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Abstract

Deep learning, in the form of artificial neural net-
works, has achieved remarkable practical success
in recent years, for a variety of difficult machine
learning applications. However, a theoretical ex-
planation for this remains a major open problem,
since training neural networks involves optimiz-
ing a highly non-convex objective function, and
is known to be computationally hard in the worst
case. In this work, we study the geometric struc-
ture of the associated non-convex objective func-
tion, in the context of ReL.U networks and start-
ing from a random initialization of the network
parameters. We identify some conditions under
which it becomes more favorable to optimiza-
tion, in the sense of (i) High probability of ini-
tializing at a point from which there is a mono-
tonically decreasing path to a global minimum;
and (ii) High probability of initializing at a basin
(suitably defined) with a small minimal objective
value. A common theme in our results is that
such properties are more likely to hold for larger
(“overspecified”) networks, which accords with
some recent empirical and theoretical observa-
tions.

1. Introduction

Deep learning (in the form of multi-layered artificial neu-
ral networks) has been tremendously successful in recent
years, and advanced the state of the art across a range of
difficult machine learning applications. Inspired by the
structure of biological nervous systems, these predictors
are usually composed of several layers of simple computa-
tional units (or neurons), parameterized by a set of weights,
which can collectively express highly complex functions.
Given a dataset of labeled examples, these networks are
generally trained by minimizing the average of some loss
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function over the data, using a local search procedure such
as stochastic gradient descent.

Although the expressiveness and statistical performance of
such networks is relatively well-understood, it is a major
open problem to understand the computational tractability
of training such networks. Although these networks are
trained successfully in practice, most theoretical results are
negative. For example, it is known that finding the weights
that best fit a given training set, even for very small net-
works, is NP-hard (Blum & Rivest, 1992). Even if we relax
the problem by allowing improper learning or assuming the
data is generated by a network, the problem remains worst-
case hard (see e.g. (Livni et al., 2014) for a discussion of
this and related results). This theory-practice gap is a prime
motivation for our work.

In this paper, we study the geometric structure of the ob-
jective function associated with training such networks,
namely the average loss over the training data as a function
of the network parameters. We focus on plain-vanilla, feed-
forward networks which use the simple and popular ReLU
activation function (see Sec. 2.1 for precise definitions),
and losses convex in the network’s predictions, for example
the squared loss and cross-entropy loss. The structure of
the resulting objective function is poorly understood. Not
surprisingly, it is complex, highly non-convex, and local
search procedures are by no means guaranteed to converge
to a global minimum. Moreover, it is known that even if the
network is composed of a single neuron, the function may
have exponentially many local minima (Auer et al., 1996).
Furthermore, as we discuss later in the paper, the construc-
tion can be done such that the vast majority of these lo-
cal minima are sub-optimal. Nevertheless, our goal in this
work is to understand whether, perhaps under some con-
ditions, the function has some geometric properties which
may make it more favorable to optimization.

Before continuing, we emphasize that our observations are
purely geometric in nature, independent of any particu-
lar optimization procedure. Moreover, we make no claim
that these properties necessarily imply that a practical local
search procedure, such as stochastic gradient descent, will
converge to a good solution (although proving such a result
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could be an interesting direction for future work). Nev-
ertheless, the properties we consider do seem indicative of
the difficulty of the optimization problem, and we hope that
our results can serve as a basis for further progress on this
challenging research direction.

A recurring theme in our results is that such favorable prop-
erties can be shown to occur as the network size grows
larger, perhaps larger than what would be needed to get
good training error with unbounded computational power
(hence the term overspecified networks). At first, this may
seem counter-intuitive, as larger networks have more pa-
rameters, and training them involves apparently more com-
plex optimization in a higher-dimensional space. However,
higher dimensions also means more potential directions of
descent, so perhaps the gradient descent procedures used in
practice are more unlikely to get stuck in poor local minima
and plateaus. Although difficult to formalize, this intuition
accords with several recent empirical and theoretical evi-
dence, which indicates that larger networks may indeed be
easier to train (see (Livni et al., 2014) as well as (Choro-
manska et al., 2014; Dauphin et al., 2014; Bach, 2014)).

In the first part of our work (Sec. 3), we consider net-
works of arbitrary depth, where the weights are initial-
ized at random using some standard initialization proce-
dure. This corresponds to a random starting point in the
parameter space. We then show that under some mild con-
ditions on the loss function and the data set, as the network
width increases, we are overwhelmingly likely to begin at
a point from which there is a continuous, strictly monoton-
ically decreasing path to a global minimum'. This means
that although the objective function is non-convex, it is not
“wildly” non-convex in the sense that the global minima are
in isolated valleys which cannot be reached by descent pro-
cedures starting from random initialization. In other words,
“crossing valleys” is not strictly necessary to reach a good
solution (although again, we give no guarantee that this will
happen for a specific algorithm such as stochastic gradient
descent). We note that this accords well with recent empir-
ical observations (Goodfellow & Vinyals, 2014), according
to which the objective value of networks trained in practice
indeed tends to decrease monotonically, as we move from
the initialization point to the end point attained by the op-
timization algorithm. We also note that although we focus
on plain-vanilla feed-forward networks, our analysis is po-
tentially applicable to more general architectures, such as
convolutional networks.

In the second part of our work (Sec. 4), we focus more
specifically on two-layer networks with scalar-valued out-

!"To be precise, we prove a more general result, which implies
a monotonic path to any objective value smaller than that of the
initial point, as long as some mild conditions are met. See Thm. 1
in Sec. 3 for a precise formulation.

puts. Although simpler than deeper networks, the associ-
ated optimization problem is still highly non-convex and
exhibits similar worst-case computational difficulties. For
such networks, we study a more fine-grained geometric
property: We define a partition of the parameter space into
convex regions (denoted here as basins), in each of which
the objective function has a relatively simple, basin-like
structure: Inside each such basin, every local minima of
the objective function is global, all sublevel sets are con-
nected, and in particular there is only a single connected
set of minima, all global on that basin. We then consider
the probability that a random initialization will land us at
a basin with small minimal value. Specifically, we show
that under various sets of conditions (such as low intrinsic
data dimension, or a cluster structure), this event will oc-
cur with overwhelmingly high probability as the network
size increases. As an interesting corollary, we show that
the construction of (Auer et al., 1996), in which a single
neuron network is overwhelmingly likely to be initialized
at a bad basin, is actually surprisingly brittle to overspec-
ification: If we replace the single neuron with a two-layer
network comprised of just 2(log(d)) neurons (d being the
data dimension), and use the same dataset, then with over-
whelming probability, we will initialize at a basin with a
globally optimal minimal value.

As before, we emphasize that these results are purely ge-
ometric, and do not imply that an actual gradient descent
procedure will necessarily attain such good objective val-
ues. Nevertheless, we do consider a property such as high
probability of initializing in a good basin as indicative of
the optimization difficulty of the problem.

We now turn to discuss some related work. Perhaps the re-
sult most similar to ours appears in (Livni et al., 2014),
where it is shown that quite generally, if the number of
neurons in the penultimate layer is larger than the data
size, then global optima are ubiquitous, and “most” starting
points will lead to a global optimum upon optimizing the
weights of the last layer. Independently, (Haeffele & Vidal,
2015) also provided results of a similar flavor, where suf-
ficiently large networks compared to the data size and di-
mension do not suffer from local minima issues. However,
these results involve huge networks, which will almost in-
variably overfit, whereas the results in our paper generally
apply to networks of more moderate size. Another relevant
work is (Choromanska et al., 2014), which also investigates
the objective function of ReLU networks. That work dif-
fers from ours by assuming data sampled from a standard
Gaussian distribution, and considering asymptotically large
networks with a certain type of random connectivity. This
allows the authors to use tools from the theory of spin-glass
models, and obtain interesting results on the asymptotic
distribution of the objective values associated with critical
points. Other results along similar lines appear in (Dauphin
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et al., 2014). This is a worthy but rather different research
direction than the one considered here, where we focus
on theoretical investigation of non-asymptotic, finite-sized
networks on fixed datasets, and consider different geomet-
ric properties of the objective function. Other works, such
as (Arora et al., 2014; Andoni et al., 2014; Janzamin et al.,
2015; Zhang et al., 2015) and some of the results in (Livni
et al., 2014), study conditions under which certain types
of neural networks can be efficiently learned. However,
these either refer to networks quite different than standard
ReLU networks, or focus on algorithms which avoid direct
optimization of the objective function (often coupled with
strong assumptions on the data distribution). In contrast,
we focus on the geometry of the objective function, which
is directly optimized by algorithms commonly used in prac-
tice. Finally, works such as (Bengio et al., 2005; Bach,
2014) study ways to convexify (or at least simplify) the op-
timization problem by re-parameterizing and lifting it to a
higher dimensional space. Again, this involves changing
the objective function rather than studying its properties.

2. Preliminaries and Notation

We use bold-faced letters to denote vectors, and capital let-
ters to generally denote matrices. Given a natural number
k, we let [k] be shorthand for {1,. .., k}.

2.1. ReLLU Neural Networks

We begin by giving a formal definition of the type of
neural network studied in this work. A fully connected
feedforward artificial neural network computes a function
R — R and is composed of neurons connected accord-
ing to a directed acyclic graph. Specifically, the neurons
can be decomposed into layers, where the output of each
neuron is connected to all neurons in the succeeding layer
and them alone. We focus on ReLU networks, where each
neuron computes a function of the form x [WTX + b] .
where w is a weight vector and b is a bias term specific
to that neuron, and [], is the ReLU activation function
(2], = max {0, z}.

For a vector b = (b1, ..., b,) and a matrix
Wi

W = : )
Wn

and letting [Wx+b],_  be a shorthand for

([WIXJr bl]+ ey [WIX + bnh_), we can define
a layer of n neurons as

x = [Wx+Db], .

Finally, by denoting the output of the i layer as O;, we

can define a network of arbitrary depth recursively by
Oiy1 = [Wiz10; +bi1],,

where W;, b; represent the matrix of weights and bias of
the i'" layer, respectively. Following a standard convention
for multi-layer networks, the final layer & is a purely linear
function with no bias, i.e.

Op =Wp, - Op_1. )]

Define the depth of the network as the number of layers
h, and denote the number of neurons n; in the ™ layer as
the size of the layer. We define the width of a network as
maxie[h] n;.

We emphasize that in this paper, we focus on plain-vanilla
networks, and in particular do not impose any constraints
on the weights of each neuron (e.g. regularization, or hav-
ing convolutional layers).

We define WV to be the set of all network weights, which can
be viewed as one long vector (its size of course depends on
the size of the network considered). We will refer to the
Euclidean space containing W as the parameter space.

Define the output of the network N : R? — RF over the
set of weights JV and an instance x € R? by

N (W) (x).

Note that depending on the dimension of W}, the network’s
output can be either a scalar (e.g. for regression) or a vec-
tor (e.g. for the purpose of multiclass classification). An
important property of the ReLU function, which we shall
use later in the paper, is that it is positive-homogeneous:
Namely, it satisfies for all ¢ > 0 and x € R that

[c 2], =c-[z], .
2.2. Objective Function

We use S = (x4,y:);~, to denote the data on which we
train the network, where x, € R? represents the ¢ train-
ing instance and y; € R* represents the corresponding tar-
get output, and where m is used to denote the number of
instances in the sample.

Throughout this work, we consider a loss function ¢ (y,y’),
where the first argument is the prediction and the second
argument is the target value. We assume ¢ is convex in its
first argument (e.g. the squared loss or the cross-entropy
loss).

In its simplest form, training a neural network corresponds
to finding a combination of weights which minimizes the
average loss over the training data. More formally, we de-
fine the objective function as

Ls (N W) = — 3" £(N V) (x0) 1)
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We stress that even though 7 is convex as a function of the
network’s prediction, Lg (N (W)) is generally non-convex
as a function of the network’s weights. Also, we note that
occasionally when the architecture is clear from context,
we omit N (-) from the notation, and write simply Lg (W).

2.3. Basins

In Sec. 4, we will we consider a partition of the parameter
space into convex regions, in each of which the objective
function Lg (W) has a relatively simple basin-like form,
and study the quality of the basin in which we initialize. In
particular, we define a basin with respect to Lg (W) as a
closed and convex subset of the parameter space, on which
Ls (W) has connected sublevel sets, and where each local
minimum is global. More formally, we have the following
definition:

Definition 1. (Basin) A closed and convex subset B of our
parameter space is called a basin if the following condi-
tions hold:

e B is connected, and for all « € R, the set B<ca =
{W € B: Ls (W) < a} is connected.

e I[fW € B is alocal minimum of Ls on B, then it is a
global minimum of Lg on B.

We define the basin value Bas (B) of a basin B as the min-
imal value? attained:
Bas (B) := min L .
as(B) = min Ls (W)
Similarly, for a point W in the interior of a basin B we
define its basin value as the value of the basin to which it

belongs:
Bas (W) := Bas (B).

In what follows, we consider basins with disjoint interiors,
so the basin to which W belongs is always well-defined.

2.4. Initialization Scheme

As was mentioned in the introduction, we consider in this
work questions such as the nature of the basin we initial-
ize from, under some random initialization of the network
weights. Rather than assuming a specific distribution, we
will consider a general class of distributions which satisfy
some mild independence and symmetry assumptions:

Assumption 1. The initialization distribution of the net-
work weights satisfies the following:

o The weights of every neuron are initialized indepen-
dently.

2For simplicity, we will assume this minimal value is actually
attained at some point in the parameter space. Otherwise, one can
refer to an attainable value arbitrarily close to it.

o The vector of each neuron’s weights (including bias) is
drawn from a spherically symmetric distribution sup-
ported on non-zero vectors.

This assumption is satisfied by most standard initialization
schemes: For example, initializing the weights of each neu-
ron independently from some standard multivariate Gaus-
sian, up to some arbitrary scaling, or initializing each neu-
ron uniformly from an origin-centered sphere of arbitrary
radius. An important property of distributions satisfying
Assumption 1 is that the signs of the weights of each neu-
ron, viewed as a vector in R”, is uniformly distributed on
{—1,+1}".

3. Networks of Any Depth: Path to Global
Minima

In this section, we establish the existence of a continuous
path in the parameter space of multilayer networks (of any
depth), which is strictly monotonically decreasing in the
objective value, and can reach an arbitrarily small objective
value, including the global minimum. More specifically,
we show in Thm. 1 that if the loss is convex in the net-
work’s predictions, and there exists some continuous path
in the parameter space from the initial point W(®) to a point
with smaller objective value W) (including possibly a
global minimum, where the objective value along the path
is not necessarily monotonic) which satisfies certain rela-
tively mild conditions, then it is possible to find some other
path from W to a point as good as W), along which
the objective value is strictly monotonically decreasing.

For the theorem to hold, we need to assume our starting
point has a sufficiently large objective value. In Propo-
sition 1 and Proposition 2, we prove that this will indeed
occur with random initialization, with overwhelming prob-
ability. A different way to interpret this is that a significant
probability mass of the surface of the objective function
overlooks the global minimum. It should be noted that the
path to the minimum might be difficult to find using local
search procedures. Nevertheless, these results shed some
light on the nature of the objective function, demonstrat-
ing that it is not “wildly” non-convex, in the sense that
“crossing valleys” is not a must to reach a good solution,
and accords with recent empirical evidence to this effect
(Goodfellow & Vinyals, 2014).

For the results here, it would be convenient to re-write the
objective function as L(P(W)), where W is the vector of
network parameters, P(W) is an m x k matrix, which spec-
ifies the prediction for each of the m training points (the
prediction can be scalar valued, i.e. £k = 1, or vector-valued
when £ > 1), and L is the average loss over the training
data. For example, for regression, a standard choice is the



On the Quality of the Initial Basin in Overspecified Neural Networks

squared loss, in which case
LPOV) = 5>V
m :

For classification, a standard choice in the context of
neural networks is the cross-entropy loss coupled with
a softmax activation function, which can be written as
LS 6(N(W)(x¢)), where given a prediction vector
p and letting j; be an index of the correct class,

o) = o (22

Recall that although these losses are convex in the net-
work’s predictions, L(P(W)) is still generally non-convex
in the network parameters V. Also, we remind that due
to the last layer being linear, multiplying its parameters by
some scalar ¢ causes the output to change by c. Building
on this simple observation, we have the following theorem.

yt) )

Theorem 1. Suppose L : R™** — R is convex. Given
a fully-connected network of any depth, with initializa-
tion point WO, suppose there exists a continuous path
W X e [0, 1] in the space of parameter vectors, starting
from W) and ending in another point W) with strictly
smaller objective value (L(P(WM)) < L(P(W©))),
which satisfies the following:

1. For some ¢ > 0 and any A € [0, 1], there exists some

cx > 0such that L(cy- P(W™)) > L(PW©)) +-¢

2. The initial point W) satisfies L(P(W(®))) > L(0).

Then there exists a continuous path W) X € [0,1]
from the initial point WO = WO 1o some point
W satisfying L(P(WM)) = L(P(WM)), along which
L(P(WW)) is strictly monotonically decreasing in .

Intuitively, this result stems from the linear dependence of
the network’s output on the parameters of the last layer.
Given the initial non-monotonic path W) we rescale the
last layer’s parameters at each W) by some positive fac-
tor ¢\») depending on A (moving it closer or further from
the origin), which changes its output and hence its objec-
tive value. We show it is possibly to do this rescaling, so
that the rescaled path is continuous and has a monotonically
decreasing objective value. In fact, although we focus here
on ReLU networks, the theorem itself is quite general and
holds even for networks with other activation functions. A
formal proof and a more detailed intuition is provided in
Subsection B.1.

The first condition in the theorem is satisfied by losses
which get sufficiently large (as a function of the network

predictions) sufficiently far away from the origin. In par-
ticular, it is generally satisfied by both the squared loss and
the cross-entropy loss with softmax activations, assuming
data points and initialization in general position®. The sec-
ond condition requires the random initialization to be such
that the initialized network has worse objective value than
the all-zeros predictor. However, it can be shown to hold
with probability close to 1/2 (over the network’s random
initialization), for losses such as those discussed earlier:

Proposition 1. If L(-) corresponds to the squared loss or
cross-entropy loss with softmax activation, and the net-
work parameters are initialized as described in Assumption
1, then ngm [L(POW®)) > L(0)] > L (1—27"n-1),

where ny_1 is the number of neurons in the last layer be-
fore the output neurons.

This proposition (whose proof appears in appendix B.2) is
a straightforward corollary of the following result, which
can be applied to other losses as well:

Proposition 2. Suppose the network parameters W are
initialized randomly as described in Assumption 1. Sup-
pose furthermore that L(-) is such that

P [ L(c- PONV®)) is strictly convex in ¢ € [~1,1]
‘ POVO) £0] > ¢

for some > 0 (where the probability is w.r.t. W(®)). Then
P[L(PW®)) > L(0)] > 5(1—2 1),

Intuitively, the strict convexity property means that by ini-
tializing the neurons from a zero-mean distribution (such
as a spherically symmetric one), we are likely to begin at
a point with higher objective value than initializing at the
mean of the distribution (corresponding to zero weights and
zero predictions on all data points). A formal proof appears
in Appendix B.3.

4. Two-layer ReLLU Networks

We now turn to consider a more specific network archi-
tecture, namely two-layer networks with scalar output.
While simpler than deeper architectures, two-layer net-
works still possess universal approximation capabilities
(Cybenko, 1989), and encapsulate the challenge of opti-
mizing a highly non-convex objective.

From this point onwards, we will consider for simplicity
two-layer networks without bias (where b = 0 for all neu-

3For the squared loss, a sufficient condition is that for any X,
there is some data point on which the prediction of N(W®) is
non-zero. For the cross-entropy loss, a sufficient condition is that
for any A, there is some data point on which N (W) outputs an
‘incorrect’ prediction vector p, in the sense that if ¢ is the correct
label, then p; ¢ arg max; p;.
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rons, not just the output neuron), for the purpose of sim-
plifying our analysis. This is justified, since one could
simulate the additional bias term by incrementing the di-
mension of the data and mapping an instance in the dataset
using x +— (x,1) € R9H1, 5o that the last coordinate of
the weight of a neuron will function as a bias term. Having
such a fixed coordinate does not affect the validity of our
results for two-layer nets.

We denote our network parameters by (W, v) where the
rows of the matrix W & R"™*< represent the weights of
the first layer and v € R™ represents the weight of the
output neuron, and denote a two-layer network of width
n by N, (W,v) : R — R. Our objective function with
respect to two-layer networks is therefore given by

Lg (W,v) ::% Zf (Np (W, v) (x¢) , 1)

:% ZE (Z vi - [(Wi, xe)] ,yt> )

corresponding to the
{(VV7 v): WeR™ ve R"}.

parameter Space

To say something interesting regarding two-layer nets, we
partition our parameter space into regions, inside each
the objective function takes a relatively simple form.
Our partition relies on the observation that when con-
sidering the subset of our parameter space in which
sign ({(w;,x¢)), sign (v;) are fixed for any neuron 7 and
any sample instance ¢, the ReLU activation is then re-
duced to either the zero function or the identity on (w;, x;)
for all i € [n],t € [m], so the objective function takes
the form = 7" £ (3¢, vi (Wi, X¢) , ) for some index
sets Iy, ..., I, C [n]. This function is not convex or even
quasi-convex as a function of (W, v). However, it does
behave as a basin (as defined in Definition 1), and hence
contain a single connected set of global minima, with no
non-global minima. More formally, we have the following
definition and lemma:

Definition 2. (Basin Partition) For any A € {—1,+1}

andb € {—1,+1}", define Bg’b as the topological clo-
sure of a set of the form

nxd

{(W,v) =Vt e[m],j€n],

sign((w,x¢)) = aj¢,sign(v;) = b;}.

We will ignore B?’b corresponding to empty sets, since
these are irrelevant to our analysis.
Lemma 1. Forany A € {—1,+1}"** b € {-1,+1}"

such that Bg’b is non-empty, B‘SL"b is a basin as defined in
Definition 1.

The reader is referred to Appendix A.1 for the proof of the
lemma.

Note that Definition 2 refers to a partition of the parameter
space into a finite number of convex polytopes. Recalling
Assumption 1 on the initialization distribution (basically,
that it is a Cartesian product of spherically-symmetric dis-
tributions), it is easy to verify that we will initialize in an
interior of a basin with probability 1. Therefore, we may
assume that we always initialize in some unique basin.

We now focus on understanding when are we likely to ini-
tialize at a basin with a low minimal value (which we refer
to as the basin value). We stress that this is a purely geo-
metric argument on the structure on the objective function.
In particular, even though every local minimum in a basin
is also global on the basin, it does not necessarily entail
that an optimization algorithm such as stochastic gradient
descent will necessarily converge to the basin’s global min-
ima (for example, it may drift to a different basin). How-
ever, we believe this type of geometric property is indica-
tive of the optimization susceptibility of the objective func-
tion, and provides some useful insights on its structure.

We now turn to state a simple but key technical lemma,
which will be used to prove the results presented later in
this section. Moreover, this lemma also provides some in-
sight into the geometry of the objective function for two-
layer networks:

Lemma 2. Let N,, (W, V) denote a two-layer network of
size n, and let

(W,V) = (Wl,..-,Wn7U1,...7Un) € R’nd+’ﬂ

be in the interior of some arbitrary basin. Then for any
subset I = (i1, ...,ix) C [n] we have

Bas (W,v) < Bas (w;,, .. Vi) -

. ,Wik7vi1,. .
Where the right hand side is with respect to an architecture
of size k.

This lemma captures in a way the power overspecification
has in the context of two-layer networks: In terms of basin
values, any initialization made using a network of width
n > k (i.e. with n neurons in the first layer) is at least as
good as if we had used only a width k network. This is be-
cause in our definition of the basin partition, clamping the
weights of any n — k neurons to 0 still keeps us in the same
basin, while only increasing the minimal value we can ob-
tain using the k non-clamped neurons. Therefore, if we
had only a k-width network to begin with, the correspond-
ing basin value can only be larger. We refer the reader to
Appendix A.2 for the proof of the lemma.



On the Quality of the Initial Basin in Overspecified Neural Networks

4.1. Bad Local Minima Results: Brittleness to
Overspecification

The training objective function of neural network is known
to be highly non-convex, even for simple networks. A clas-
sic and stark illustration of this was provided in (Auer et al.,
1996) who showed that even for a network comprised of a
single neuron (with certain types of non-ReLU activation
functions, and with or without bias), the objective function
can contain a huge number of local minima (exponentially
many in the input dimension). In Appendix C, we provide
an extension of this result by proving that with a similar
construction, and for a neuron with ReLU activation, not
only is the number of local minima very large, but the prob-
ability of initializing at a basin with good local minimum
(using the natural analogue of the basin partition from Def-
inition 2 for a single neuron) is exponentially small in the
dimension.

The construction provided in (Auer et al., 1996) (as well
as the one provided in Appendix C) relies on training
sets .S comprised of singleton instances x;, which are
non-zero on a single coordinate. The objective function
for a single ReLU neuron without bias can be written as
Sty £ ([(w,x¢)], , ye). so if the x,’s are singletons, this
can be written as a sum of functions, each depending only
on a single coordinate of w. The training examples are cho-
sen so that along each coordinate, there are two basins and
two distinct local minima, one over the positive values and
one over the negative values, but only one of these minima
is global. Under the initialization distribution considered,
the probabilities of hitting the good basin along each coor-
dinate are independent and strictly less than 1. Therefore,
with overwhelming probability, we will “miss” the right
basin on a constant portion of the coordinates, resulting in
a basin value which is suboptimal by at least some constant.

It is natural to study what happens to such a hardness con-
struction under overspecification, which here means replac-
ing a single neuron by a two-layer network of some width
n > 1, and training on the same dataset. Surprisingly, it
turns out that in this case, the probability of reaching a sub-
optimal basin decays exponentially in n and becomes arbi-
trarily small already when n. = Q (log (d)). Intuitively, this
is because for such constructions, for each coordinate it is
enough that one of the n neurons in the first layer will have
the corresponding weight initialized in the right basin. This
will happen with overwhelming probability if n is moder-
ately large. More formally, we have the following theorem:

Theorem 2. For any n, let a denote the minimal objective
value achievable with a width n two-layer network, with
respect to a convex loss ¢ on a training set S where each x;
is a singleton. Then when initializing (W, v) € R"*4 x R"

from a distribution satisfying Assumption I, we have

P [Bas (W,v) < a] > 1 - 2d (i)n

The reader is referred to Appendix B.4 for the full proof.

We note that o cannot be larger than the optimal value at-
tained using a single neuron architecture. Also, we empha-
size that the purpose of Thm. 2 is not to make a statement
about neural networks for singleton datasets (which are not
common in practice), but rather to demonstrate the brittle-
ness of hardness constructions such as in (Auer et al., 1996)
to overspecification, as more neurons are added to the first
layer. This motivates us in further studying overspecifica-
tion in the following subsections.

4.2. Data With Low Intrinsic Dimension

We now turn to provide a result, which demonstrates that
for any dataset which is realizable using a two-layer net-
work of a given width n (i.e. Lg (N,, (W, v)) = 0 for some
(W, v)), the probability of initializing from a basin con-
taining a good minimum increases as we add more neurons
to the first layer, corresponding to the idea of overspecifi-
cation. We note that this result holds without significant
additional assumptions, but on the flip side, the number of
neurons required to guarantee a constant success probabil-
ity increases exponentially with the intrinsic dimension of
the data (rank (X), where X is the data matrix whose rows
are X1, . . . , X, ), S0 @ magnitude of {2 (n”‘“k(x)) neurons is
required. Thus, the result is only meaningful when the in-
trinsic dimension and n are modest. In the next subsection,
we provide results which require a more moderate amount
of overspecification, under other assumptions.

To avoid making the result too complex, we will assume for
simplicity that we use the squared loss £(y, ') = (y —y')?
and that ||x;|| < 1 for any training instance x;. However,
an analogous result can be shown for any convex loss, with
somewhat different dependencies on the parameters, and
any other bound on the norms of the instances.

Theorem 3. Assume each training instance xX; satisfies
Ix¢]| < 1. Suppose that the training objective Lg refers
to the average squared loss, and that Lg (W*,v*) = 0 for
some (W* v*) € R4 x R" satisfying |v}| - [|[w]|| <
B Vi € [n], where B is some constant. For all € > 0, if

rank(X)—1
1
Pe = ﬁ 1-—- ¢
27 (rank (X) — 1) \ nB 4n2B?

)

and we initialize a two-layer, width c[;-] network (for
some ¢ > 2), using a distribution satisfying Assumption
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1, then )
P[Bas(W,v) <¢]>1—e 2.

The proof idea is that with a large enough amount of over-
specification, with high probability, there will be a subset
of the neurons in the first layer for which the signs of their
outputs on the data and the signs of their weights in the
output neuron will resemble those of (W*,v*). Then, by
using Lemma 2 we are able to argue that the initialization
made in the remaining neurons does not degrade the value
obtained in the aforementioned subset. We refer the reader
to Appendix B.5 for the full proof.

4.3. Clustered or Full-rank Data

In this subsection, we will first show that when training on
instances residing in high dimension d (specifically, when
the dimension satisfies m < d, where m is the number
of training examples), we initialize at a good basin with
high probability. Building on this result, we show that even
when m > d, we still initialize at a good basin with high
probability, as long as the data is clustered into k£ < d suf-
ficiently small clusters.

Specifically, we begin by assuming that our data matrix X
satisfies rank (X) = m. We note that this immediately
implies m < d. This refers to data of very high intrin-
sic dimension, which is in a sense the opposite regime to
the one considered in the previous subsection (where the
data was assumed to have low intrinsic dimension). Even
though this regime might be strongly prone to overfitting,
this allows us to investigate the surface area of the objec-
tive function effectively, while also serving as a base for the
clustered data scenario that we will be studying in Thm. 5.

‘We now state our formal result for such datasets, which im-
plies that under the rank assumption, a two-layer network
of size O (log (m)) is sufficient to initialize in a basin with
a global minimum with overwhelming probability.

Theorem 4. Assume rank (X) = m, and let the target out-
puts yi, ..., Yym be arbitrary. For any n, let o be the min-
imal objective value achievable with a width n two-layer
network. Then if (W,v) € R™*? x R" is initialized ac-
cording to Assumption 1,

P[Bas (W,v) < a] > 1—m<i)n.

We refer the reader to Appendix B.6 for the full proof of
the theorem.

As mentioned earlier, training on m < d examples, without
imposing any regularization, is prone to overfitting. Thus,
to say something meaningful in the m > d regime, we will
consider an extension of the previous result, where instead
of having fewer data points than dimensions d, we assume

that the training instances are composed of k < d relatively
small clusters in general position. Intuitively, if the clusters
are sufficiently small, the surface of the objective function
will resemble that of having £ < d data points, and will
have a similar favorable structure.

We also point out that in a similar manner to as we did in
Thm. 3, the theorem statement assumes that the objective
function refers to the average squared loss over the data.
However, the proof does not rely on special properties of
this loss, and it is possible to generalize it to other convex
losses (perhaps with a somewhat different resulting bound).

Theorem 5. Consider the squared loss, and suppose our
data is clustered into k < d clusters. Specifically, we as-
sume there are cluster centers cy, ..., c, € R? for which
the training data S = {x¢, y },-, satisfies the following:

e 161,...,0k > 0s.t. for all xy, there is a unique j €
(k] such that ||c; — x| < 6;.

o Vj € K] ”i—;” < 251n<m)and‘7j €

(k] llc;ll > cfor some c > 0.
o Vt € [m] ||x¢]| < B for some B € R.

e For some fixed vy, it holds that |y —yy| <
v ||1x¢ — x¢/||, for any t, ' € [m] such that x;, % are
in the same cluster.

Let § = max; ;. Denote as C the matrix which rows
are cq,...,Cg, and let oy ax (CT) , Omin (CT) denote the
largest and smallest singular values of C'T respectively.
Let c(x;) : RY — R? denote the mapping of x; to its
nearest cluster center c; (assumed to be unique), and fi-
nally, let y = (91, ..,9x) € R¥ denote the target values
of arbitrary instances from each of the k clusters. Then
if (W,v) € R4 x R" is initialized from a distribution
satisfying Assumption I,

P [Bas(W,v) <O (6*)] >1—d (;)n

Where the big O notation hides quadratic dependencies on
Ba C_la n, 0-;11211 (CT) ; Omax (CT) ) 75 ||yH2 (see the proof

provided in Appendix B.7 for an explicit expression).

Note that § measures how tight the clusters are, whereas
¢, 0max (C'T) and oyin (C') can be thought of as con-
stants assuming the cluster centers are in general position.
So, the theorem implies that for sufficiently tight clusters,
with overwhelming probability, we will initialize from a
basin containing a low-valued minimum, as long as the net-
work size is  (log (d)).
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