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Proof of Proposition 3.1

Proposition (Tail Bound for IPS Estimator). Let P be the
independent Bernoulli probabilities of observing each en-
try. For any given Y and Y, with probability 1 —n, the IPS
estimator Ryps (Y| P) does not deviate from the true R(Y')
by more than:

Rips(Y|P) — R(Y)| <

where py, ; = w if Py <1, and p, ; = 0 otherwise.

Proof. Hoeffding’s inequality states that for independent
bounded random variables Z1, ..., Z,, that take values in
intervals of sizes pq, ..., p, With probability 1 and for any
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Defining P <Zk = 76“’;3(}/7?)) = P,;and P(Z;, =0) =
1 — P, ; relates Hoeffding’s inequality to the IPS estimator

and its expectation, which equals R(Y) as shown earlier.

This yields
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where p,, ; is defined as in the statement of the proposition
above. Solving for € completes the proof. O

Rips(Y|P) — R(Y)’ > 6) < 2exp (

Proof of Theorem 4.2

Theorem (Propensity-Scored ERM Generalization Error
Bound). For any finite hypothesis space of predictions
H = {)71, ...,Y/|H|} and loss 0 < 6,,;(Y, Y) < A, the true
risk R(Y') of the empirical risk minimizer YERM from H
using the IPS estimator given training observations O from
Y with independent Bernoulli propensities P is bounded
with probability 1 — n by

R(YER]M) < RIPS(YEPUM'P) +

A [oa@HIn [~ 1
vV 2w O

{TBS49, FA234, AS3354, NC475, TI136} @CORNELL.EDU

Proof. Making a uniform convergence argument via Ho-
effding and union bound yields:

P (‘R(YERM) - RIPS(YERMW)\ < e) >1-y
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Solving the last line for € yields the desired result. O

Proof of Lemma 5.1

Lemma (Bias of IPS Estimator under Inaccurate Propensi-
ties). Let P be the marginal probabilities of observing an
entry of the rating matrix Y, and let P be the estimated
propensities such that IE’M > 0 for all u,i. The bias of the
IPS estimator using Pis
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Proof. Bias is defined as
bias (RIPS(Y\P)) = R(Y) - Eo [R,ps(mp)},

where R(Y) is the true risk of Y over the complete rating
matrix. Expanding both terms yields
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Rest follows after subtracting line (3) from (2). O]
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Proof of Theodem 5.2

Theorem (Propensity-Scored ERM Generalization Error
Bound under Inaccurate Propensities). For any finite hy-
pothesis space of predictions H = {}71, -"’Y\HI}’ the
transductive prediction error of the empirical risk min-
imizer Y/ERM, using the IPS estimator with estimated
propensities P ( PM > 0) and given training observations
O from Y with independent Bernoulli propensities P, is
bounded by:
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Proof. First, notice that we can write

R(VERM) — R(VERM)_R, {RIPS(YERJWHS)}
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which follows from Lemma 5.1.

We are left to bound the following
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The intermediate steps here are analogous to the steps in the
proof of Theorem 4.2. Rearranging the terms and adding
the bias gives the stated results. O

Propensity Estimation via Logistic Regression

In contrast to other discriminative models, logistic regres-
sion offers some attractive properties for propensity esti-
mation.

Observation. For the logistic propensity model, we ob-
serve that at optimality of the MLE estimate, the following

two equations hold:
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In other words, the logistic propensity model is able to learn
well-calibrated marginal probabilities.

Proof. The log-likelihood function of the entire model af-
ter simplification is:
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The gradient for bias term (3; (analogously for +,,) for item
1 1s given as
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Solving the gradient for zero yields the stated result. O



