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Appendices
This document contains supplementary material for the
submission “Robust Monte Carlo Sampling using
Riemannian Nosé-Poincaré Hamiltonian Dynamics”.

A. Proof of Theorem 1
The Riemann-augmented Nosé-Poincaré Hamiltonian can
be written as
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We need to prove the following about this Hamiltonian:

Theorem 1. The dynamical system derived from the Rie-
mannian Nosé-Poincaré Hamiltonian (1) generates sam-
ples from the canonical ensemble.

Proof. First we denote Hgc(θ,p) = −L(θ) +
1
2pTG(θ)−1p.

We will show that we can integrate out s, q from
p(θ,p, s, q) ∝ exp (−H(θ,p, s, q)) to get p(θ,p) ∝
exp (−Hgc(θ,p)/kT ). The integration of s essentially fol-
lows (Bond et al., 1999).

The probability of any (θ,p, q) can be written as
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See (Leimkuhler & Reich, 2004) for details of the last step.

The argument of the δ-function has a root at s0 = exp
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We can therefore write p(θ,p, q) as
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See (Leimkuhler & Reich, 2004) for the details of the first
step.

With s integrated out, we are left with

p(θ,p, q) ∝ exp (−Hgc/kT ) exp
[
− 1

2kT
|G(θ)|−1q2

− 1

2
log
{
(2π)D|G(θ)|

} ]
.

We can easily integrate out q from the second exponential
term on the right to get the desired form for p(θ,p).

Note that the integration over s works along the energy
slice H = H0, where H0 is the initial value of the po-
tential / Hamiltonian. The desired marginal density over
(θ,p) however is invariant to H0, since H0 is delegated to
the proportionality constant during the integration over s,
and cancels out under normalization.

B. Discretized Dynamics
B.1. Generalized Leapfrog in the Stochastic case

We propose the following dynamics to incorporate stochas-
tic noise correction terms into the deterministic updates:
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As mentioned in the main paper, we use the generalized
leapfrog algorithm to discretize the continuous differential
equations. The generalized leapfrog algorithm is a compo-
sition of a symplectic first-order Euler integrator with its
adjoint. For the dynamics (2), the update equations can be

written as
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Using the tensor G(θ) = diag(θ)−1, (assuming G(θ) �
0), the implicit system for pt+ε/2 and qt+ε/2 reduces to the
following quadratic system:
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where we have omitted the t + ε/2 superscripts for clarity
(i.e. pi = p

(t+ε/2)
i ). The Jacobian in this case is an ar-

rowhead matrix. We should mention here that the Newton
iterations can be performed for any choice of metric tensor;
we choose the diagonal tensor in our real-data experiments
for simplicity of implementation.

C. Proof of Theorem 2
The Fokker-Planck equation describes the evolution of the
probability distribution of the parameters of a differential
equation under stochastic forces. For a stochastic differ-
ential equation with diffusion coefficient D(θ), written as
θ̇ = f(θ) +N(0, 2D(θ)), with the distribution of θ being
p(θ), the Fokker-Planck equation can be written as

∂

∂t
p(θ) = − ∂

∂θ
[f(θ)p(θ)] +

∂2

∂θ2
[D(θ)p(θ)] , (4)

where the notation ∂2

∂θ2 denotes
∑
i,j

∂
∂θi

∂
∂θj

.

Theorem 2. The dynamics defined in (2) leave the
probability distribution defined by p(θ, p, s, q) ∝
exp (−H(θ, p, s, q)) invariant.

Proof. Let us start with the deterministic Hamiltonian dy-
namics, and replace the log-likelihood terms therein with
their stochastic versions, without any corrections. Follow-
ing the notation of (Yin & Ao, 2006), the dynamics can be
represented in the following format:
θ̇
ṗ
ṡ
q̇

 = −


0 0 0 −I
0 0 I 0
0 −I 0 0
I 0 0 0
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∂
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+N

(5)

where N = [0, N(0, 2
√
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T . Let
us denote the anti-symmetric matrix above by X . Then,
denoting ∇ = [∂/∂θ; ∂/∂p; ∂/∂s; ∂/∂q], it is easy to see
that tr

{
∇T∇Xy

}
= 0 for any y(θ,p, s, q).

Therefore the right hand side of the Fokker-Planck equation
(4) can be written as

− tr∇T {p(θ,p, s, q)X∇H}+ tr
{
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}
= −tr∇T {p(θ,p, s, q)X∇H}
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Here we have used the shorthand∇H to refer to the second
matrix on the right hand side of equation (5), and

D =


0 0 0 0
0 0 0

√
sB(θ)

0 0 0 0
0 A(θ) 0 0

 .

Note that ∇p = −p∇H , since p ∝ exp (−H). Therefore,
if we simply replace X with D +X in (5), the right hand
side of the Fokker-Plank equation reduces to zero. Using
D +X in (5) is equivalent to the dynamics (2).

As an aside, one can intuitively see that it is possible to in-
corporate any arbitrary dynamics into this formulation, by
making appropriate assumptions about the diffusion terms
in the noise and making corresponding corrections to the
deterministic dynamics. Indeed, this fact has been investi-
gated more thoroughly in (Ma et al., 2015).

D. Experimental Addenda
D.1. Parameter Estimation in Bayesian Logistic

Regression

Tables 1 and 3 show the RMSE for the two parameters
w1 and w2 for the synthetic Bayesian logistic regression
experiment, for SGR-NPHMC and SG-NHT respectively.

Table 1. RMSE and auto-correlation times of the parameter sam-
ples from SGR-NPHMC runs on the synthetic Bayesian logistic
regression dataset.

{A,B} RMSE (w1) RMSE (w2)

0.01 0.2684 0.1833
0.001 0.1927 0.1932
0.0001 0.1965 0.2125

Table 2. RMSE and auto-correlation times of the parameter sam-
ples from SG-NHT runs on the synthetic Bayesian logistic regres-
sion dataset.

{A} RMSE (w1) RMSE (w2)

0.1 0.2071 0.1884
1 0.2023 0.1850
10 0.2151 0.1907

D.2. Perplexity for Topic Modeling

We use the perplexity metric from (Zhou & Carin, 2015),
where it is defined as

Perplexity = exp

(
− 1

y··

Ntest∑
n=1

V∑
v=1

ynv logmnv

)

where ynv =the count of vocabulary term v in held-out test

document n, and y·· =
Ntest∑
n=1

V∑
v=1

ynv .



Robust Monte Carlo Sampling using Riemannian Nose-Poincare Hamiltonian Dynamics

mnv is the mean of the collected samples of Θ × Φ nor-
malized over the vocabulary, defined as

mnv =

S∑
s=1

K∑
k=1

φ
(s)
vk θ

(s)
kn

/ V∑
v=1

S∑
s=1

K∑
k=1

φ
(s)
vk θ

(s)
kn .

Here s and k index the samples and latent topics respec-
tively.

D.3. Runtime comparisons

We present the runtimes for SGR-NPHMC and SG-NHT
for the synthetic and real-data experiments mentioned in
the main paper 1. We note that for toy datasets with low
parameter dimensionality, our algorithm can be upto an or-
der of magnitude slower than SG-NHT, albeit producing
results with higher accuracy and lower variance. The run-
time gap is closed when transitioning to real-life datasets
with parameter dimensionality in the hundreds.

Table 3. Runtimes for SGR-NPHMC and SG-NHT for synthetic
and real datasets (MS = milliseconds)

{DATASET} SGR-NPHMC SG-NHT

SYN-GAUSSIAN 4.4MS 0.36MS
SYN-BAYES LR 8.5MS 0.45MS
REAL-20 NEWS 0.95S 0.42S
REAL- REUTERS 3.8S 2.7S
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