
On the Quality of the Initial Basin in Overspecified Neural Networks

A. Proofs of Basin Partition Properties
A.1. Proof of Lemma 1

We will need the following three auxiliary lemmas.

Lemma 3. Let B be some basin as defined in Definition 2, and define zi = viwi. Then

LS (Z) = LS (W,v)

is convex in Z = (z1, . . . , zn) on B.

Proof. Restricting ourselves to B, since sign (〈wj ,xt〉) , sign (vj) are fixed, we can rewrite our objective as

1

m

m∑
t=1

`

(
n∑
i=1

σi,t 〈viwi,xt〉 , yt

)
=

1

m

m∑
t=1

`

(
n∑
i=1

σi,t 〈zi,xt〉 , yt

)
,

where σi,t ∈ {−1, 0,+1} are fixed. This is a linear function composed with a convex loss `, therefore the objective is
convex in Z.

Lemma 4. Let (W,v) ∈ BA,bS . There exists a continuous path
(
W̃ (λ), ṽ(λ)

)
, λ ∈ [0, 1] from the initial point(

W̃ (0), ṽ(0)
)

= (W,v), to a point
(
W̃ (1), ṽ(1)

)
satisfying ṽ(1) = b, along which Nn

(
W̃ (λ), ṽ(λ)

)
is constant and(

W̃ (λ), ṽ(λ)
)
∈ BA,bS ∀λ ∈ [0, 1] .

Proof. If vi = 0 for some i ∈ [n], then the ith neuron is canceled and we can linearly rescale wi to 0, and then rescale vi
to bi, so we may assume without loss of generality that vi 6= 0 for all i ∈ [n]. We have for all α = (α1, . . . , αn) � 0,

Nn (W,v) (x) =

n∑
i=1

vi [〈wi,x〉]+

=

n∑
i=1

vi
αi
αi [〈wi,x〉]+

=

n∑
i=1

vi
αi

[〈αiwi,x〉]+ .

Where we used the positive homogeneity of [·]+ in the last equality. So by linearly scaling α(0) = (1, . . . , 1) to α(1) =

(|v1| , . . . , |vn|), i.e. α(λ) = (1− λ+ λ |v1| , . . . , 1− λ+ λ |vn|) , λ ∈ [0, 1], we obtain the desired path

W̃ (λ) =
(
α

(λ)
1 w1, . . . , α

(λ)
n wn,

)
,

ṽ(λ) =

(
v1

α
(λ)
1

, . . . ,
vn

α
(λ)
n

)
,

while noting that sign (vi) = sign
(
vi
αi

)
and sign (〈wi,x〉) = sign (〈αiwi,x〉) for all α � 0, therefore we remain inside

BA,bS .

Lemma 5. For (W,v) ,
(
W̃ , ṽ

)
∈ BA,bS , define

v
(λ)
i = λṽi + (1− λ) vi,

w
(λ)
i =

{
λw̃i + (1− λ)wi vi = ṽi = 0

λ ṽiw̃i
v
(λ)
i

+ (1− λ) viwi
v
(λ)
i

otherwise
.

Then
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1. v(λ)
i w

(λ)
i = λṽiw̃i + (1− λ) viwi ∀i ∈ [n] , λ ∈ (0, 1) .

2.
(
w

(λ)
i , v

(λ)
i

)
−→
λ→0+

(wi, vi) ∀i ∈ [n] .

3.
(
w

(λ)
1 , . . . ,w

(λ)
n , v

(λ)
1 , . . . , v

(λ)
n

)
∈ BA,bS ∀λ ∈ (0, 1) .

Proof.

1. Can be shown using a straightforward computation.

2. Compute
lim
λ→0+

v
(λ)
i = lim

λ→0+

λṽi + (1− λ) vi = vi.

Suppose vi = ṽi = 0, then
lim
λ→0+

w
(λ)
i = lim

λ→0+

λw̃i + (1− λ)wi = wi.

Otherwise, v(λ)
i 6= 0 ∀λ ∈ (0, 1) since sign (vi) = sign (ṽi), and we have

lim
λ→0+

w
(λ)
i = lim

λ→0+

(
λ
ṽiw̃i

v
(λ)
i

+ (1− λ)
viwi

v
(λ)
i

)

= lim
λ→0+

λṽiw̃i

λṽi + (1− λ) vi
+ lim
t→0+

(1− λ) viwi

λṽi + (1− λ) vi

= 0 +
viwi

vi
= wi.

3. Since sign (ṽi) = sign (vi), we have

sign
(
v

(λ)
i

)
= sign (λṽi + (1− λ) vi)

= λsign (ṽi) + (1− λ) sign (vi) .

Suppose vi = ṽi = 0, then since sign (〈w̃i,xt〉) = sign (〈wi,xt〉), we have ∀t ∈ [m] , i ∈ [n] , λ ∈ (0, 1)

sign
(〈

w
(λ)

i ,xt

〉)
= sign (〈λw̃i + (1− λ)wi,xt〉)

= sign (λ 〈w̃i,xt〉+ (1− λ) 〈wi,xt〉)
= λsign (〈w̃i,xt〉) + (1− λ) sign (〈wi,xt〉) .

Otherwise,

sign
(〈

w
(λ)
i ,xt

〉)
= sign

(〈
λ
ṽiw̃i

v
(λ)
i

+ (1− λ)
viwi

v
(λ)
i

,xt

〉)

= sign

(
ṽiλ

v
(λ)
i

〈w̃i,xt〉+
vi · (1− λ)

v
(λ)
i

〈wi,xt〉

)
= sign (〈wi,xt〉) .

We are now ready to prove Lemma 1.
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Proof (of Lemma 1).
Clearly, BA,bS is a closed set, and is convex as an intersection of halfspaces.

• BA,bS has connected sublevel sets:
Let (W,v) , (W ′,v′) ∈ B≤α. Using Lemma 4 we may assume without loss of generality that v = v′ ∈ {−1,+1}n.
By linearly interpolating W,W ′, i.e. by taking

W (λ) = (1− λ)W + λW ′, λ ∈ [0, 1] ,

we get a continuous path connectingW,W ′. This path remains in the same basin as a result of Lemma 5.3. Moreover,
by Lemma 3, the objective is convex in W , so we get for all λ ∈ [0, 1]

ES

(
W (λ),v

)
≤ (1− λ)ES (W,v) + λES (W ′,v)

≤ (1− λ)α+ λα

= α.

• Any local minimum in BA,bS is global:
Suppose (W,v) = (w1, . . . ,wn, v1 . . . , vn) is a local minimum in BA,bS , let(

W̃ , ṽ
)

= (w̃1, . . . , w̃n, ṽ1 . . . , ṽn) ∈ BA,bS

be arbitrary, and denote (
W (λ),v(λ)

)
:=
(
w

(λ)
1 , . . . ,w(λ)

n , v
(λ)
1 , . . . , v(λ)

n

)
.

Then for small enough λ

LS (W,v) ≤ LS
(
W (λ),v(λ)

)
= LS

(
W (λ) · v(λ)

)
= LS (λ (ṽ1w̃1, . . . , ṽnw̃n) + (1− λ) (v1w1, . . . , vnwn))

≤ λLS (ṽ1w̃1, . . . , ṽnw̃n) + (1− λ)LS (v1w1, . . . , vnwn)

= λLS

(
W̃ , ṽ

)
+ (1− λ)LS (W,v) ,

=⇒ LS (W,v) ≤ LS
(
W̃ , ṽ

)
.

Where the first transition comes from (W,v) being a local minimum and Lemma 5.2,5.3, the second and third from
Lemma 5.1, and the fourth from Lemma 3.

A.2. Proof of Lemma 2

Let (W ∗,v∗) = (w∗1, . . . ,w
∗
k, v
∗
1 , . . . , v

∗
k) ∈ Rkd+k satisfy

Bas (wi1 , . . . ,wik , vi1 , . . . , vik) = LS (Nk (W ∗,v∗)) ,

and let
(W ′,v′) = (w′1, . . . ,w

′
n, v
′
1, . . . , v

′
n) ∈ Rnd+n,

where

(w′i, v
′
i) =

{
0 i /∈ I(
w∗j , v

∗
j

)
i = ij

.



On the Quality of the Initial Basin in Overspecified Neural Networks

Then

Bas (W,v) ≤ LS (Nn (W ′,v′))

= LS (Nn (w′1, . . . ,w
′
n, v
′
1, . . . , v

′
n))

= LS (Nk (w∗1, . . . ,w
∗
k, v
∗
1 , . . . , v

∗
k))

= LS (Nk (W ∗,v∗))

= Bas (wi1 , . . . ,wik , vi1 , . . . , vik) .

Where the first inequality comes from (W,v) , (W ′,v′) belonging to the same basin, and the second equality comes from
both weights computing the same network output for any input x ∈ Rd.

B. Proofs of Main Theorems
B.1. Proof of Thm. 1

Before delving into the proof of the theorem, we provide some intuition in the special case of the squared loss, where
L(P (W)) = 1

m

∑m
t=1(N(W)(xt) − yt)2. Fix some λ ∈ [0, 1], and consider the objective function along the ray in the

parameter space, corresponding to multiplying the last layer weights inW(λ) by some scalar c ≥ 0. Since the output layer
is linear, the objective function (as we vary c) will have the form

1

m

m∑
t=1

(c ·N(W(λ))(xt)− yt)2.

Thus, the objective function, as a parameter of c (where W(λ) is fixed) is just a quadratic function. Moreover, by the
intermediate value theorem, as long as N(W(λ))(xt) is not 0 for all t, then by picking different values of c, we can find
points along the ray taking any value between 1

m

∑t
i=1 y

2
t (when c = 0) and∞ (as c→∞). Therefore, as long as we start

from a point whose objective value is larger than 1
m

∑t
i=1 y

2
t , we can re-scale each W(λ) by some factor cγ , so that the

new path is continuous, as well as monotonically decreasing in value, remaining above 1
m

∑t
i=1 y

2
t . When we reach the

ray belonging to the endpointW(1) of the original path, we simply re-scale back towardsW(1), with the objective function
continuing to decrease due to the convex quadratic form of the objective function along the ray.

We now turn to the formal proof in the general setting of Thm. 1. For technical reasons, we will extend the interval
λ ∈ [0, 1] to a strictly larger interval, and define certain quantities with respect to that larger interval. Specifically, for any
λ ∈ [−1, 2], define

v(λ) =

{
L(P (W(0)))− λ

2 ε λ ∈ [−1, 0](
1− λ

3

)
· L(P (W(0))) + λ

3 ·max{L(0), L(P (W(1)))} λ ∈ [0, 2].

and note that it strictly monotonically decreases with λ, and satisfies the chain of inequalities

L(P (W(0))) + ε > v(−1) > v(0) = L(P (W(0))) > v(2) > max{L(0), L(P (W(1)))}.

By assumption, for any λ ∈ [0, 1], there exists some c(λ) such that L(c(λ) · P (W(λ))) ≥ L(P (W(0))) + ε. Since
L(P (W(0))) + ε > v(λ) for any λ ∈ [−1, 2], it follows that for any such λ,

L(cclip(λ) · P (Wclip(λ))) > v(λ), (2)

where clip(λ) = min{1,max{0, λ}} denote clipping of λ to the interval [0, 1]. On the other hand, for any λ ∈ [−1, 2],

L(0 · P (Wclip(λ))) = L(0) < v(λ). (3)

Since L is convex and real-valued, it is continuous, hence L(c · P (Wclip(λ))) is convex and continuous in c. Combining
this with Eq. (2) and Eq. (3), it follows from the intermediate value theorem that

∀λ ∈ [−1, 2], ∃ c̃(λ) ∈ (0, cclip(λ)) such that L(c̃(λ) · P (Wclip(λ)) = v(λ). (4)
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Moreover, this c̃(λ) is unique: To see why, consider the convex function f(c) = L(c · P (Wclip(λ)), and assume there are
two distinct values c′, c such that cclip(λ) > c′ > c > 0, and f(c) = f(c′) = v(λ). Then by Eq. (2) and Eq. (3), we would
have the chain of inequalities

f(cclip(λ)) > f(c′) = f(c) > f(0)

which cannot be satisfied by a convex function f .

We now make the following series of observations on c̃(λ), which establish their continuity in λ and that c̃(0) = 1:

1. For any λ ∈ (−1, 2), there is some open neighborhood of c̃(λ) in which the univariate function c 7→ L(c ·P (Wclip(λ)))
is one-to-one: As discussed above, c 7→ L(c · P (Wclip(λ))) is convex, and does not attain a minimal value at c̃(λ)

(since L(c̃(λ) · P (Wclip(λ))) = v(λ) > L(0 · P (Wclip(λ)))). Therefore, L(c · P (Wclip(λ))) must be strictly increasing
or decreasing in some open neighborhood of c̃(λ), and therefore it is locally one-to-one.

2. c̃(λ) is continuous in λ ∈ (−1, 2): Consider the function f(c, λ) = L(c ·P (Wclip(λ)))−v(λ), where (c, λ) ∈ (0,∞)×
(−1, 2). By definition of c̃(λ), we have f(c̃(λ), λ) = 0 for all λ. Moreover, f is continuous (since P (Wclip(λ)), v(λ)

are continuous in λ, and L is convex and hence continuous), and by observation 1 above, f(·, λ) is locally one-to-one
for any λ ∈ (−1, 2). Applying a version of the implicit function theorem from multivariate calculus for possibly
non-differentiable functions (see (Kumagai, 1980)), it follows that there exists some unique and continuous mapping
of λ to c in an open neighborhood of (c̃(λ), λ), for which f(c, λ) = 0. But as discussed earlier, for a given λ, c = c̃(λ)

is the unique value for which f(c, λ) = L(c · P (Wclip(λ))) − v(λ) = 0, so this continuous mapping must map λ to
c̃(λ) locally at every λ. Since this holds for any λ, the mapping of λ to c̃(λ) is continuous on λ ∈ (−1, 2).

3. c̃0 = 1: By definition of c̃(λ) and v(λ) at λ = 0, L(c̃(0) · P (W(0))) = v(0) = L(P (W(0))), which is clearly satisfied
for c̃(0) = 1, and as discussed earlier, is not satisfied for any other value.

Based on the above observations, we have that c̃(λ), as a function of λ ∈ [0, 1], is continuous, begins at c̃0 = 1, and satisfies
L(c̃(λ) · P (W(λ))) = v(λ). Moreover, v(λ) is strictly decreasing in λ. Therefore, letting

{W̃(λ), λ ∈ [0, 1]} (5)

denote the path in the parameter space, where each W̃(λ) equals W(λ) with the last layer weights re-scaled by c̃(λ), we
have that Eq. (5) indeed defines a continuous path from the initialization pointW(0) in the parameter space, along which
the loss L(P (W̃(λ)) is strictly monotonically decreasing.

All that remains now is to argue that from W̃(1), we have a strictly monotonically decreasing path to a point whose loss
equals L(P (W(1))). To see this, note that by definition of W̃(1) and v(1), we have L(P (W̃(1))) = v(1) > L(P (W(1))).
Therefore,

L(c · P (W(1)))

is convex in c, equals L(P (W̃(1))) at c = c̃(λ), and equals the strictly smaller value L(P (W(1))) at c = 1. Therefore,
by re-scaling the last layer parameters of W̃(1) to match those of W(1), we are guaranteed to strictly and monotonically
decrease the loss, until we get a loss equal to L(P (W(1))). Concatenating this with the continuous path W̃(λ), λ ∈ [0, 1],
the result follows.

B.2. Proof of Proposition 1

It is enough to verify that for both losses, proposition 2 holds with r = 1.

For the squared loss, if P (W(0)) 6= 0, then consider the first training example (xi, yi) for which P (W(0))(xi) 6= 0. In that
case, it is easily verified that (c · P (W(0))(xi) − yi)2 is strictly convex in c (for any c), and therefore L(c · P (W(0))) =
1
m

∑m
i=1(c · P (W(0))(xi) − yi)2 is also strictly convex, as an average of convex functions where at least one of them is

strictly convex. Therefore, strict convexity holds with probability r = 1.

For the cross-entropy loss, it is enough to consider the first training example on which the prediction vector p of P (W(λ))
is non-zero, and show strict convexity on that example with probability 1. Since the loss on other examples are convex as
well, we get overall strict convexity with probability 1 as required. Specifically, we need to show strict convexity in c of
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the function

− log

(
exp(c · pji)∑
j exp(c · pj)

)
= log

∑
j

exp(c · pj)

− c · pji . (6)

where ji is the correct class. To do so, consider the function f(p) = log(
∑
j exp(pj)). A straightforward calculation

reveals that its Hessian equals

∇2f(p) = diag(q)− qq> where q =
1∑

j exp(pj)
(exp(p1), exp(p2), . . . , exp(pk)) ,

so the second derivative of the function in Eq. (6) w.r.t. c at some value c equals

p>∇2f(c · p)p. (7)

We now argue that this is strictly positive, unless p is a constant vector p1 = p2 = . . . = pk, in which case the function
in Eq. (6) is indeed strictly convex. To see this, note that the Hessian of f is a rank-1 perturbation of the k × k positive
definite matrix diag(q), so its rank is at least k − 1. Thus, there is only a 1-dimensional subspace of vectors v, for which
v>(diag(q)− qq>)v = 0, which can be verified to be exactly the subspace of constant vectors. Thus, Eq. (7) is positive
unless p is a constant vector.

To finish the proof for the cross-entropy loss, it remains to show that the probability that p is non-constant (conditioned on
P (W(0)) 6= 0) is 1. To simplify the notation, let NZ be the event that P (W(0)) 6= 0, let P be the event that conditioned
on NZ, p (the first non-zero prediction vector over the training examples) is also non-constant. Also, let V be the event
that conditioned on NZ, then for the same training example as p, the input vector to the output neurons is non-zero. Then
it holds that

P [P |NZ] =
P [P |V,NZ]P [V |NZ]

P [V |P,NZ]
. (8)

P [P |V,NZ] = 1, since the linear output neurons are initialized independently from a spherically-symmetric distribution
supported on non-zero vectors, so given a non-zero input, the probability that some neurons will output different values
is 1. Also, P [V |P,NZ] = P [V |NZ] = 1, since conditioned on NZ, p 6= 0 by definition, and since the output neurons
compute a homogeneous linear mapping, the input to these neurons must also be non-zero. Plugging these observations
back into Eq. (8), we get that P [P |NZ] = 1 as required.

B.3. Proof of Proposition 2

We first prove that
P
[
P (W(0)) 6= 0

]
≥ 1− 2−nh−1 . (9)

To see this, consider any neuron in the (h− 1)
th layer, computing x 7→ [〈w,x〉+ b]+. Since (w, b) is drawn from

a spherically symmetric distribution supported on non-zero vectors, it holds for any fixed x that P [〈w,x〉+ b > 0] =
P [〈w,x〉+ b < 0] = 1

2 . Therefore, P
[
[〈w,x〉+ b]+ 6= 0

]
= 1

2 . Since the weights at each neuron are drawn indepen-
dently, and there are nh−1 neurons in the (h−1)th layer, it follows that a linear output neuron receives a non-zero input with
probability at least 1− 2−nh−1 . If this event occurs, then the output of the output neuron will be non-zero with probability
1. Since this holds for any fixed network input, it holds in particular for (say) the first training example, in which case
P (W(0)) will be non-zero with such a probability. Letting A be the event that P (W(0)) 6= 0, as well as L(c · P (W(0)))
being strictly convex in c ∈ [−1,+1], we have by Eq. (9) and the assumption in the statement that P [A] ≥ r (1− 2−nh−1)

Let W be the realization of the random variable P (W(0)). Since the output neurons are initialized from a spherically
symmetric distribution, P [W ] = P [−W ] for any W . Moreover, it is easy to verify that for any W , event A occurs for
P (W(0)) = W if and only if it occurs for P (W(0)) = −W . Therefore,

P [W |A] =
P [W ]P [A|W ]

P [A]
=

P [−W ]P [A| −W ]

P [A]
= P [−W |A] .

In other words, conditioned on A, for any realization W , we are equally likely to get W or −W . Also, conditioned on
A (which implies strict convexity), max{L(W ), L(−W )} ≥ L(W )+L(−W )

2 > L
(
W+(−W )

2

)
= L(0). Therefore, by

symmetry, P
[
L(P (W(0))) > L(0) | A

]
≥ 1

2 . As a result, P
[
L(P (W(0))) > L(0)

]
≥ 1

2P [A] ≥ r
2 (1− 2−nh−1).
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B.4. Proof of Thm. 2

Denote for all j ∈ [n],
S+
j = {x ∈ S : xj > 0} , S−j = {x ∈ S : xj < 0} ,

and observe the objective value on S+
j satisfies for all j ∈ [d],

LS+
j

(W,v) =
∑

t:xt∈S+
j

`

(
n∑
i=1

vi [〈wi,xt〉]+ , yt

)

=
∑

t:xt∈S+
j

`

(
xt,j

n∑
i=1

vi [wi,j ]+ , yt

)
.

Similarly,

LS−j
(W,v) =

∑
t:xt∈S−j

`

(
−xt,j

n∑
i=1

vi [−wi,j ]+ , yt

)
.

Since ` is convex, LS+
j
, LS−j

are convex in
∑n
i=1 vi [wi,j ]+ ,

∑n
i=1 vi [−wi,j ]+ , respectively, so their minimal values are

well defined. It is clear that the minimum achievable using a single neuron is lower bounded by the minimum achievable
using two-layer nets, α, which in turn is lower bounded by the average of all minimal objective values over the various
S±j . It then suffices to show that we initialize from a basin achieving such value, which we denote as β ≤ α, with high
probability. Moreover, since the objective value on S±j is independent for each S±j , it is enough to minimize the objective
on each S±j separately.

Since our basins correspond to the partition of our search space to a fixed sign at each coordinate, we have that for
the expression

∑n
i=1 vi [wi,j ]+ to take the optimal value p∗ in our initialized basin, it suffices that sign (wi,j) = 1 and

sign (vi) = sign (p∗) for some i ∈ [n]. Using an analogous argument for S−j we have,

• The probability of this condition not to hold for a single neuron is at most 3
4 .

• The probability of this condition not to hold for all neurons (since by Assumption 1 all neurons are independent) is at
most

(
3
4

)n
.

• By using the union bound, the probability that exists some S±j such that no neuron can obtain the minimal value over
it is at most

2d

(
3

4

)n
.

We conclude that when initializing (W,v) using a distribution satisfying Assumption 1 then

P [Bas (W,v) ≤ β ≤ α] ≥ 1− 2d

(
3

4

)n
.

B.5. Proof of Thm. 3

We will need the following two auxiliary lemmas:

Lemma 6. Nn (w1, . . . ,wn,v) (x) is (|vi| · ‖x‖)-Lipschitz in each wi.

We leave this lemma without proof, and note that it is immediate from the definition of Nn.

The following lemma provides a lower bound on the probability that the ith neuron is initialized from a region with a point
of distance at most δ from w∗i .
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Lemma 7. Let δ > 0, let (W ∗,v∗) satisfying ‖w∗i ‖2 = 1, ∀i ∈ [n], and let (W,v) be a point on an origin-centered
sphere chosen uniformly at random. Then ∀i ∈ [n]

P [∃w̃i : ‖w̃i −w∗i ‖2 ≤ δ, sign (〈w̃,xt〉) = sign (〈w,xt〉) ∀t ∈ [m]]

≥ 1

π (rank (X)− 1)

(
δ

√
1− δ2

4

)rank(X)−1

.

Before turning to prove the lemma, we first prove the following auxiliary claim.
Claim 1. Let δ > 0 and let a ∈ Sd−1 ⊆ Rd be a point on the d-dimensional unit sphere. Let b be a point chosen uniformly
at random from Sd−1. Then

P [‖a− b‖2 ≤ δ] ≥
1

π (d− 1)

(
δ

√
1− δ2

4

)d−1

.

This claim suffices for proving a weaker version of Thm. 3 where rank (X) is replaced with d. However, utilizing a simple
observation on the structure of the basin partition allows us to prove Lemma 7 which strengthens the result.

Proof. For a point a ∈ Sd−1, let S̄ (a, θ) :=
{
b ∈ Sd−1 : 〈a,b〉 ≥ cos θ

}
be the closed hyperspherical cap of angle

θ ∈ [0, π]. Note that if a,b ∈ Sd−1 form an angle of θ′ ∈ [0, θ] (i.e. b ∈ S̄ (a, θ)) then they form an isosceles triangle with
apex angle θ′ and equal sides of length 1, so the distance between a and b satisfies

‖a− b‖ = 2 sin

(
θ′

2

)
≤ 2 sin

(
θ

2

)
.

Taking δ := 2 sin
(
θ
2

)
we have that θ = 2 arcsin

(
δ
2

)
, so in order for us to lower bound P [‖a− b‖2 ≤ δ], we need to

compute the surface area νd−1 (θ) of the hyperspherical cap of angle θ at point a (independent of a), and normalize this
quantity by the area of the hypersphere ωd−1.

The surface area of a hyperspherical cap of radius θ is given by the formula: ((Li, 2011))

νd−1 (θ) = ωd−2

∫ θ

0

(
sind−2 ξdξ

)
, (10)

where ωd−1 denotes the surface area of Sd−1. Consider the function f (θ) =
∫ θ

0

(
sind−2 ξdξ

)
− 1

d−1 sind−1 θ. It is
monotonically increasing in [0, π] since

f ′ (θ) =
∂

∂θ

(∫ θ

0

(
sind−2 ξdξ

)
− 1

d− 1
sind−1 θ

)
= sind−2 θ − sind−2 θ · cos θ

= sind−2 θ · (1− cos θ)

≥ 0,

where the last inequality holds for all θ ∈ [0, π]. Since f (0) = 0 we have ∀θ ∈ [0, π] that
∫ θ

0

(
sind−2 ξdξ

)
≥ 1

d−1 sind−1 θ.

We compute

P [Ad] =
ωd−2

ωd−1

∫ θ

0

(
sind−2 ξdξ

)
≥ ωd−2

ωd−1
· sind−1 θ

d− 1

=
ωd−2

ωd−1
·

sind−1
(
2 arcsin

(
δ
2

))
d− 1

.
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Using the identities sin (arcsinx) = x, cos (arcsinx) =
√

1− x2 and sin 2x = 2 sinx · cosx, we have

sind−1

(
2 arcsin

(
δ

2

))
=

(
δ

√
1− δ2

4

)d−1

.

Finally, ωd−2

ωd−1
can be shown to be monotonically increasing for all d ≥ 2, so ωd−2

ωd−1
≥ ω0

ω1
= 1

π , thus yielding

P [Ad] ≥
1

π (d− 1)

(
δ

√
1− δ2

4

)d−1

,

which concludes the proof of the claim.

We now turn to prove Lemma 7.

Proof (of Lemma 7). Let U = span (x1, . . . ,xm), and define T (x) := u
‖u‖2

where x = u + u⊥ for u ∈ U,u⊥ ∈ U⊥.
First, we observe that for any initialization of (W,v) , that (W,v) and (T (W ) ,v) where T (W ) := (T (w1) , . . . , T (wn))
both belong to the same basin, since ∀i ∈ [n] ,∀t ∈ [m]

〈xt,wi〉 =
〈
xt, ‖w‖2 · T (wi) + w⊥i

〉
= 〈xt, ‖w‖2 · T (wi)〉+

〈
xt,w

⊥
i

〉
= 〈xt, ‖w‖2 · T (wi)〉
= ‖w‖2 · 〈xt, T (wi)〉 ,

=⇒ sign (〈xt,wi〉) = sign (〈xt, T (wi)〉) .
Thus both W,T (W ) belong to the same basin, achieving the same minimal value. Since any rotation Θ under which U⊥

is invariant commutes with T , we have for any measurable set A ⊆ U

σrank(X)−1 (A) = σd−1

(
ΘT−1 (A)

)
= σd−1

(
T−1 (ΘA)

)
,

where σ (k) denotes the k-dimensional Lebesgue measure. So initializing uniformly on an origin-centered sphere of
dimension d is equivalent to initializing uniformly on an origin-centered sphere of dimension rank (X) in the sense of the
region we initialize from. We complete the proof by invoking Claim 1 with respect to a (rank (X))-dimensional sphere.

We are now ready to prove Thm. 3.

Proof (of Thm. 3). We first argue that since our initialization distribution satisfies Assumption 1, we may rescale each
neuron once initialized to the unit sphere. This is justified since a linear rescaling of the weight of each neuron does not
change the basin we initialized from, so the basin value remains the same. For this reason, we assume without loss of
generality the distribution where each neuron is distributed uniformly and independently on the unit sphere. Define

pε =
1

2π (rank (X)− 1)

(√
ε

nB
·
√

1− ε

4n2B2

)rank(X)−1

= Ω

((√
ε

nB

)rank(X)
)
.

Using the positive homogeneity of the ReLU, we can rescale each v∗i to satisfy |v∗i | = 1 ∀i ∈ [n], and rescale w∗i
accordingly, so we may also assume |v∗i | = 1, ‖w∗i ‖ ≤ B ∀i ∈ [n]. From Lemma 7 we have

P
[
∃w̃i : ‖‖w∗i ‖ · w̃i −w∗i ‖2 ≤

√
ε

n
, sign (〈w̃,xt〉) = sign (〈w,xt〉) ∀t ∈ [m]

]
=P
[
∃w̃i :

∥∥∥∥w̃i −
w∗i
‖w∗i ‖

∥∥∥∥
2

≤
√
ε

n ‖w∗i ‖
, sign (〈w̃,xt〉) = sign (〈w,xt〉) ∀t ∈ [m]

]
≥P
[
∃w̃i :

∥∥∥∥w̃i −
w∗i
‖w∗i ‖

∥∥∥∥
2

≤
√
ε

nB
, sign (〈w̃,xt〉) = sign (〈w,xt〉) ∀t ∈ [m]

]
=2pε,
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and also
P [sign (vi) = sign (v∗i )] =

1

2
.

Since the two events are independent, we have that both occur w.p. at least pε. Also, this event is independent for each
neuron, so we have w.p. at least pε for each neuron to initialize ‘close‘ enough to (w∗i , v

∗
i ). In this sense, we can lower

bound the number of good initializations from below using Z ∼ B (N, pε), where B (N, p) is the binomial distribution.
By using Chernoff‘s bound we bound the tail of Z as follows

F

(
n; c

⌈
n

pε

⌉
, pε

)

≤ exp

− 1

2pε

(
cd npε epε − n

)2

cd npε e


≤ exp

(
−1

2

(cn− n)
2

cn

)

≤ exp

(
−1

4
cn

)
.

Thus with probability ≥ 1 − exp
(
− 1

4cn
)
, we have n neurons initialized in a basin containing a point W̃ ∈ Rn×d of

distance at most
√
ε
n from an optimal weight w∗i for each i ∈ [n].

Let i1, . . . , in be the indices of the well initialized neurons, and let

W̃i =
(
w∗1, . . . ,w

∗
i ,
∥∥w∗i+1

∥∥ w̃i+1, . . . , ‖w∗n‖ w̃n

)
, i = 0, . . . , n.

We compute the value of the basin corresponding to these neurons as follows:

Bas (wi1 , . . . ,win , vi1 , . . . , vin) ≤ L
(
W̃ ,v∗

)
=

1

m

m∑
t=1

(
Nn

(
W̃0,v

∗
)

(xt)− yt
)2

=
1

m

m∑
t=1

∣∣∣∣∣
n∑
i=1

(
Nn

(
W̃i−1,v

∗
)

(xt)−Nn
(
W̃i,v

∗
)

(xt)
)∣∣∣∣∣

2

≤ 1

m

m∑
t=1

(
n∑
i=1

∣∣∣Nn (W̃i−1,v
∗
)

(xt)−Nn
(
W̃i,v

∗
)

(xt)
∣∣∣)2

≤ 1

m

m∑
t=1

∣∣∣∣∣|v∗i | ‖xt‖
(

n∑
i=1

∥∥∥W̃i−1 − W̃i

∥∥∥)∣∣∣∣∣
2

≤

(
n∑
i=1

∥∥∥W̃i−1 − W̃i

∥∥∥)2

=

(
n∑
i=1

‖‖w∗i ‖ · w̃i −w∗i ‖

)2

≤

(
n∑
i=1

√
ε

n

)2

= ε,

where the second inequality in the triangle inequality and the third inequality is from Lemma 6. We now finish the proof
by invoking Lemma 2 to conclude

P [Bas (W,v) ≤ Bas (wi1 , . . . ,win , vi1 , . . . , vin) ≤ ε] ≥ 1− e− 1
4 cn.
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B.6. Proof of Thm. 4

Denote the initialization point as W = (w1, . . . ,wn, v1, . . . , vn), and define (W ′,v′) with v′ =
(sign (v1) , . . . , sign (vn)), w′i =

∑m
t′=1 ai,t′xt′ where ai,t′ ∈ R are to be determined later. Let

(ȳ1, . . . , ȳm) = argmin
(ȳ1,...,ȳm)∈Rm

1

m

m∑
t=1

` (ȳt, yt) ,

we want to show that for well chosen values of ai,t′ , (W ′,v′) belongs to the same basin as (W,v), and achieves the desired
prediction (ȳ1, . . . , ȳm) over a certain subset of (x1, . . . ,xm), while achieving a prediction of 0 over the rest of the sample
instances, effectively predicting the subset without affecting the prediction over the rest of the sample. By combining
enough neurons in this manner, we are able to obtain the minimal objective value over the data. Namely, an objective value
of α. Define the vector y′i =

(
y′i,1, . . . , y

′
i,m

)>
, where

y′i,t =

{
|ȳt| 〈wi,xt〉 > 0, vi · ȳt ≥ 0, ∀j < i 〈wj ,xt〉 ≤ 0 ∧ vj · ȳt < 0

0 otherwise
.

and choose ai = (ai,1, . . . , ai,m)
> such that the equality

XX>ai = y′i

holds.

We first stress that by our assumption,

XX> =

 〈x1,x1〉 . . . 〈x1,xm〉
...

. . .
...

〈xm,x1〉 . . . 〈xm,xm〉

 ∈ Rm×m

is of rank m, and therefore ai exists and is well-defined.

Assuming that for any t ∈ [m] there exists some neuron i such that 〈wi,xt〉 > 0, vi · ȳt ≥ 0 (We will later analyze the
probability of this actually happening), we compute the prediction of our network with weights W ′ = (w′1, . . . ,w

′
n) on

xt:

Nn (W ′,v′) (xt) =

n∑
i=1

v′i [〈w′i,xt〉]+

=

n∑
i=1

vi

[〈
m∑
t′=1

ai,t′xt′ ,xt

〉]
+

=

n∑
i=1

vi

[
m∑
t′=1

ai,t′ 〈xt′ ,xt〉

]
+

=

n∑
i=1

vi
[
y′i,t
]
+

=

n∑
i=1

vi
[
|ȳt| · 1〈wi,xt〉>0, vi·ȳt≥0, ∀j<i 〈wj ,xt〉≤0∧vj ·ȳt<0

]
+

=

n∑
i=1

ȳt · 1〈wi,xt〉>0, vi·ȳt≥0, ∀j<i 〈wj ,xt〉≤0∧vj ·ȳt<0

= ȳt.
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Where the last equality comes from our assumption that there exists some neuron i s.t. 〈wi,xt〉 > 0, vi · ȳt ≥ 0, and from
the definition of y′i,t which asserts that at most a single neuron will predict xt. Thus, we have

∀t ∈ [m] Nn (W ′,v) (xt) = ȳt

=⇒ LS (W ′,v) = α.

To put this result in different words, if xt is positive on the hyperplane induced by wi and if vi has the same sign as ȳt,
then w′i predicts xt correctly, given that xt was not previously predicted by a neuron w′j where j < i.

We now assert that (W,v) and (W ′,v′) indeed belong to the same basin with respect to S. For v,v′ this is clear by
definition, and note that for wi,w

′
i we require that sign (〈wi,xt〉) · sign (〈w′i,xt〉) ≥ 0, ∀i ∈ [n] , t ∈ [m]. Thus we

compute:
If 〈wi,xt〉 > 0, vi · ȳt ≥ 0, ∀j < i 〈wj ,xt〉 ≤ 0 ∧ vj · ȳt < 0 all hold, then we have

sign (〈wi,xt〉) = 1,

and

sign (〈w′i,xt〉) = sign (〈w′i,xt〉)

= sign

(〈
m∑
t′=1

ai,t′xt′ ,xt

〉)

= sign

(
m∑
t′=1

ai,t′ 〈xt′ ,xt〉

)
= sign

(
y′i,t
)

= sign (|ȳt|)
≥ 0.

Otherwise, we have sign (〈wi,xt〉) ≤ 0 and

sign (〈w′i,xt〉) = sign
(
y′i,t
)

= 0.

Finally, we define the event Ati := 〈wi,xt〉 > 0, vi · ȳt ≥ 0, i.e. the ith neuron is able to predict xt correctly. Since vi,wi

are independent, and since wi is drawn from a spherically symmetric distribution for all i ∈ [n], we have

P
[
Ati
]

= P [〈wi,xt〉 > 0] · P [vi·, ȳt ≥ 0] ≥ 1

4

=⇒ P
[
Ati

]
≤ 3

4
.

Since the neurons are independent, and since (sign (v1) , . . . , sign (vn)) is uniformly distributed on the Boolean cube, we
have

P

[
n⋂
i=1

Ati

]
≤
(

3

4

)n
.

Using the union bound on
⋂n
i=1A

t
i for t = 1, . . . ,m we get

P [∃t s.t. no neuron predicts xt] ≤ m
(

3

4

)n
.

Thus, the probability of initializing from a basin achieving a global minimum with value α is at least

1−m
(

3

4

)n
.
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Figure 1. The partition of R2 into regions by the instances c1 = (1, 1) , c2 = (−2, 0.5), and the corresponding partition by clustered
instances with centers c1, c2. The noisy regions are depicted by the light blue and light red.

B.7. Proof of Thm. 5

The idea behind the proof is comprised of two parts. The first is that by predicting the clusters’ centers well, we are able
to obtain a good objective value over the data. The second is that the basin partition of the clustered data is similar to the
basin partition of the clusters’ centers. So by approximating a good solution for the clusters’ centers, we are able to reach
a good objective value.

Recall that by Definition 2, we partition the parameter space Rn×d of the first layer into sets where sign (〈wi,xt〉) is fixed
for all i ∈ [n] , t ∈ [m]. This restricts the possible weight vector of each neuron in the first layer to a subset of Rd. Referring
to these subsets as regions, we observe that their structure varies slightly when changing δ from 0 (where a cluster contains
a single point) to a small positive quantity, where the new regions introduced by the clusters are referred to as noisy regions
(see Fig. 1).

To approximate a good solution for the clusters’ centers, we need to initialize from a basin where such an approximation
exists. Note that if δ = 0, then the result will hold as a corollary of Thm. 4. Alternatively, if δ is small enough, then we
would expect such an approximation to exist in the basins comprised of non-noisy regions, as these vary slightly when δ is
small. Therefore, we would like to assert that we initialize from these basins to guarantee the existence of a good solution.

Before delving into the proof of Thm. 5, we first prove two auxiliary lemmas (Lemma 8 and Lemma 9). The following
lemma provides an upper bound on initializing a single neuron from a noisy region, for distributions satisfying Assumption
1.
Lemma 8. Define the set of noisy regions with respect to the jth cluster,

Aj =
{
x : ‖x‖2 = 1, ∃y : ‖cj − y‖2 ≤ δj , 〈x,y〉 = 0

}
.

Then under the assumptions in Thm. 5, its complement with respect to the d-dimensional unit sphere Acj = Sd−1\Aj
satisfies

σd−1

(
Acj
)

ωd−1
≥ 1− 1

4d
.

Where σd−1 is the (d− 1)-dimensional Lebesgue measure, and ωd−1 is the surface area of the d-dimensional unit sphere.

To prove the lemma we will need two auxiliary claims.
Claim 2. Let S (a, θ) :=

{
b ∈ Sd−1 : 〈a,b〉 > cos θ

}
denote the open hyperspherical cap of spherical radius θ and center

x. Then

S

(
cj ,

π

2
− 2 arcsin

δj
2 ‖cj‖

)
∪̇S

(
−cj ,

π

2
− 2 arcsin

δj
2 ‖cj‖

)
⊆ Acj .

Proof. Clearly, the two open hyperspherical caps are disjoint, as they are of spherical radius ≤ π
2 and the two originate in

two diametrically opposite points. Assume x ∈ S
(
cj ,

π
2 − 2 arcsin

δj
2‖cj‖

)
, then the projection of

{
z : ‖cj − z‖2 ≤ δj

}
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onto Sd−1, denoted Pj , is a hyperspherical cap of spherical radius θ := 2 arcsin
δj

2‖cj‖ . Since the dot product is a bi-linear
operation, it suffices to show that ∀y ∈ Pj 〈x̃,y〉 6= 0, where x̃ ∈ Sd−1 is the projection of x onto Sd−1.

Let y ∈ Pj , using the fact that s : Sd−1 × Sd−1 → R+, the spherical distance function defined by s (a,b) :=
arccos (〈a,b〉), satisfies the triangle inequality we have

s (x̃,y) ≤ s (x̃, cj) + s (cj ,y)

<
π

2
− θ + θ

=
π

2
,

=⇒ 〈x̃,y〉 6= 0.

Where the same argument works for x ∈ S
(
−cj , π2 − 2 arcsin

δj
2‖cj‖

)
and −Pj .

Moving on to our next auxiliary claim.
Claim 3. ∀θ ≥ 0 we have ∫ π

2−θ

0

sind−2 ξdξ ≥ ωd−1

2ωd−2
− θ.

Proof. Consider the function f (θ) =
(∫ π

2−θ
0

sind−2 ξdξ
)
−
(
ωd−1

2ωd−2
− θ
)

, it is monotonically increasing in [0,∞) since

f ′ (θ) =
∂

∂θ

((∫ π
2−θ

0

sind−2 ξdξ

)
−
(
ωd−1

2ωd−2
− θ
))

= − sind−2
(π

2
− θ
)

+ 1

≥ 0.

And since f (0) = 0 we have ∀θ ∈ [0,∞) that
∫ π

2−θ
0

sind−2 ξdξ ≥ ωd−1

2ωd−2
− θ.

We now turn to prove Lemma 8.

Proof (of Lemma 8). Using Claims 2 and 3, Eq. (10) and the fact that ∀d ≥ 2 ωd−1

ωd
≤
√

d
2π ((Leopardi, 2007),

Lemma 2.3.20), we have the following:

σd−1

(
Acj
)

ωd−1
≥
σd−1

(
S
(
cj ,

π
2 − θ

))
+ σd−1

(
S
(
−cj , π2 − θ

))
ωd−1

=
2νd−1

(
π
2 − θ

)
ωd−1

= 2
ωd−2

ωd−1

∫ π
2−θ

0

sind−2 ξdξ

≥ 2
ωd−2

ωd−1

(
ωd−1

2ωd−2
− θ
)

= 1− 2ωd−2θ

ωd−1

≥ 1− 4

√
d

2π
· arcsin

δj
2 ‖cj‖

≥ 1− 4

√
d

2π
· arcsin

(
sin

( √
2π

16d
√
d

))

= 1− 1

4d
.
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Now that we can bound the probability of initializing from a noisy region Aj , j ∈ [k], we turn to show that with high
probability, a solution withO

(
δ2
)

value can be found. Let C be the matrix with rows c1, . . . , ck, then by Thm. 4 we know

that with high probability there exists some
(
W̃ , ṽ

)
which achieves a value of 0 on the dataset {cj , ŷj}kj=1, and since the

cluster target values are γ-Lipschitz, this
(
W̃ , ṽ

)
will also perform well on S. Unfortunately, we cannot guarantee that(

W̃ , ṽ
)

resides in the basin we initialized from, as this guarantee can only be given on the basin partition where δ = 0.

Instead, we take a surrogate (W ′,v′) which approximates
(
W̃ , ṽ

)
well, and then show that the value it achieves is also of

magnitude O
(
δ2
)
. More formally, we have the following lemma.

Lemma 9. Let C be a matrix with rows c1, . . . , ck, satisfying rank (C) = k. Let (W,v) ∈ BA,bS satisfy ∀j ∈ [k] , ∃i ∈
[n] : wi /∈ ∪rAr, 〈wi, cj〉 > 0, vi · ŷj ≥ 0. Then exist

(
W̃ , ṽ

)
and (W ′,v′) where the following holds:

1.
(
W̃ , ṽ

)
predicts yt well: ∣∣∣Nn (W̃ , ṽ

)
− yt

∣∣∣ ≤ δ(nσmax

(
C>
)

σ2
min (C>)

‖ŷ‖2 + 2γ

)
.

2. (W ′,v′) ∈ BA,bS approximates
(
W̃ , ṽ

)
well:

∣∣∣Nn (W ′,v′)−Nn
(
W̃ , ṽ

)∣∣∣ ≤ nB · δ
c

σmax

(
C>
)

σ2
min (C>)

‖ŷ‖2 .

Before proving the lemma, we state and prove the following two auxiliary claims.

Claim 4. Let w̃i :=
∑k
j=1 ai,jcj = C>ai, where ai satisfies the equality CC>ai = y′i as in Appendix B.6. Then for all

i ∈ [n],

‖w̃i‖2 ≤
σmax

(
C>
)

σ2
min (C>)

‖ŷ‖2 .

Proof. We derive a bound on ‖w̃i‖2 as follows:

CC>ai = y′i,

=⇒ ai =
(
CC>

)−1
y′i,

=⇒ C>ai = C>
(
CC>

)−1
y′i,

=⇒ ‖w̃i‖2 =
∥∥∥C> (CC>)−1

y′i

∥∥∥
2

≤
∥∥C>∥∥op

∥∥∥(CC>)−1
∥∥∥

op
‖y′i‖2

= σmax

(
C>
)
· 1

σ2
min (C>)

‖y′i‖2

≤
σmax

(
C>
)

σ2
min (C>)

‖ŷ‖2 .

Claim 5. Nn (w1, . . . ,wn,v) (x) is (
∑n
i=1 |vi| · ‖wi‖)-Lipschitz in x.

The proof of this claim follows the same idea behind Lemma 6, and is therefore omitted.

We are now ready to prove Lemma 9.



On the Quality of the Initial Basin in Overspecified Neural Networks

Proof (of Lemma 9). We first define
(
W̃ , ṽ

)
as the point satisfying ES′

(
W̃ , ṽ

)
= 0, as demonstrated in Appendix B.6.

Defining (W ′,v′), we let v′ = ṽ ∈ {−1,+1}n. If (w̃i,w
′
i) both belong to the same region with respect to S, then take

w′i = w̃i. Otherwise, we approximate w̃i in the ‖·‖2 sense, by taking w′i in the region we initialized from which is closest
to w̃i.

1. We compute using Claims 4 and 5,∣∣∣Nn (W̃ , ṽ
)

(xt)− yt
∣∣∣

=
∣∣∣Nn (W̃ , ṽ

)
(xt)−Nn

(
W̃ , ṽ

)
(c (xt)) +Nn

(
W̃ , ṽ

)
(c (xt))− yt

∣∣∣
≤
∣∣∣Nn (W̃ , ṽ

)
(xt)−Nn

(
W̃ , ṽ

)
(c (xt))

∣∣∣+
∣∣∣Nn (W̃ , ṽ

)
(c (xt))− yt

∣∣∣
≤

n∑
i=1

‖w̃i‖ · ‖xt − c (xt)‖+ |ŷt − yt|

≤δ

(
n
σmax

(
C>
)

σ2
min (C>)

‖ŷ‖2 + 2γ

)
.

where the last inequality comes from yt, ŷt being the target values of points belonging to a ball of diameter at most 2δ
and the target values being γ-Lipschitz.

2. Note that by definition we have (W ′,v′) ∈ BA,bS . Denote the origin as O. In the worst case, w̃ is on the line
connecting O and ci, so assume this is the case. Denote the point at which the line connecting O and w̃i is tangent to
the ith cluster by Hi, then the vertices O,w′i, w̃i and O,Hi, ci form similar triangles, and we have

‖w′i − w̃i‖2 =
δi
‖ci‖2

‖w̃i‖2 ≤
δ

c
‖w̃i‖2 .

Now, using Claim 4 and Lemma 6, ∣∣∣Nn (W ′,v′) (xt)−Nn
(
W̃ , ṽ

)
(xt)

∣∣∣
=
∣∣∣Nn (W ′,v′) (xt)−Nn

(
W̃ ,v′

)
(xt)

∣∣∣
≤

n∑
i=1

|vi| · ‖xt‖2 · ‖w
′
i − w̃i‖2

≤
n∑
i=1

B · δ
c
‖w̃i‖2

≤
n∑
i=1

B · δ
c

σmax

(
C>
)

σ2
min (C>)

‖ŷ‖2

=nB · δ
c

σmax

(
C>
)

σ2
min (C>)

‖ŷ‖2 .

Equipped with the above lemmas, we are now ready to prove Thm. 5.

Proof (of Thm. 5). Using Lemma 8, we have for all j ∈ [k]

σd−1

(
Acj
)

ωd−1
≥ 1− 1

4d
.
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Applying the union bound to the k ≤ d events where we initialize fromAj , we have that we don’t initialize a single neuron
from a noisy region w.p. at least 3

4 . For a given j ∈ [k], using the union bound again, the probability of initializing from a
non-noisy region in which any internal point w ∈ Rd satisfies 〈w, cj〉 > 0 is at least 1

4 , and finally, since vi has the correct
sign w.p. 1

2 and is independent of where we initialize wi from, we are unable to predict cj w.p. at most 7
8 . Using the union

bound once more in the same manner as we did in Appendix B.6 gives that we initialize “properly” w.p. at least

1− k
(

7

8

)n
≥ 1− d

(
7

8

)n
.

We stress that by using Lemma 2, for the purpose of analyzing the objective value, we can ignore initializations made from
noisy regions, as we may just consider the neurons that were properly initialized. By our assumption that the clusters’
centers are in general position, namely that the matrix C with rows c1, . . . , ck satisfies σmin

(
C>
)
> 0, we have that it is

in particular of rank k, and the conditions in Lemma 9 are met, so we compute

LS (W ′,v′) =
1

m

m∑
t=1

(Nn (W ′,v′) (xt)− ŷt)
2

=
1

m

m∑
t=1

∣∣∣Nn (W ′,v′) (xt)−Nn
(
W̃ , ṽ

)
(xt) +Nn

(
W̃ , ṽ

)
(xt)− ŷt

∣∣∣2
≤ 1

m

m∑
t=1

(∣∣∣Nn (W ′,v′) (xt)−Nn
(
W̃ , ṽ

)
(xt)

∣∣∣+
∣∣∣Nn (W̃ , ṽ

)
(xt)− ŷt

∣∣∣)2

≤ 1

m

m∑
t=1

(
nB · δ

c

σmax

(
C>
)

σ2
min (C>)

‖ŷ‖2 + δn
σmax

(
C>
)

σ2
min (C>)

‖ŷ‖2 + 2γδ

)2

= δ2

((
1 +

B

c

)
n
σmax

(
C>
)

σ2
min (C>)

‖ŷ‖2 + 2γ

)2

.

Thus we conclude that when (W,v) is initialized using a distribution satisfying Assumption 1, we have

P

Bas (W,v) ≤ δ2

((
1 +

B

c

)
n
σmax

(
C>
)

σ2
min (C>)

‖ŷ‖2 + 2γ

)2
 ≥ 1− d

(
7

8

)n
.

C. Poor Basin Structure for Single Neurons
In this appendix, we prove a hardness result for initializing ReLU single neuron nets with convex losses from a basin (as
will shortly be defined for the single neuron architecture context) with a good basin value, and then provide an explicit
construction for the squared loss.

For a single neuron, our objective function with respect to a ReLU activation and convex loss function ` is

LS (w) =
1

m

m∑
t=1

`
(
[〈w,xt〉]+ , yt

)
,

corresponding to the parameter space Rd. As done in Sec. 4 for two-layer networks, we can partition the parameter space
according to the signs of 〈w,xt〉 on each training instance xt. Each region in this partition corresponds to an intersection
of halfspaces, in which our objective LS(w) can easily be shown to be convex. Thus, each such region corresponds to
basin (as defined in Definition 1), and we can consider the probability of initializing in a basin with low minimal value.

C.1. Exponentially Many Poor Local Minima

Building on the work of (Auer et al., 1996), we provide a construction of a dataset which results in exponentially many
poor local minima in the dimension. Moreover, we provide in subsection Appendix C.2 an explicit construction for the
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squared loss. The results extend those of (Auer et al., 1996) by showing that they hold for a single neuron with the ReLU
activation function (for which the technical conditions assumed in (Auer et al., 1996) do not apply).

From an optimization point of view, having exponentially many local minima is not necessarily problematic as many of
which may obtain good objective values. However, following our initialization scheme throughout this work, we modify
the result obtained in (Auer et al., 1996) to satisfy that when the weight vector of the neuron is initialized from a distribution
satisfying Assumption 1, then the distribution of the minimal value in the basin we initialize from is strongly concentrated
around a sub-optimal value as the dimension increases. More formally, we have the following Theorem.
Theorem 6. Consider a ReLU single neuron neural net, with a convex and symmetric loss function ` satisfying ` (a, b) = 0
if and only if a = b. Then for all ε > 0 there exists a sample S such that LS (w∗) = ε for some w∗ ∈ Rd, and a constant
c ∈ R which depends only on `, such that the objective value over the sample LS contains 2d strict local minima, and

P
[
Bas (w) ≤ c

4

]
≤ e− d

16 .

Where w is initialized according to Assumption 1.

In other words, we have exponentially many local minima, where the probability of initializing from a sub-optimal basin
converges exponentially fast (in the dimension) to 1, yet there exists a solution which obtains a value of ε.

Proof. Let L0 = ` (0, 1). Since [0]+ = 0 6= 1 = [1]+ we have L0 > 0. We are interested in a construction where ε is small
enough, therefore assume ε < L0

2 . By the continuity of ` as a convex function, we can find δ ∈ (0, 1) small enough such
that ` (0, δ) = 2ε.

Consider the sample
S = {(x1 = δ, y1 = δ) , (x2 = −1, y2 = 1)} .

We compute

`
(
[wx1]+ , y1

)
=

{
2ε w ∈ (−∞, 0]

0 w = 1
,

`
(
[wx2]+ , y2

)
=

{
0 w = −1

L0 w ∈ [0,∞)
.

Therefore the objective value over S, LS (w) = 1
2

(
`
(
[wx1]+ , y1

)
+ `
(
[wx2]+ , y2

))
satisfies

LS (w) =


ε w = −1
L0

2 w = 1

> L0

2 w ∈ [0, 1) ∪ (1,∞)

.

But since ` is convex, we have that LS is convex in (−∞, 0] and in [0,∞), so LS has exactly two local minima, one is
LS (−1) = ε and the other is LS (1) = L0

2 .

We now extend our sample to be d-dimensional in a similar manner as did the authors in (Auer et al., 1996) as follows:
For t = 1, 2 and j ∈ [d], we use the mapping xt (j) 7→ (0, . . . , 0, xt, 0, . . . , 0) where the non-zero coordinate is the jth

coordinate. It is straightforward to show that the partial derivative ∂
∂wj

LS is 0 for xt (k) with j 6= k, so the geometry
of the surface of the objective function LS is independent for each coordinate. Now, every Cartesian product of local
minima in the one-dimensional setting form a d-dimensional local minimum. Since we have exactly two local minima,
a good and another bad one in each coordinate, this combines into 2d local minima, where each minimum’s value would
be the average of the one-dimensional minima forming it. Note that the combination of all good minima forms the global
minimum with value ε. Following standard convention, we say that the data in this case is ε-realizable using a single neuron
architecture. We stress that an important property of this initialization scheme is that the signs of the coordinates of the
initialization point is uniformly distributed on the Boolean cube, as it implies that on each coordinate, independently, we
have a probability 0.5 of reaching a bad basin, hence the number of bad basins we initialize from is distributed according
to a Binomial distribution B (d, 0.5). Letting c = L0

2 , we have from Chernoff‘s bound that

P
[
Bas (w) ≤ c

4

]
≤ e− d

16 ,

which concludes the proof of the theorem.
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Figure 2. Plot of LS (w) for ε = 0.1.

Figure 3. Plot of LS (w) after extending the sample to 2 dimensions. The surface contains one optimal minimum, another bad minimum
and 2 average valued minima.

C.2. An Explicit Construction With the Squared Loss

We illustrate a specific construction of Thm. 6, for ReLU paired with the squared loss.

Define
` (y, y′) = (y − y′)2

.

Given ε > 0, consider the following sample:

S =

{(
x1 =

1

2
, y1 =

√
2ε

)
, (x2 = −1, y2 = 1)

}
.

Define for i = 1, 2

`i (w) =
(
[wxi]+ − yi

)2
,

and denote
LS (w) =

1

2
(`1 (w) + `2 (w)) .

Note that
LS (−1) = ε,
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LS

(
2
√

2ε
)

=
1

2

are both local minima, and thus S is ε-realizable. As evident in Fig. 2 and Fig. 3, if we are using a distribution corresponding
to Assumption 1, then we have a 50% chance to initialize from the bad basin.
Extending the sample into a d-dimensional one as we did in Thm. 6, we have an ε-realizable dataset S with 2d local
minima. Furthermore, we have that

P
[

Bas (w) ≤ 1

8

]
≤ e− d

16 .


