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Abstract
Automatic forecasting of time series data is a
challenging problem in many industries. Cur-
rent forecast models adopted by businesses do
not provide adequate means for including data
representing external factors that may have a
significant impact on the time series, such as
weather, national events, local events, social me-
dia trends, promotions, etc. This paper intro-
duces a novel neural network attention mecha-
nism that naturally incorporates data from multi-
ple external sources without the feature engineer-
ing needed to get other techniques to work. We
demonstrate empirically that the proposed model
achieves superior performance for predicting the
demand of 20 commodities across 107 stores of
one of America’s largest retailers when com-
pared to other baseline models, including neu-
ral networks, linear models, certain kernel meth-
ods, Bayesian regression, and decision trees. Our
method ultimately accounts for a 23.9% relative
improvement as a result of the incorporation of
external data sources, and provides an unprece-
dented level of descriptive ability for a neural
network forecasting model.

1. Introduction
Univariate forecasting techniques, such as Holt-Winters
(Holt, 1957), (Winters, 1960) and ARIMA (Box & Jenkins,
1990), are widely adopted in industry. These methods are
used for performing predictions that are crucial for support-
ing logistical needs, such as product demand and consumer
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Figure 1. An example of an anomaly partially predicted a week
ahead by our forecasting model, but not by a traditional model.
The embedded charts include an explanation of the neural net-
work’s judgment for why it believes there will be an increase in
demand at a number of hierarchical levels that may be interesting
to a human analyst. The primary external factor that was influ-
encing the prediction a week in advance was expected weather.
There is a spike in temperature projected on Monday and Tues-
day followed by wind speeds of 37 mph and gusts of 47 mph on
Friday.

behavior. However, univariate forecasting techniques, by
definition, do not take into account multiple data sources,
and often come short of providing a fully automatic fore-
casting method. In fact, (Franses & Legerstee, 2009) con-
ducted a case study where 90% of all forecasts were found
to be manually adjusted. Sales for most products seems to
vary wildly based on external influences.
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There are multiple drawbacks associated with human
driven prediction methods that inspire the need for a fully
automatic solution. One such issue is that humans have
biases when analyzing the impact of external data sources
(Lawrence et al., 2006). For example, humans were found
to often have an optimism bias in their projections of the
impact of promotions in (Fildes et al., 2009), (Trapero
et al., 2011), and (Trapero et al., 2013). Humans also may
not be knowledgeable of external factors such as local or
national events in advance when adjusting a forecast.

Neural networks have a substantial history of quantitatively
superior performance to industry standard demand fore-
casting techniques in literature (Xu et al., 2005), (Castillo
et al., 2006), (Sunaryo et al., 2011), (Cortez et al., 2012),
(Marvuglia & Messineo, 2012), (Neupane et al., 2012).
However, they have ultimately not been widely adopted in
industry because their modest improvements have come at
the cost of not being interpretable. In Figure 1 we provide
examples of the high level of interpretability that our pro-
posed model exhibits. Forecasts, especially in the business
setting, are often used as an aid for human decision making.
Consequently, it is essential that such a system provides in-
formation about which features are contributing to a fore-
cast outcome. For example, interpretability could mitigate
financial and legal ramifications when a forecasting system
commits large errors.

In this paper, we take the first steps towards creating a
neural network-based forecasting system that is (i) scal-
able, (ii) adaptable to multiple data sources and (iii) inter-
pretable. We propose a paradigm where a baseline fore-
cast is adjusted by a series of observations related to an ar-
bitrary number of external feature groups (”factors”), and
each observation has an interpretable additive effect on the
baseline. This is achieved with a novel neural network at-
tention model. To our knowledge, we are the first to show
the power of neural network attention mechanisms in the
domain of time series forecasts.

2. Related Work
Applying a content based attention mechanisms in neural
networks is a recently proposed idea that is having a broad
impact across many disciplines of machine learning. Since,
it was first proposed in the field of Machine Translation in
(Bahdanau et al., 2014), it has been shown useful for exam-
ple in speech recognition (Chorowski et al., 2015), image
caption generation (Xu et al., 2015), reading comprehen-
sion (Hermann et al., 2015), and video description gener-
ation (Yao et al., 2015). As noted by the authors of (Cho
et al., 2015), attention mechanisms can be most beneficial
in scenarios where both the input and output have a rich
structure. However, attention can also be highly beneficial
over other neural network approaches in cases where the in-

put has a rich structure and the output is simple. For exam-
ple, the use of soft attention mechanisms produce state of
the art results for classification of textual entailment (Wang
& Jiang, 2015), (Rocktäschel et al., 2015). As we will de-
scribe in the next section, the problem of forecasting de-
mand based on many auxiliary data sources should be natu-
rally posed as a problem with a rich input, making attention
mechanisms an attractive approach.

Our work is related to a possible incarnation of a one-
level Hierarchical Mixture of Experts (HME) model (Ja-
cobs et al., 1991), (Jordan & Jacobs, 1994) where the ex-
pert networks are each learned over a different group of
features that are explicitly parsed during the instantiation
of the model. While there are many implementation dif-
ferences, the most significant architectural differences are
between the HME gating network and our proposed soft
attention mechanism. Soft attention mechanisms learn at-
tention weights from a classifier on top of the hidden repre-
sentations, rather than basing it on the input representation
as done in the analogous HME gating network. Our ex-
periments show that our same setup trained like a gating
network, where attention units are based off the input rep-
resentation, achieves substantially worse performance than
the model trained with hidden representation based atten-
tion. Our intuition is that utilizing the hidden representation
should be more powerful due to more learnable parameters
and more generalizable because our hidden layers tend to
be small relative to the input feature size. Additionally, be-
cause the hidden layer weights are shared between both the
attention score and output vector, the representation is bi-
ased in trying to solve for the attention score in a way that
may improve generalization as demonstrated for multi-task
neural networks in (Caruana, 1997).

Weather (Starr-McCluer et al., 2000), (Taylor & Buizza,
2003), and social media signals (Chen & Du, 2013), (Si
et al., 2013), have been considered in literature for time
series prediction applications before. However, the authors
are not aware of any attempt in literature to use both of
them on the same task before our work.

3. The Multifactor Neural Network Attention
Model

One limitation of most traditional predictive modeling
techniques, including Lasso Regression, Logistic Regres-
sion, Support Vector Machines, and MLP models is that
they require input features to be represented with a vector
for each prediction step. Although it is possible in prin-
ciple to turn any matrix or high order tensor into vectors
through flattening, it is not possible without significant fea-
ture engineering on top of raw features to express within the
data that there are realistic limitations in the search space
of how input features could possibly be combined. This in
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turn makes it difficult to learn features during training that
generalize to runtime conditions.

A central goal of this work is to develop a model that is both
sufficiently powerful to achieve superior empirical results,
and restricted to reasoning that would be interpretable to
end user analysts. This approach has the important bene-
fit of ensuring that users of the model understand the logic
by which results are derived, enabling them to more prop-
erly address circumstances when the model predicts un-
usual outcomes with confidence. To do this we assume that
each observation of each factor considered can ultimately
be expressed as having an additive relationship with the ex-
pected forecast. This constraint enforces an important qual-
ity of being hierarchically interpretable. This implies, for
example, that the model is interpretable both on the level of
providing a prediction for the expected downturn in sales
because of the predicted heat wave next week, and even
further down to the specifics of the expectation based on
the temperature that Wednesday.

3.1. Independent Observation Multifactor Model

Consider the broad class of models where a set of Nf ob-
servations are hierarchically attributed among a set of fac-
tors F in the previous period of relevant time Pf that are
assumed to account for the difference between a baseline
forecast and the true signal. Each observation i for factor
f at time instant τ , xif (τ) is assumed to have an indepen-
dent effect yif (τ) in modifying the baseline forecast B(τ)
to produce prediction p(τ).

yif (τ) = G(xif (τ)) (1)

p(τ) = B(τ) +

F∑
f

Pf∑
τ

Nf∑
i

yif (τ) (2)

This independent observation model in equations 1 and 2
ensures that the additive effect of each observation of each
factor can be treated as independent and thus analyzed for
all factors, at the granularity of a single observation, and
for any potentially interesting subset of observations and
factors (simply by adding up the effects of the observations
in the subset). Although observations are treated as hav-
ing an independent impact on the forecast, there is no re-
striction that the factors be viewed in isolation or without
proper context, providing the model with sufficient power
through the functionG to express complex interactions and
correlations. This form extends ideas in Generalized Addi-
tive Models (Hastie & Tibshirani, 1990) to functions over
groups of features that end up not being truly independent
because of a week form of interaction allowed through an
attention mechanism proposed in section 3.3.

3.2. Simple Neural Network Independent Observation
Model

Let us now consider a straightforward extension of the
above independent observation model to utilize neural net-
works trained end to end in a supervised fashion.

A first distinction we will make is that it is generally in-
sufficient to analyze the raw signal rif of an observation
in isolation, so we formalize that the observation input also
includes a concatenation with a vector that represents the
context.

xif (τ) = concatenate(rif (τ), contextif (τ)) (3)

As an example, it is impossible to figure out if a 50◦F tem-
perature in Ohio is relatively hot or cold without knowing
both the time of the year, and the recent weather trends
in the region. In our experiments, we consider a context
vector that consists of a 107 dimensional one hot vector
representing which store the prediction is for, a 4 dimen-
sional vector representing the season and percent progress
through that season, and computed differences between the
observation in question and the average observation over
both a one week and one month history. The use of differ-
ences with average values as opposed to a full sequence of
values may seem like feature engineering, which we try to
avoid wherever possible in our models. We actually also
considered a recurrent neural network model over the en-
tire sequence instead, but saw no increase in accuracy with
a large increase in computation time. Manually specifying
the comparative contexts to look over for each factor is an
extremely minimal one-time human burden (which we set
fixed at 1 week and 1 month for all factors) that is well
worth the increased computational efficiency over data that
has minimal meaning.

Armed with a more powerful expression of the observation,
we can now apply a neural network paradigm to develop a
formulation of G, which we detail below for a neural net-
work with a single hidden layer of dimension D.

hif (τ) = tanh(Whfxif (τ) + bhf ) (4)

yif (τ) = tanh(Wyfhif (τ) + byf ) (5)

Our notation in this paper is that W and b refer to learned
matrices and bias vectors respectively.

3.3. Soft Attention over Multifactor Models

As opposed to hard attention, we focus on soft attention
methods in this work to ensure that all input features have
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been given consideration at prediction time. A straightfor-
ward implementation of a soft attention mechanism for our
independent observation model can be achieved with the
following system of equations:

mif (τ) = sigmoid(Wmfhif (τ) + bmf ) (6)

dif (τ) = tanh(Wdfhif (τ) + bdf ) (7)

aif (τ) =
mif (τ)∑F

f

∑Pf

τ

∑Nf

i mif (τ)
(8)

yif (τ) = aif (τ)dif (τ) (9)

We model our attention mechanism after the soft atten-
tion with smoothing model proposed in (Chorowski et al.,
2015). Intuitively dif can be interpreted as determining the
relative directional impact of the observation, and aif can
be interpreted as modulating the amplitude of its impact in
the context of the other observations and factors. We can
see the soft attention mechanism as recreating the general
logic a human would follow if asked to do the same prob-
lem. First, each observation is considered in isolation and
mif is determined as a measure of how interesting or un-
usual the observation is. Next, all of the observations are
considered in context and a small subset is picked that are
most likely to have influence on the forecast. Finally, the
individual impact of each important observation given its
importance in the context is assessed and added together to
determine a prediction.

3.4. Promoting Sparse Attention

As observed in section 3.3, intuitively only a relatively
small subset of observations and factors should realisti-
cally be considered to influence the prediction at a given
time step. There for, we introduce a new L1 regularization
over the importance for all observations in our loss func-
tion. We illustrate an example of this loss function for the
case of minimizing mean squared error, target t, and mif

constrained to the always positive range of 0 to 1 by the
sigmoid function:

Loss(τ) = (t(τ)− p(τ))2 + β

F∑
f

Pf∑
τ

Nf∑
i

mif (τ) (10)

Here β is a regularization parameter representing the coef-
ficient of the attention regularization. We made the choice
of using a mean squared error loss function in our exper-
iments, but other functions may have advantages in some

problems. If the attention units are not constrained to be
positive, the absolute value of mif (τ) should instead be
considered in equation 10.

3.5. Addressing Unexplained Factors

One clear issue with the initial formulation of the indepen-
dent observation model in section 3.1 is that it implicitly
assumes that the differences between the baseline forecast
B and the actual targets t can be accounted for entirely
by the external factor observations. In actuality, it is quite
possible that only a small percentage of the difference can
be explained by the current set of external factors. In this
case, even our sparse attention model will be very inclined
to over fit on the training data in a non-generalizable and
non-interpretable attempt to account for the bulk of the er-
ror between the target and baseline signals. We attempt to
combat this tendency by allowing our model to modify our
baseline forecast in time periods of high uncertainty. We
achieve this by introducing a simple attention mechanism
that balances our baseline forecast at the current time step
B(τ) with the actual value at the last time step L(τ). More-
over, the following system of equations shows how it inte-
grates with our soft attention mechanism over observations
and factors:

g(τ) = concatenate(u(τ), context(τ)) (11)

mB(τ) = sigmoid(WmBg(τ) + bmB) (12)

mL(τ) = sigmoid(WmLg(τ) + bmL) (13)

mtotal(τ) = mL(τ)+mB(τ)+
F∑
f

Pf∑
τ

Nf∑
i

mif (τ) (14)

aL(τ) =
mL(τ)

mtotal(τ)
(15)

aB(τ) =
mB(τ)

mtotal(τ)
(16)

aif (τ) =
mif (τ)

mtotal(τ)
(17)

p(τ) = aL(τ)L(τ) + aB(τ)B(τ) +

F∑
f

Pf∑
τ

Nf∑
i

yif (τ)

(18)
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Figure 2. An illustration of the process flow for our proposed mul-
tifactor attention model at each prediction time step.

Loss(τ) = (t(τ)− p(τ))2 + βmtotal(τ) (19)

Here mif estimations for the observations are the same as
before. For the case of the baseline mB and the last value
mL, we utilize a concatenation of a vector representing the
local uncertainty u and a context vector. In our experi-
ments, the uncertainty vector u was fixed to a vector rep-
resented by [B(τ), L(τ), B(τ) − L(τ), B(τ − 1) − L(τ)]
at time instant τ and the context vector consisted of the
concatenation of a store vector and seasonal vector as de-
scribed in section 3.2. As detailed in the above equations,
we combine consideration of the attention over the uncer-
tainty with the attention over the observations of external
factors. This allows the model to dampen focus on the last
value in times of large uncertainty when there are in fact
highly interesting observations in external factors, and al-
lows for attention on external factors to fall to zeros (as
opposed to being fixed at a total of 1) when the modified
baseline accurately models the target values. The process
flow of the model described above is illustrated in Figure 2.

3.6. Regularization Considerations

We found that even with sparse attention, it is possible for
our model to over fit and learn co-adapted representations
of factors that can effectively combine to produce a help-
ful but not directly interpretable offset. To prevent our
model from learning these co-adapted representations, we
draw inspiration from the dropout regularization technique
of (Hinton et al., 2012). Intuitively, if we do not allow ex-
ternal factors to rely on the presence of one another we can
promote independence of the learned representations. We
achieve this during training by drawing a sample from a
binomial distribution for each factor and converting to a

binary representation with a success threshold determined
by a grid search from 0.1 to 0.9 utilizing the validation set
during training. We also do not want observations within
a factor like different weather indicators, local events, and
national events to become co-adapted and enforce dropout
of the input observations as well. We see significant gains
in generalization performance using this approach. We also
experimented with multiplying through by the dropout fac-
tor as done in (Hinton et al., 2012) during test time, and got
very similar performance.

4. Experiments
We conducted our experiments utilizing two years of trans-
action data from 107 stores and 20 commodity classes of
one of the largest retailers in America in the state of Ohio
spanning May 2012 to May 2014.

We leveraged historical weather information from 16 sta-
tions in the region and considered the weather at each store
to be equal to the weather of the closest station by distance.
We conducted experiments using the General Description
field (including over 100 different descriptive categories),
the feels like temperature, the wind speed, the visibility, the
relative humidity, and the UV Description. We collected
daily minimum, maximum, and mean values for numerical
factors and a daily average of the one hot vectors represent-
ing the hourly values for categorical factors.

For local event information we analyzed metadata about
regional events that were registered a week in advance on
Eventful.com. This included 301,327 local events over the
two year span. Each event includes two descriptive fields
with 29 categories, a distance from the store in considera-
tion, and a popularity. One major limitation of the Eventful
data is that only a few examples in our entire dataset had a
popularity that was not null, so we only have a direct mea-
surement of the expected turnout in extreme cases.

In our experiments we also collected a random 10% of all
english tweets on Twitter over the two year period. We
used this data to consider 51 national events in our exper-
iments. In addition to national holidays, observances, and
events like the Super Bowl or Oscars, we included what we
considered to be a secondary set of yearly event signals in-
cluding Hummus day and Pie day. We also used Twitter
data to mine trends in social chatter about each commod-
ity we consider and develop a word match based extractor
leveraging a list words related to the commodity.

4.1. Design of Baseline Forecast

Holt-Winters or ARIMA models require a minimum of two
observation periods worth of data in order to provide an
initial fit (in our case, two years worth of data). Conse-
quently, we developed a model that works reasonably well
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in forecasting the demand based only on univariate trans-
action data without a this requirement. It also follows core
logic and principles shared with Holt-Winters and ARIMA
models.

The baseline model discussed here works by decomposing
the signal into multiple components that represent the inter-
nal factors towards the forecasts: level, trend, and the sea-
sonal (periodic) components. The level component repre-
sents the constant demand value over the entire time period.
The trend component represents the linearly increasing de-
mand over time. The seasonal (periodic) components cor-
respond to the periodic increase and decrease in the sales
values due to seasonal demands. More precisely, if the true
sales at time instant τ is y(τ), then the baseline model as-
sumes that this signal value is generated as follows:

y(τ) = l(τ) + t(τ) +

P∑
p=1

sp(τ) + e(τ) (20)

where l(τ) = L is the level component, t(τ) = τT is the
trend component, sp(τ) = sp(τ − τp) is the seasonal, e(τ)
represents the anomalies attributed to the sparse unexplain-
able external factors, L is the constant level value, T is the
linear trend value, P is the number of periodic components,
and τp is the unknown period of the p-th periodic compo-
nent. The baseline forecasting method at time instant τ
uses all the data available until time τ − 1 to estimate the
level, trend and seasonal components of the decomposition,
with the resulting e(τ) capturing the residual anomalies.
Once the parameters are estimated, the forecast prediction
for the next time instant is given by

b(τ) = L̂τ−1 + τ T̂ τ−1 +

P∑
p=1

ŝτ−1
p (τ) (21)

where L̂τ−1, T̂ τ−1, and ŝτ−1
p , are the estimates of L, T ,

and sp respectively based on data observed until time τ−1.

From the above discussion, we can see that the prediction
depends on the estimates of the unknown parameters. To
estimate these values, we implemented a 2-step process
that involves Fourier based synthesis and sparse regression
(Tibshirani, 1996).

4.2. Input Features

Our independent observation model discussed in section
3.1, is capable of reasoning about data in its natural hier-
archy. In our experiments each of the 6 weather signals
discussed earlier is considered its own distinct factor that
includes a sequence of daily observations. Local events are
represented as a matrix detailing a sequence of observa-
tions for the upcoming events slotted for the next week. Na-
tional events are also a matrix representing a 51 length sig-
nal detailing patterns in the social chatter about each event

present a week in advance. We have confirmed that chatter
heights always correspond with the actual week of the na-
tional event. The commodity social signal is represented as
a single observation vector including analysis of mentions,
sentiment, and intent to buy with the context available a
week in advance. In all of our experiments the true sales
value, demand forecast, and last sales value are normalized
by subtracting the mean sales value for the store and divid-
ing by 10 times the standard deviation.

Many existing regression models that we would like to
compare our method against could not handle input of the
format described in the previous paragraph. As such, we
did some feature engineering to compress these observa-
tions down to a single vector that regressors can use for
prediction. For each weather observation we took a weekly
average to project down to a vector. For local events we
computed a sum weighted by min(popularity,1)

distance of each ob-
servation to compress down to a single vector. The national
events were just considered as a flattened version of the
matrix. The rest of the features were considered without
modification and concatenated together. Without PCA our
flattened vector contained 3,139 elements.

4.3. Training Details

In all of our experiments we used the same 93 stores for
training and 14 stores for validation. Our neural network
models were all trained with Stochastic Gradient Descent
(SGD) until convergence on the validation set. Hyperpa-
rameters are selected based on a grid search over the vali-
dation set. We ensure that the baseline neural network has
potential access to 5 times as many total parameters than
our model during training to ensure that our superior per-
formance is not simply about the quantity of parameters. In
practice none of our neural network models find it useful to
have large hidden sizes and are generally optimal between
10 and 100 units. Additionally, we determined the optimal
PCA compression dimension for generalization by testing
training set based accuracy on the validation set for gener-
alization. We note specifically in section 5 which models
used PCA features as we did not find it useful for the other
models. We train all of our models first over a year of data
with full parameter tuning, and then after each passing 3
months initialize with the old model and update the model
based on the updating training set (or retrain from scratch
with the updated dataset when initialization is not possi-
ble). When we update, we keep the same tuned parameters
determined during our initial training.

Frequent retraining is not very beneficial as most of our
models have pretty time invariant learned representations
for the influence of external factors, but we showcase every
3 months so even the simpler models reach their optimal
update frequency. Our shared baseline forecast model is re-
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trained weekly. However, it is likely not necessary to train
the baseline model at that frequency.

5. Results

Model Features MAPE Anomaly %
Baseline Forecast FV 26.79 7.13
Our Model IO 20.40 5.11
- Attention Sparsity IO 23.69 5.65
- Soft Attention IO 33.49 11.05
Our Gating Network IO 24.98 6.74
+ Attention Sparsity IO 24.01 6.23
Random Forest FV 24.87 5.77
Neural Network FV 28.27 5.78
SVR (RBF Kernel) FV 31.53 6.60

PV 31.46 6.60
Decision Trees PV 34.17 9.62
Bayesian Regression FV 38.74 14.24
Lasso Regression FV 46.76 16.49

Table 1. Comparison of models by average forecasting percent er-
ror and the frequency of unpredicted anomalies when predicting a
week in advance over one year of testing. The Baseline Forecast
is an input given to each model.

Model Features MAPE Anomaly %
Baseline Forecast FV 50.76 16.77
Our Model IO 34.87 11.56
- Attention Sparsity IO 38.66 12.03
- Soft Attention IO 55.72 25.98
Our Gating Network IO 38.29 12.95
+ Attention Sparsity IO 35.89 11.69
Random Forest FV 43.14 13.14
Neural Network FV 49.42 12.86
Decision Trees PV 52.91 19.89
SVR (RBF Kernel) FV 61.60 19.58

PV 61.50 19.58
Bayesian Regression FV 74.87 31.20
Lasso Regression FV 89.67 34.48

Table 2. Comparison of models on the 5 hardest commodities for
the Baseline Forecast to model. We report average forecasting
percent error and the frequency of unpredicted anomalies when
predicting a week in advance over one year of testing.

Table 1 and Table 2 describe the main results of our ex-
periments. For each model, we describe the features used
where FV refers to the feature vector explained in section
4.2, and PV refers to a PCA compression of the feature
vector. IO refers to the Independent Observation Model’s
feature representation as described in section 3.1 and sec-
tion 4.2. MAPE represents the Mean Absolute Percent
Error. TheAnaomaly % is defined as the percent of weeks

considered where there was either an oversell or an under-
sell. We use an industry rule of thumb in which the predic-
tion being at least two times smaller than the actual sales
constitutes an oversell, and the prediction being at least two
times bigger than the actual sales constitutes an undersell.

5.1. Comparison To Other Models

Our model ultimately accounts for a 23.9% relative im-
provement and 28.3% reduction in the frequency of ap-
parent anomalies over the baseline forecast. The surpris-
ing aspect is that none of the group of Lasso Regression,
Bayesian Ridge Regression, Support Vector Regression,
and Decision Tree alternatives are able to surpass the base-
line forecast on average over the year. This is so surprising
because this means these models would be better off learn-
ing a representation that was just copying one element of
their input than learning what they did. A neural network
with L1 regularization and dropout is needed to show any
value over the baseline forecast using the feature vector as
input over the 20 commodities by being robust to anoma-
lies. The Random Forest regression model is our strongest
baseline that is not a neural network as it has a powerful
mechanism of preventing decision trees from over fitting.
However, our attention model achieves significantly supe-
rior results. In taking an average over all commodities we
obscure one of the underlying stories in the data. In fact, the
traditional models do surpass or equal the baseline forecast
for many commodities, but tend to have a particularly hard
time modeling the highly volatile commodities that have
the highest baseline forecast errors detailed in Table 2. For
these commodities, many of the baseline models over fit
significantly. Our proposed multifactor attention approach,
however, generalizes extremely well to the year of test data,
making the forecasts 31% better. Many of the other algo-
rithms have a hard time teasing out real signal from this
noise and produce huge errors on the testing set.

Table 1 and Table 2 also showcase the critical importance
of the comparative attention mechanism to the success of
our model. The L1 regularization of attention seems to im-
prove generalization quite consistently as well. Without an
attention mechanism of some kind it does not seem possible
to constructively leverage the more natural semantics asso-
ciated with the independent observation model. Our neu-
ral network initially loses performance across the board by
working with the more complex structure. However, with
the incorporation of attention we utilize this rich structure
in a generalizable way without the additional feature engi-
neering for each source that would clearly be needed to get
reasonable performance from many of the baseline models
tested. Moreover, we validate that although the Gating Net-
work of a HME model can solve the same problem fairly
effectively, it performs significantly worse than our model
with attention based off the hidden representation. These
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results seem to also suggest that our proposed sparse at-
tention paradigm can improve certain incarnations of HME
models when the data is volatile.

5.2. Analysis of the Influence of Factors

In Table 3 we show the amount of impact each major group
of observations had in influencing the forecast over the data
set. Although we considered quite a few data sources, it is
unsurprising that a large chunk of the error is still consid-
ered unaccounted for (for example promotional informa-
tion is not present in our experiments). We would naturally
expect weather to be highly impactful on retail demand.
Social chatter on Twitter about the commodity is also an
important and frequently used indicator. It is also perhaps
unsurprising that the various event sources would have a
low average impact because they are occasional by their
nature. It is hard to know to what extent the lack of a reli-
able popularity metric impacted the usefulness of the local
event data. We can see that our model achieves bigger gains
on the more volatile commodities because it finds more oc-
casions where it is useful to correct the signal based on
weather and social chatter in this data.

Component All 20 Hardest 5
Unexplained Correction 54.7% 48.7%
Weather 22.8% 26.1%
Commodity Social Signal 18.6% 22.4%
National Events 2.4% 1.1%
Local Events 1.5% 1.6%

Table 3. Relative total contribution of each group of observations
to the prediction of all 20 commodities and the hardest 5 com-
modities to model over 2 years of data.

6. Discussion
6.1. Intuition about ”Noisy” Data

In our experiments, attention-based neural networks per-
form significantly better than standard neural networks.
However, the bulk of these gains came on the five most
volatile commodities as shown in Table 2. These com-
modities are noisy in that their sales are highly volatile,
with little training data, and thousands of possible explana-
tory features to consider. Our intuition is that attention-
based neural networks should play a role in combating this
noisy data problem, especially with the imposed sparsity
that should push many attention values near zero early in
training. The sparse attention mechanism forces entire ob-
servation vectors to have zero influence on the prediction
– effectively shrinking the number of explanatory variables
considered by the model at that point. At times, a small
number of values in an observation vector may by chance

have a high correlation with the volatility in the signal over
a small period and this becomes more probable as volatil-
ity increases. The attention mechanism makes a holistic
judgment based on a group of features to dismiss the entire
group and shield the model from reacting to spurious cor-
relations in a small subset of the observation vector. Our
experiments seem to support this hypothesis, but a more
rigorous theoretical analysis of the properties of this model
will be left to future work.

6.2. An End to End Model

To this point, our focus has been on a neural network mod-
ule that corrects an existing time series signal with no shar-
ing of the latent parameters used for time series prediction.
However, it is of theoretical interest whether or not it is
possible to train this model end to end with a neural net-
work that is also responsible for the time series prediction
itself. We experiment with a GRU (Cho et al., 2014) recur-
rent neural network with sparse regularization as our time
series modeler that is sent the entire prior history of the
store’s time series concatenated with a one hot store en-
coding at each time step. We find it useful to adjust our
architecture slightly to allow for sharing of latent parame-
ters by concatenating both the output and last hidden repre-
sentation of the GRU to contextif (τ) for all observations
of external feature groups. Additionally, in equation 12
g(τ) is replaced by the final hidden representation of the
GRU. Moreover, we observe that when the model has more
power over modifying the time series component itself, the
uncertainty vector and unexplained factors add less value.
As such, we do not compute equations 13 and 15, and re-
move the term over the last value in equations 14 and 18.
B(τ) is also replaced by the output of the GRU. Empiri-
cally, we find this model achieves 20.28 MAPE with a 5.05
anomaly percentage. This result indicates both that our pro-
posed multifactor attention module can be used to augment
a recurrent neural network and that it can potentially sur-
pass precision achieved with a traditional univariate system
through tighter integration of prediction elements.

7. Conclusion
We have presented a novel multifactor attention model for
neural networks that incorporates external data sources for
time series prediction problems. The model provides evi-
dence for the reasoning behind adjustments to the time se-
ries forecast output by leveraging a comparative attention
mechanism over the external factors in an additive model.
Our model achieves a 23.9% improvement of forecasts due
to external data sources and helps predict 28.3% of the
anomalous events. Moreover, our model offers superior
descriptive capabilities in comparison to other neural net-
works proposed for time series forecasting to date.
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Romero, Oscar, and Alonso-Betanzos, Amparo. A
very fast learning method for neural networks based
on sensitivity analysis. J. Mach. Learn. Res., 7:
1159–1182, December 2006. ISSN 1532-4435. URL
http://dl.acm.org/citation.cfm?id=
1248547.1248589.

Chen, Zheng and Du, Xiaoqing. Study of stock prediction
based on social network. In Social Computing (Social-
Com), 2013 International Conference on, pp. 913–916.
IEEE, 2013.

Cho, Kyunghyun, van Merriënboer, Bart, Bahdanau,
Dzmitry, and Bengio, Yoshua. On the properties of neu-
ral machine translation: Encoder–decoder approaches.
Syntax, Semantics and Structure in Statistical Transla-
tion, pp. 103, 2014.

Cho, KyungHyun, Courville, Aaron C., and Ben-
gio, Yoshua. Describing multimedia content us-
ing attention-based encoder-decoder networks. CoRR,
abs/1507.01053, 2015. URL http://arxiv.org/
abs/1507.01053.

Chorowski, Jan K, Bahdanau, Dzmitry, Serdyuk, Dmitriy,
Cho, Kyunghyun, and Bengio, Yoshua. Attention-based
models for speech recognition. In Advances in Neural
Information Processing Systems, pp. 577–585, 2015.

Cortez, Paulo, Rio, Miguel, Rocha, Miguel, and Sousa, Pe-
dro. Multi-scale internet traffic forecasting using neural
networks and time series methods. Expert Systems, 29
(2):143–155, 2012.

Fildes, Robert, Goodwin, Paul, Lawrence, Michael, and
Nikolopoulos, Konstantinos. Effective forecasting and
judgmental adjustments: an empirical evaluation and
strategies for improvement in supply-chain planning. In-
ternational Journal of Forecasting, 25(1):3–23, 2009.

Franses, Philip Hans and Legerstee, Rianne. Properties
of expert adjustments on model-based sku-level fore-
casts. International Journal of Forecasting, 25(1):35–47,
2009.

Hastie, Trevor J and Tibshirani, Robert J. Generalized ad-
ditive models, volume 43. CRC Press, 1990.

Hermann, Karl Moritz, Kociský, Tomás, Grefenstette, Ed-
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