Meta-Learning with Memory-Augmented Neural Networks

Supplementary Information
6.1. Additional model details

Our model is a variant of a Neural Turing Machine (NTM)
from Graves et al. It consists of a number of differentiable
components: a controller, read and write heads, an external
memory, and an output distribution. The controller receives
input data (see section 7) directly, and also provides an in-
put to the output distribution. Each of these components
will be addressed in turn.

Input Data

o /
Read Head

Memory

(a)

Figure 7. MANN Architecture.

The controllers in our experiments are feed-forward net-
works or Long Short-Term Memories (LSTMs). For the
best performing networks, the controller is a LSTM with
200 hidden units. The controller receives some concate-
nated input (x;,y:—1) (see section 7 for details) and up-
dates its state according to:

gl gl 8% 0= W"(x,y,1) + W"h,_; +b" (9)
f

g/ =a(g), (10)
g' =o(g"), (11)
g’ =o(g°), (12)
u = tanh(d), (13)
=g/ Ocii+g Ou, (14)
h; = g° ® tanh(c;), (15)
o; = (hy,ry) (16)

where g/, §°, and g’ are the forget gates, output gates,
and input gates, respectively, b” are the hidden state bi-
ases, c; is the cell state, h; is the hidden state, r; is the vec-
tor read from memory, o; is the concatenated output of the
controller, ® represents element-wise multiplication, and
(-,) represents vector concatenation. W=" are the weights
from the input (x;,y;_1) to the hidden state, and W""
are the weights between hidden states connected through
time. The read vector r; is computed using content-based

addressing using a cosine distance measure, as described in
the main text, and is repeated below for self completion.

The network has an external memory module, My, that is
both read from and written to. The rows of M, serve as
memory ‘slots’, with the row vectors themselves constitut-
ing individual memories. For reading, the controller cell
state serves as a query for IM,. First, a cosine distance mea-
sure is computed for the query key vector (here notated as
k;) and each individual row in memory:

k; - M, (i)

S Mo 3 17
1T 1T ML) a7

K (k¢, ML (4))

Next, these similarity measures are used to produce a read-
weight vector wy, with elements computed according to a
softmax:

exp(K (ky, My (i)))
> exp(K (ki My ()

wy (i) (18)

A memory, ry, is then retrieved using these read-weights:

e > wy (§)My(i). (19)

Finally, r; is concatenated with the controller hidden state,
h,, to produce the network’s output o; (see equation (16)).
The number of reads from memory is a free parameter,
and both one and four reads were experimented with. Four
reads was ultimately chosen for the reported experimental
results. Multiple reads is implemented as additional con-
catenation to the output vector, rather than any sort of com-
bination or interpolation.

To write to memory, we implemented a new content-based
access module called Least Recently Used Access (LRUA).
LRUA writes to either the most recently read location, or
the least recently used location, so as to preserve recent,
and hence potentially useful memories, or to update re-
cently encoded information. Usage weights w}* are com-
puted each time-step to keep track of the locations most
recently read or written to:

wi —yw, + W, +w, (20)

where 7 is a decay parameter. The least-used weights, wi,

for a given time-step can then be computed using w;'. First,

we introduce the notation m(v, n) to denote the n*”* small-

est element of the vector v. Elements of wi* are set ac-
cordingly:

lur:\

wy* (1) =

{oimwn>mW%m 1)

1 ifwp(i) <m(wi,n) ’

where 7 is set to equal the number of reads to memory.

Meta-Learning with Memory-Augmented Neural Networks

To obtain the write weights w;’, a learnable sigmoid gate
parameter is used to compute a convex combination of the
previous read weights and previous least-used weights:

wi' o(a)w;_, + (L—o(a)wiy, (22

where o is a dynamic scalar gate parameter to interpolate
between the weights. Prior to writing to memory, the least
used memory location is computed from w;*_; and is set to
zero. Writing to memory then occurs in accordance with
the computed vector of write weights:

6.2. Output distribution

The controller’s output, o, is propagated to an output dis-
tribution. For classification tasks using one-hot labels, the
controller output is first passed through a linear layer with
an output size equal to the number of classes to be classi-
fied per episode. This linear layer output is then passed as
input to the output distribution. For one-hot classification,
the output distribution is a categorical distribution, imple-
mented as a softmax function. The categorical distribution
produces a vector of class probabilities, p;, with elements:

exp(W(i)oy)

P = 5 epWen (o)

(24)

where WP are the weights from the controller output to
the linear layer output.

For classification using string labels, the linear output size
is kept at 25. This allows for the output to be split into
five equal parts each of size five. Each of these parts is
then sent to an independent categorical distribution that
computes probabilities across its five inputs. Thus, each
of these categorical distributions independently predicts a
‘letter,” and these letters are then concatenated to produce
the five-character-long string label that serves as the net-
work’s class prediction (see figure 8).

A similar implementation is used for regression tasks. The
linear output from the controller outputs two values: ;. and
o, which are passed to a Gaussian distribution sampler as
predicted mean and variance values. The Gaussian sam-
pling distribution then computes probabilities for the target
value y; using these values.

6.3. Learning

For one-hot label classification, given the probabilities out-
put by the network, p;, the network minimizes the episode
loss of the input sequence:

L(0) ==yl logpi, (25)
t

where y;, is the target one-hot or string label at time ¢ (note:
for a given one-hot class-label vector y;, only one element
assumes the value 1, and for a string-label vector, five ele-
ments assume the value 1, one per five-element ‘chunk’).

For string label classification, the loss is similar:
L(0) ==Y yl(c)logpi(c). (26)
t c

Here, the (c) indexes a five-element long ‘chunk’ of the
vector label, of which there are a total of five.

For regression, the network’s output distribution is a Gaus-
sian, and as such receives two-values from the controller
output’s linear layer at each time-step: predictive p and o
values, which parameterize the output distribution. Thus,
the network minimizes the negative log-probabilities as de-
termined by the Gaussian output distribution given these
parameters and the true target y;.

7. Classification input data

Input sequences consist of flattened, pixel-level representa-
tions of images x; and time-offset labels y;_;1 (see figure
8 for an example sequence of images and class identities
for an episode of length 50, with five unique classes). First,
N unique classes are sampled from the Omniglot dataset,
where N is the maximum number of unique classes per
episode. N assumes a value of either 5, 10, or 15, which
is indicated in the experiment description or table of results
in the main text. Samples from the Omniglot source set
are pulled, and are kept if they are members of the set of n
unique classes for that given episode, and discarded other-
wise. 10V samples are kept, and constitute the image data
for the episode. And so, in this setup, the number of sam-
ples per unique class are not necessarily equal, and some
classes may not have any representative samples. Omniglot
images are augmented by applying a random rotation uni-
formly sampled between — 7z and {5, and by applying a
random translation in the x- and y- dimensions uniformly
sampled between -10 and 10 pixels. The images are then
downscaled to 20x20. A larger class-dependent rotation is
then applied, wherein each sample from a particular class is
rotated by either 0, g, T, or ‘%’T (note: this class-specific ro-
tation is randomized each episode, so a given class may ex-
perience different rotations from episode-to-episode). The
image is then flattened into a vector, concatenated with a
randomly chosen, episode-specific label, and fed as input
to the network controller.

Class labels are randomly chosen for each class from
episode-to-episode. For one-hot label experiments, labels
are of size NV, where N is the maximum number of unique
classes that can appear in a given episode.

Meta-Learning with Memory-Augmented Neural Networks

(1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0, 1, 0)
L 1 1] L] L 1 L |

1 15t 1

a c al e' 'd'
L 1

'acaed'
(a) String label encoded as five-hot vector

Timestep: 1:2:3:4:5:6 (7 i8 9 10
Image Sample: le:ﬂliﬂm A0+ 3 023
Class Identity: 2 1:2:1:5:2 1:i3:5 3
11:12:13:14:15 16 117 18 119 20

g 20 o0 23 a0 g+ A F

2028503850281 01 13 41

21 22 23124 2526 27128 129 130

5:2{5i1i5i5i2i3 i1 i3

|

31 32333435 36 37 38 39 40
A a2l 23 5 o= 2T 23 4[]
2055131125 2 32
41;42543;4445;46;47 48;49;50
gzl 070l Al =f 2l e o1 4 [T

SHESHESHESHN TS AT ES S5 S

L

(b) Input Sequence

Figure 8. Example string label and input sequence.

8. Task

Either 5, 10, or 15 unique classes are chosen per episode.
Episode lengths are ten times the number of unique classes
(i.e., 50, 100, or 150 respectively), unless explicitly men-
tioned otherwise. Training occurs for 100 000 episodes.
At the 100 000 episode mark, the task continues; however,
data are pulled from a disjoint test set (i.e., samples from
classes 1201-1623 in the omniglot dataset), and weight up-
dates are ceased. This is deemed the “test phase.”

For curriculum training, the maximum number of unique
classes per episode increments by 1 every 10 000 training
episodes. Accordingly, the episode length increases to 10
times this new maximum.

9. Parameters
9.0.1. OPTIMIZATION

Rmsprop was used with a learning rate of le~* and max
learning rate of e~ 1, decay of 0.95 and momentum 0.9.

9.0.2. FREE PARAMETER GRID SEARCH

A grid search was performed over number of parameters,
with the values used shown in parentheses: memory slots
(128), memory size (40), controller size (200 hidden units

for a LSTM), learning rate (le™*), and number of reads
from memory (4). Other free parameters were left con-
stant: usage decay of the write weights (0.99), minibatch
size (16),

9.1. Comparisons and controls evaluation metrics
9.1.1. HUMAN COMPARISON

For the human comparison task, participants perform the
exact same experiment as the network: they observe se-
quences of images and time-offset labels (sequence length
= 50, number of unique classes = 5), and are challenged
to predict the class identity for the current input image by
inputting a single digit on a keypad. However, partici-
pants view class labels the integers 1 through 5, rather than
one-hot vectors or strings. There is no time limit for their
choice. Participants are made aware of the goals of the task
prior to starting, and they perform a single, non-scored trial
run prior to their scored trials. Nine participants each per-
formed two scored trials.

9.1.2. KNN

When no data is available (i.e., at the start of training), the
kNN classifier randomly returns a single class as its pre-
diction. So, for the first data point, the probability that the
prediction is correct is % where N is number of unique
classes in a given episode. Thereafter, it predicts a class
from classes that it has observed. So, all instances of sam-
ples that are not members of the first observed class cannot
be correctly classified until at least one instance is passed
to the classifier. Since statistics are averaged across classes,
first instance accuracy becomes - (=7 +0) = §z, which is
4% and 0.4% for 5 and 15 classes per episode, respectively.

