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Proof of Proposition 3.1

Proposition (Tail Bound for IPS Estimator). Let P be the
independent Bernoulli probabilities of observing each en-
try. For any given Ŷ and Y , with probability 1− η, the IPS
estimator R̂IPS(Ŷ |P ) does not deviate from the trueR(Ŷ )
by more than:
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if Pu,i < 1, and ρu,i = 0 otherwise.

Proof. Hoeffding’s inequality states that for independent
bounded random variables Z1, ..., Zn that take values in
intervals of sizes ρ1, ..., ρn with probability 1 and for any
ε > 0
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Defining P
(
Zk =

δu,i(Y,Ŷ )
Pu,i

)
= Pu,i and P (Zk = 0) =

1−Pu,i relates Hoeffding’s inequality to the IPS estimator
and its expectation, which equals R(Ŷ ) as shown earlier.
This yields
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where ρu,i is defined as in the statement of the proposition
above. Solving for ε completes the proof.

Proof of Theorem 4.2

Theorem (Propensity-Scored ERM Generalization Error
Bound). For any finite hypothesis space of predictions
H = {Ŷ1, ..., Ŷ|H|} and loss 0 ≤ δu,i(Y, Ŷ ) ≤ ∆, the true
risk R(Ŷ ) of the empirical risk minimizer Ŷ ERM from H
using the IPS estimator given training observationsO from
Y with independent Bernoulli propensities P is bounded
with probability 1− η by
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∆

U ·I

√
log (2|H|/η)

2

√∑
u,i

1

P 2
u,i

(1)

Proof. Making a uniform convergence argument via Ho-
effding and union bound yields:
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∣∣∣ ≤ ε) ≥ 1− η

⇔ P

∨
Ŷi
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Solving the last line for ε yields the desired result.

Proof of Lemma 5.1

Lemma (Bias of IPS Estimator under Inaccurate Propensi-
ties). Let P be the marginal probabilities of observing an
entry of the rating matrix Y , and let P̂ be the estimated
propensities such that P̂u,i > 0 for all u, i. The bias of the
IPS estimator using P̂ is
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R̂IPS(Ŷ |P̂ )

)
=
∑
u,i

δu,i(Y, Ŷ )
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Proof. Bias is defined as
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where R(Ŷ ) is the true risk of Ŷ over the complete rating
matrix. Expanding both terms yields
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Rest follows after subtracting line (3) from (2).
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Proof of Theodem 5.2

Theorem (Propensity-Scored ERM Generalization Error
Bound under Inaccurate Propensities). For any finite hy-
pothesis space of predictions H = {Ŷ1, ..., Ŷ|H|}, the
transductive prediction error of the empirical risk min-
imizer Ŷ ERM , using the IPS estimator with estimated
propensities P̂ (P̂u,i > 0) and given training observations
O from Y with independent Bernoulli propensities P , is
bounded by:
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Proof. First, notice that we can write
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which follows from Lemma 5.1.

We are left to bound the following
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The intermediate steps here are analogous to the steps in the
proof of Theorem 4.2. Rearranging the terms and adding
the bias gives the stated results.

Propensity Estimation via Logistic Regression

In contrast to other discriminative models, logistic regres-
sion offers some attractive properties for propensity esti-
mation.

Observation. For the logistic propensity model, we ob-
serve that at optimality of the MLE estimate, the following

two equations hold:
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In other words, the logistic propensity model is able to learn
well-calibrated marginal probabilities.

Proof. The log-likelihood function of the entire model af-
ter simplification is:
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The gradient for bias term βi (analogously for γu) for item
i is given as
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Solving the gradient for zero yields the stated result.


