature. The 5 regularization is le-3 for CIFAR-10 and
MNIST, and le-2 for STL-10. The features in the datasets
are normalized to the interval [0, 1]. All the datasets come
with a predefined split into training and test datasets.

We compare SGD (the de facto algorithm for training neural
networks) against nonconvex SVRG. The step size is criti-
cal for SGD; we set it using the popular ¢-inverse schedule
ne = no(1+n'|t/n]) =1, where 19 and )’ are chosen so that
SGD gives the best performance on the training loss. In our
experiments, we also use 77/ = 0; this results in a fixed step
size for SGD. For SVRG, we use a fixed step size as sug-
gested by our analysis. Again, the step size is chosen so
that SVRG gives the best performance on the training loss.

Initialization & mini-batching. Initialization is critical to
training of neural networks. We use the normalized initial-
ization in (Glorot & Bengio, 2010) where parameters are

2www.cs.loronto.edu/ kriz/cifar.html
3http://yann41ecun.com/exclb/mnist/
4https://cs.stanford.edu/ acoates/stl10/
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Figure 1. Neural network results for CIFAR-10, MNIST and STL-10 datasets. The top row represents the results for CIFAR-10 dataset.
The bottom left and middle figures represent the results for MNIST dataset. The bottom right figure represents the result for STL-10.

chosen uniformly from [—+/6/(n; + 1), \/6/(n; + n0)]
where n; and n,, are the number of input and output layers
of the neural network, respectively.

For SVRG, we use n iterations of SGD for CIFAR-10 and
MINST and 2n iterations of SGD for STL-10 before run-
ning Alg. 1. Such initialization is standard for variance
reduced schemes even for convex problems (Johnson &
Zhang, 2013; Schmidt et al., 2013). As noted earlier in
Sec. 6, SVRG is more sensitive than SGD to the initial point,
so such an initialization is typically helpful. We use mini-
batches of size 10 in our experiments. SGD with mini-
batches is common in training neural networks. Note that
mini-batch training is especially beneficial for SVRG, as
shown by our analysis in Sec. 5. Along the lines of theo-
retical analysis provided by Thm. 6, we use an epoch size
m = n/10 in our experiments.

Results. We report objective function (training loss), test
error (classification error on the test set), and ||V f(z?)]|?
(convergence criterion in our analysis). For all algorithms,
we compare these criteria against the number of effective
passes through the data, i.e., IFO calls divided by n. This
includes the cost of calculating the full gradient at the end
of each epoch of SVRG. Due to the SGD initialization in
SVRG and mini-batching, the SVRG plots start from an x-
axis value of 10 for CIFAR-10 and MNIST and 20 for STL-
10. Figure 1 shows the results. It can be seen that for SVRG
|V f(z?)||? is lower compared to SGD, suggesting faster
convergence. Furthermore, training loss is also lower com-
pared to SGD in all the datasets. Notably, the test error
for CIFAR-10 is lower for SVRG, indicating better gener-
alization; we did not notice substantial difference in test
error for MNIST and STL-10 (see Sec. H in the appendix).
Overall, these results on a network with one hidden layer
are promising; it will be interesting to study SVRG for deep
neural networks in the future.

9. Discussion

In this paper, we examined a VR scheme for noncon-
vex optimization. We showed that by employing VR in
stochastic methods, one can outperform both SGD and
GRADDESCENT even for nonconvex optimization. When
the function f in (1) is gradient dominated, we proposed a
variant of SVRG that has linear convergence to the global
minimum. Our analysis shows that SVRG has a number of
interesting properties that include convergence with fixed
step size, descent (in expectation) after every epoch; a prop-
erty that need not hold for SGD. We also showed that
SVRG, in contrast to SGD, enjoys efficient mini-batching,
attaining speedups linear in the size of the mini-batches in
parallel settings. Our analysis also reveals that the initial
point and use of mini-batches are important to SVRG.

Before concluding the paper, we would like to discuss the
implications of our work and few caveats. One should exer-
cise some caution while interpreting the results in the paper.
All our theoretical results are based on the stationarity gap.
In general, this does not necessarily translate to optimality
gap or low training loss and test error. One criticism against
VR schemes in nonconvex optimization is the general wis-
dom that variance in the stochastic gradients of SGD can
actually help it escape local minimum and saddle points. In
fact, Ge et al. (2015) add additional noise to the stochastic
gradient in order to escape saddle points. However, one can
reap the benefit of VR schemes even in such scenarios. For
example, one can envision an algorithm which uses SGD as
an exploration tool to obtain a good initial point and then
uses a VR algorithm as an exploitation tool to quickly con-
verge to a good local minimum. In either case, we believe
variance reduction can be used as an important tool along-
side other tools like momentum, adaptive learning rates for
faster and better nonconvex optimization.
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