Recommendations as Treatments: Supplementary Material

Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, Thorsten Joachims

Cornell University, Ithaca, NY, USA

Proof of Proposition 3.1

Proposition (Tail Bound for IPS Estimator). Let P be the independent Bernoulli probabilities of observing each entry. For any given \hat{Y} and Y, with probability $1 - \eta$, the IPS estimator $\hat{R}_{IPS}(\hat{Y}|P)$ does not deviate from the true $R(\hat{Y})$ by more than:

$$\left| \hat{R}_{IPS}(\hat{Y}|P) - R(\hat{Y}) \right| \le \frac{1}{U \cdot I} \sqrt{\frac{\log \frac{2}{\eta}}{2} \sum_{u,i} \rho_{u,i}^2} ,$$

where $\rho_{u,i} = \frac{\delta_{u,i}(Y,\hat{Y})}{P_{u,i}}$ if $P_{u,i} < 1$, and $\rho_{u,i} = 0$ otherwise.

Proof. Hoeffding's inequality states that for independent bounded random variables $Z_1, ..., Z_n$ that take values in intervals of sizes $\rho_1, ..., \rho_n$ with probability 1 and for any $\epsilon > 0$

$$P\left(\left|\sum_{k} Z_{k} - E\left[\sum_{k} Z_{k}\right]\right| \ge \epsilon\right) \le 2\exp\left(\frac{-2\epsilon^{2}}{\sum_{k} \rho_{k}^{2}}\right)$$

Defining $P\left(Z_k = \frac{\delta_{u,i}(Y,\hat{Y})}{P_{u,i}}\right) = P_{u,i}$ and $P\left(Z_k = 0\right) = 1 - P_{u,i}$ relates Hoeffding's inequality to the IPS estimator and its expectation, which equals $R(\hat{Y})$ as shown earlier. This yields

$$P\left(\left|\hat{R}_{IPS}(\hat{Y}|P) - R(\hat{Y})\right| \ge \epsilon\right) \le 2\exp\left(\frac{-2\epsilon^2 U^2 \cdot I^2}{\sum_{u,i} \rho_{u,i}^2}\right)$$

where $\rho_{u,i}$ is defined as in the statement of the proposition above. Solving for ϵ completes the proof.

Proof of Theorem 4.2

Theorem (Propensity-Scored ERM Generalization Error Bound). For any finite hypothesis space of predictions $\mathcal{H} = {\hat{Y}_1, ..., \hat{Y}_{|\mathcal{H}|}}$ and loss $0 \le \delta_{u,i}(Y, \hat{Y}) \le \Delta$, the true risk $R(\hat{Y})$ of the empirical risk minimizer \hat{Y}^{ERM} from H using the IPS estimator given training observations O from Y with independent Bernoulli propensities P is bounded with probability $1 - \eta$ by

$$R(\hat{Y}^{ERM}) \leq \hat{R}_{IPS}(\hat{Y}^{ERM}|P) + \frac{\Delta}{U \cdot I} \sqrt{\frac{\log(2|\mathcal{H}|/\eta)}{2}} \sqrt{\sum_{u,i} \frac{1}{P_{u,i}^2}} \quad (1)$$

{TBS49, FA234, AS3354, NC475, TJ36}@CORNELL.EDU

Proof. Making a uniform convergence argument via Hoeffding and union bound yields:

$$\begin{split} &P\left(\left|R(\hat{Y}^{ERM}) - \hat{R}_{IPS}(\hat{Y}^{ERM}|P)\right| \leq \epsilon\right) \geq 1 - \eta \\ & \Leftarrow P\left(\max_{\hat{Y}_i} \left|R(\hat{Y}_i) - \hat{R}_{IPS}(\hat{Y}_i|P)\right| \leq \epsilon\right) \geq 1 - \eta \\ & \Leftrightarrow P\left(\bigvee_{\hat{Y}_i} \left|R(\hat{Y}_i) - \hat{R}_{IPS}(\hat{Y}_i|P)\right| \geq \epsilon\right) < \eta \\ & \Leftarrow \sum_{i=1}^{|\mathcal{H}|} P\left(\left|R(\hat{Y}_i) - \hat{R}_{IPS}(\hat{Y}_i|P)\right| \geq \epsilon\right) < \eta \\ & \Leftarrow |\mathcal{H}| \cdot 2 \exp\left(\frac{-2\epsilon^2}{\frac{\Delta^2}{U^2 \cdot I^2} \sum_{u,i} \frac{1}{P_{u,i}^2}}\right) < \eta \end{split}$$

Solving the last line for ϵ yields the desired result.

Proof of Lemma 5.1

Lemma (Bias of IPS Estimator under Inaccurate Propensities). Let P be the marginal probabilities of observing an entry of the rating matrix Y, and let \hat{P} be the estimated propensities such that $\hat{P}_{u,i} > 0$ for all u, i. The bias of the IPS estimator using \hat{P} is

bias
$$\left(\hat{R}_{IPS}(\hat{Y}|\hat{P})\right) = \sum_{u,i} \frac{\delta_{u,i}(Y,\hat{Y})}{U \cdot I} \left[1 - \frac{P_{u,i}}{\hat{P}_{u,i}}\right]$$

Proof. Bias is defined as

bias
$$\left(\hat{R}_{IPS}(\hat{Y}|\hat{P})\right) = R(\hat{Y}) - \mathbb{E}_O\left[\hat{R}_{IPS}(\hat{Y}|\hat{P})\right],$$

where $R(\hat{Y})$ is the true risk of \hat{Y} over the complete rating matrix. Expanding both terms yields

$$R(\hat{Y}) = \frac{1}{U \cdot I} \sum_{u,i} \delta_{u,i}(Y, \hat{Y})$$
(2)

$$\mathbb{E}_O\left[\hat{R}_{IPS}(\hat{Y}|\hat{P})\right] = \frac{1}{U \cdot I} \sum_{u,i} \frac{P_{u,i}}{\hat{P}_{u,i}} \delta_{u,i}(Y,\hat{Y}).$$
(3)

Rest follows after subtracting line (3) from (2).

Proof of Theodem 5.2

Theorem (Propensity-Scored ERM Generalization Error Bound under Inaccurate Propensities). For any finite hypothesis space of predictions $\mathcal{H} = {\hat{Y}_1, ..., \hat{Y}_{|\mathcal{H}|}}$, the transductive prediction error of the empirical risk minimizer \hat{Y}^{ERM} , using the IPS estimator with estimated propensities \hat{P} ($\hat{P}_{u,i} > 0$) and given training observations O from Y with independent Bernoulli propensities P, is bounded by:

$$R(\hat{Y}^{ERM}) \leq \hat{R}_{IPS}(\hat{Y}^{ERM}|\hat{P}) + \frac{\Delta}{U \cdot I} \sum_{u,i} \left| 1 - \frac{P_{u,i}}{\hat{P}_{u,i}} \right|$$
$$+ \frac{\Delta}{U \cdot I} \sqrt{\frac{\log\left(2|\mathcal{H}|/\eta\right)}{2}} \sqrt{\sum_{u,i} \frac{1}{\hat{P}_{u,i}^2}} \quad . \tag{4}$$

Proof. First, notice that we can write

$$\begin{split} R(\hat{Y}^{ERM}) &= R(\hat{Y}^{ERM}) - \mathbb{E}_O\left[\hat{R}_{IPS}(\hat{Y}^{ERM}|\hat{P})\right] \\ &+ \mathbb{E}_O\left[\hat{R}_{IPS}(\hat{Y}^{ERM}|\hat{P})\right] \\ &= \operatorname{bias}\left(\hat{R}_{IPS}(\hat{Y}^{ERM}|\hat{P})\right) \\ &+ \mathbb{E}_O\left[\hat{R}_{IPS}(\hat{Y}^{ERM}|\hat{P})\right] \\ &\leq \frac{\Delta}{U \cdot I} \sum_{u,i} \left|1 - \frac{P_{u,i}}{\hat{P}_{u,i}}\right| \\ &+ \mathbb{E}_O\left[\hat{R}_{IPS}(\hat{Y}^{ERM}|\hat{P})\right] \end{split}$$

which follows from Lemma 5.1.

We are left to bound the following

$$\begin{split} & P\left(\left|\hat{R}_{IPS}(\hat{Y}^{ERM}|\hat{P}) - \mathbb{E}_{O}\left[\hat{R}_{IPS}(\hat{Y}^{ERM}|\hat{P})\right]\right| \leq \epsilon\right) \\ & \geq 1 - \eta \\ & \Leftarrow |\mathcal{H}| \cdot 2 \exp\left(\frac{-2\epsilon^{2}}{\frac{\Delta^{2}}{U^{2} \cdot I^{2}} \sum_{u,i} \frac{1}{\hat{P}_{u,i}^{2}}}\right) < \eta. \end{split}$$

The intermediate steps here are analogous to the steps in the proof of Theorem 4.2. Rearranging the terms and adding the bias gives the stated results. \Box

Propensity Estimation via Logistic Regression

In contrast to other discriminative models, logistic regression offers some attractive properties for propensity estimation.

Observation. For the logistic propensity model, we observe that at optimality of the MLE estimate, the following

two equations hold:

$$\forall i : \sum_{u} O_{u,i} = \sum_{u} P_{u,i} \tag{5}$$

$$\forall u : \sum_{i} O_{u,i} = \sum_{i} P_{u,i}.$$
(6)

In other words, the logistic propensity model is able to learn well-calibrated marginal probabilities.

Proof. The log-likelihood function of the entire model after simplification is:

$$\ell(O|X,\phi) = \sum_{(i,u):O_{u,i}=1} \left[w^T X_{u,i} + \beta_i + \gamma_u \right] - \sum_{i,u} \left[1 + e^{w^T X_{u,i} + \beta_i + \gamma_u} \right].$$
(7)

The gradient for bias term β_i (analogously for $\gamma_u)$ for item i is given as

$$\frac{\partial \ell}{\partial \beta_i} = \sum_u O_{u,i} - \sum_u P_{u,i}.$$
(8)

Solving the gradient for zero yields the stated result. \Box