
Mechanisms for Self-correction for better data from crowdsourcing

A. Discussion on modeling assumptions
We begin this section with a discussion on our rationale behind the modelling assumptions made in this paper.

• Workers maximize their expected payment: In the literature on game theory, this assumption is a standard, albeit highly
debated, assumption. We argue that this assumption is quite reasonable in our setting. In standard labeling tasks in
crowdsourcing, workers typically spend only about a few minutes for each task, and participate in hundreds of tasks
every week. As a consequence of the law of large numbers, their earning per hour quickly converges to its expected
value. Assuming that workers aim to maximize their hourly wages, the expected payment is the correct quantity to
consider.

• Cost-of-effort: This choice of not explicitly modelling a “cost-for-effort” of each worker was guided by the principle of
Occam’s razor. The cost-for-effort is a highly complex quantity and is not very well understood. (For instance, what is
the monetary cost for the effort in writing or reading this paper?). Hence, instead, we consider the parameter µ to be a
surrogate for the cost-for-effort: the parameter must be scaled in a fashion that ensures a expected fair pay to any worker
who does a reasonable job.

• Workers perfectly know their beliefs: We admit this is a mathematical idealization, but is somewhat necessary to enable
a principled game-theoretic analysis of the setting, and is quite a standard assumption in the literature.

• Non-negative payments: To the best of our knowledge, all crowdsourcing platforms today (such as Amazon mechanical
turk, Clickworker, Mobileworks, etc.) require the payment to be non-negative.

• Rational workers: We do not require workers to be rational; rationality is a standard game theoretic assumption employed
to guard against the worst case of workers exploiting the payment mechanism. From a practical standpoint, workers
exposed to any mechanism for long enough durations may eventually “rationalize” and identify loopholes (if any) in the
mechanism.

B. Simulations for SVM with RBF Kernel
In this section, we plot the results of the simulations for the SVM algorithm with the RBF kernel. To begin, Figure 5 plots
the error incurred when the number of workers in the setting with no self correction is varied from 5 to 9, keeping the
number of workers in the setting with self correction at 5. Next, Figure 6 compares the error in the two settings when q

is fixed at 0.15 for various values of parameter p. Finally, Figure 7 compares the error in the two settings when p is fixed
at 0.6 for various values of parameter q. We observe that as in the case of the linear kernel studied earlier, the two-stage
setting with self correction offers significant advantages over the single-stage setting with no self correction.

C. Proofs
In this section, we will present the proofs of the various theoretical claims made in the main text. We begin with the claim
for the single-stage setting followed by the proofs of the main two-stage setting considered in the paper. Towards the latter,
in Section C.2, we introduce some notation and a lemma that will subsequently be used in several other proofs.

Figure 5: Error incurred by SVM with an RBF kernel under the self-correction (SC) setting with 5 workers, compared to
the error incurred under the standard setting with no self correction (NSC) with 5 to 9 workers.
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Figure 6: Error incurred by SVM with an RBF kernel for different reliabilities (p) of the worker in the first stage. The
no-self-correction (NSC) setting has 7 workers whereas the self-correction (SC) setting has only 5 workers.

Figure 7: Error incurred by SVM with an RBF kernel for different values of the improvement in accuracy (q) via self-
correction. The no-self-correction (NSC) setting has 7 workers whereas the self-correction (SC) setting has only 5 workers.

C.1. Proof of Proposition 1: One stage is easy

The proof is straightforward, but is included for completeness. Let pA and pB (= 1 � pA) be the worker’s subjective
probabilities of A or B respectively being correct. If the worker selects A then her expected reward is

RA := pAM+ + pBM� .

On the other hand, if the worker selects B then her expected reward is

RB := pBM+ + pAM� .

Noting that pA + pB = 1, one can easily verify that

M+ > M� ) RA

pA< 1
2<pB

7
pA> 1

2>pB

RB

which implies incentive compatibility.

C.2. Necessary and sufficient condition for incentive compatibility when N = G = 1

In this section, we establish a key result on necessary and sufficient conditions for incentive compatibility when N = G =

1, which will be useful in subsequent proofs. The reader interested in only the proof of Theorem 1 may directly read that
proof in the next subsection without loss in continuity.

Under the special case of N = G = 1, any mechanism f : {+M,�M,+R,�R,+C,�C} ! [0, µ] can be defined using
six values in the interval [0, µ], namely M+ := f(+M), M� := f(�M), R+ := f(+R), R� := f(�R), C+ := f(+C)
and C� := f(�C).

We will also use the following two functions RR, RC : [0, 1] ! [0, µ]:

RR(p
0
) := p

0
R+ + (1� p

0
)R�, (2a)

RC(p
0
) := (1� p

0
)C+ + p

0
C� . (2b)
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In words, RR(p
0
) and RC(p

0
) represent the expected reward of a worker (from her point of view) who has a belief of p0 in

the option she chose in the first stage and who either retains her answer or copies the reference answer respectively. In this
section, since we consider only one question, we will drop the subscripts “i” in the notation of the worker’s beliefs.

The following lemma establishes necessary and sufficient conditions for incentive compatibility.
Lemma 1. When N = G = 1, a necessary and sufficient condition for a mechanism to be incentive compatible is that it
satisfies the following conditions:

(1� T )R+ + TR� = TC+ + (1� T )C�, (3a)

max

⇢

C+,
C+ + C�

2

+ 2⇠

C+ � C�
2

,

R+ +R�
2

� 2⇠

R+ �R�
2

�

 M+ +M�
2

+ 2⇠

M+ �M�
2

, (3b)

M++M�
2

� 2⇠

M+�M�
2

min

⇢

C+, TC++(1� T )C�,max{C++C�
2

+2⇠

C+�C�
2

,

R++R�
2

� 2⇠

R+�R�
2

}
�

,

(3c)

M+ > M�, R+ > C�, C+ > R�, R+ > M�. (3d)

The remainder of this subsection is devoted to the proof of this lemma.

Proof of Lemma 1 We will prove this lemma by first identifying the basic conditions necessary and sufficient for incen-
tive compatibility, and then showing the equivalence of the conditions to those stated in the lemma.

Recall the conditions for incentive compatibility in the second stage (Section 2.3). One can verify that equivalently,
necessary and sufficient conditions for incentive compatibility in the second stage are RR(1 � T ) = RC(1 � T ) and
R+ > C�, C+ > R�. The first condition is identical to (3a).

For the first stage, by definition, a necessary and sufficient condition for incentive compatibility is

qA(pAM+ + pBM�) + qB max{RR(p
0
A|B), RC(p

0
A|B)}

pA< 1
2�⇠

7
pA> 1

2+⇠

qB(pBM+ + pAM�) + qA max{RR(p
0
B|A), RC(p

0
B|A)}, (4)

for all pA 2 [0, 1], p

0
A|B 2 [0, pA], p

0
B|A 2 [0, pA], p

0
B|A 2 [0, pB ], and qA 2 [0, 1].

Setting p

0
B|A = p

0
A|B = 0 and qA = qB =

1
2 in (4) results in the necessity of the condition M+ > M�. Let us now

investigate the conditions (3b) and (3c).

Consider the case of pA <

1
2 � ⇠. Here, the worst case is when the left hand side of (4) is maximized and the right hand

side is minimized. Satisfying (4) when pA <

1
2 � ⇠ is thus equivalent to satisfying the inequality

qA(pAM+ + pBM�) + qB max

p0
A|B2[0,pA]

max{RR(p
0
A|B), RC(p

0
A|B)}

< qB(pBM++pAM�)+qA min

p0
B|A2[0,pB ]

max{RR(p
0
B|A), RC(p

0
B|A)}. (5)

Recall that qA = 1 � qB . Observe that the inequality (5) is linear in qA. As a result, a necessary and sufficient for (5)
to be satisfied for all values of qA 2 [0, 1] is that the inequality (5) is satisfied for the two extreme values of qA, namely
qA 2 {0, 1}. Setting qA = 0 in (5) gives

max

p0
A|B2[0,pA]

max{RR(p
0
A|B), RC(p

0
A|B)} < (pBM+ + pAM�). (6)

The ‘maximum’ term in the left hand side of (6) is a maximum over two linear functions, and hence the term is maximized
when p

0
A|B is either 0 or pA. Thus (6) reduces to

max{R�, C+, RR(pA), RC(pA)} < (pBM+ + pAM�),
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for all pA 2 [0,

1
2 � ⇠). Using the condition C+ > R� from (3d), we obtain the equivalent condition

max{C+ � (pBM+ + pAM�), RR(pA)� (pBM+ + pAM�), RC(pA)� (pBM+ + pAM�)} < 0. (7)

Each of the three expressions in the maximum on the left hand side of (7) are linear expressions in terms of the variable
pA. Consequently, the maximum is attained at one of the end-points of the permitted values of pA, that is, when pA = 0

or when pA approaches 1
2 � ⇠. Substituting these two values of pA into (7) yields the necessary and sufficient condition

of (3b), for the setting of pA <

1
2 � ⇠ and qA = 0.

Next we move to the case of qA = 1. Setting qA = 1 in (5) gives

(pAM+ + pBM�) < min

p0
B|A2[0,pB ]

max{RR(p
0
B|A), RC(p

0
B|A)}. (8)

The term “max{RR(p
0
B|A), RC(p

0
B|A)}” in the right hand side of (8) is a maximum over two linear functions, and hence

the term is necessarily minimized in one of the following three cases: (i) At RR(p
0
B|A) = RC(p

0
B|A) if one of the two

functions RR(p
0
B|A) and RC(p

0
B|A) is increasing and one decreasing in p

0
B|A. As a consequence of (3a), the two functions

are equal when p

0
B|A = 1 � T . Note that this value of p0B|A is a valid value because 1 � T  1

2  pB . (ii) At p0B|A = 0,
which is a minimizer when both functions increase with an increase p

0
B|A. (iii) At p0B|A = pB , which is a minimizer when

both functions decrease with an increase p

0
B|A. Putting the three cases together, we get the equivalent condition

(1� pB)M+ + pBM� < min{C+, TC+ + (1� T )C�,max{RR(pB), RC(pB)}}, (9)

for all pB 2 [0,

1
2 � ⇠). One can verify that due to linearity (in pB) of the various constituents of (9), it is necessary and

sufficient that the inequality (9) be satisfied for the extreme values of pB . Setting pB = 1 and pB =

1
2 + ⇠ and performing

some algebraic simplifications yields the condition (3c).

The case of pB <

1
2 �⇠ gives the same result by symmetry. This completes the proof of the necessity and sufficiency of (3)

for incentive compatibility.

C.3. Proof of Theorem 1: Impossibility

We first prove the claimed impossibility result for the case of a single question N = G = 1. The proof for the case of
N = G = 1 proceeds via a contradiction-based argument, and uses the notation of Section C.2.6 Suppose there is an
incentive compatible mechanism, i.e., there exist values of M+,M�, R+, R�, C+, C� that ensure that in both stages the
worker selects the answer she thinks is most likely to be correct.

Incentive compatibility then necessitates:

• Second stage:

– if worker answered A in the first stage and reference answer was B:

RR(p
0
A|B)

p0
A|B<1�T

7
p0
A|B>1�T

RC(p
0
A|B), (10)

– if worker answered B in the first stage and reference answer was A:

RR(p
0
B|A)

p0
B|A<1�T

7
p0
B|A>1�T

RC(p
0
B|A). (11)

• First stage:

qA(pAM+ + pBM�) + qB max{RR(p
0
A|B), RC(p

0
A|B)}

pA< 1
2<pB

7
pA> 1

2>pB

qB(pBM++pAM�)+qA max{RR(p
0
B|A), RC(p

0
B|A)}. (12)

6While one could use Lemma 1 to prove this result, we opt for a different proof here for its significantly greater simplicity.
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We now show that the requirements (10), (11) and (12) cannot be met simultaneously. To this end, consider some value
p

0 2 [0,

1
2 ], and consider a worker who has subjective probabilities pA = pB =

1
2 , p0A|B = p

0
B|A = p

0  1
2 , and qA 6= qB .

Observe that both the left and right hand sides of (12) are continuous in (pA, pB). As a result, when pA = pB =

1
2 we

must have

qA(
1

2

M+ +

1

2

M�) + qB max{RR(p
0
A|B), RC(p

0
A|B)}

= qB(
1

2

M+ +

1

2

M�) + qA max{RR(p
0
B|A), RC(p

0
B|A)}.

Some simple algebraic manipulations yield
M+ +M�

2

= max{RR(p
0
), RC(p

0
)}, (13)

for every p

0  1
2 . In the two sets of inequalities (10) and (11), the left hand sides are greater than the right hand sides for

certain values of p0  1
2 , and vice versa for certain other values of p0  1

2 , whenever T >

1
2 . It follows that the term

max{RR(p
0
), RC(p

0
)} in the right hand side of (13) must depend on the value of p0 and cannot be a constant. On the other

hand, the left hand side of (13) is a constant, independent of p0. This argument thus yields a contradiction.

Given that the worker cannot be incentivized for even one question, the impossibility easily extends to the more general
case of N � G � 1 as follows. Assume that for questions 2, . . . , N , the worker is sure that the answer is option A in both
stages, is sure that the reference answer will be option A, and the reference answer as well as the correct answer actually
turn out to equal option A. In this setting, the incentivization requirements reduce to incentivizing the worker for only the
first question, which is shown to be impossible in the proof for the N = G = 1 setting below.

C.4. Proof of Theorem 2: Many mechanisms for every slack

We begin with the case of N = G = 1 which will convey many of the key ideas of the proof. We will adopt the notation
introduced in Section C.2. Let M+ = 1,M� = 0, R+ = 1, R� = 0, C+ = (1 � T ), C� = (1 � T ). It is easy to verify
that this choice satisfies the conditions (3a) and (3d). If these payments satisfy the inequalities (3b) and (3c), then we are
done. If not then the values will result in the left hand side being greater than the right hand side in (3b) and/or (3c). In
that case, compute the difference between the left and right hand sides of (3b) and (3c), and let ⇣ > 0 denote the larger of
the two values. Perform the following modifications to the values: M+ ! M+ +

⇣+1
⇠ , M� ! M�, R+ ! R+ +

⇣+1
2⇠ ,

R� ! R� +

⇣+1
2⇠ , C+ ! C+ +

⇣+1
2⇠ , and C� ! C� +

⇣+1
2⇠ . At this point, we would like to remind the reader that ⇣ > 0

and ⇠ > 0.

One can verify that with the changes described above, the payment values continue to satisfy the conditions (3a) and (3d).
However, importantly, with these changes, the left hand side of (3b) increases by at most ⇣+1

2⇠ while the right hand side
increases by (1 + 2⇠)

⇣+1
2⇠ , and the left hand side of (3b) increases by (1 � 2⇠)

⇣+1
2⇠ while its right hand side increases by

⇣+1
2⇠ . It follows that in both inequalities, the difference between the right and left hand sides increases by at least (⇣ + 1).

Thus with the updated values, both (3b) and (3c) are satisfied. Finally, scaling all payments by µ
M+

also ensures that
the mechanism abides by the constraint of the maximum allowable payment. We have thus proved the existence of an
incentive-compatible mechanism when ⇠ > 0, for the case of N = G = 1.

For the more general case of N � G � 1, consider a mechanism that first considers each gold standard question separately
and allots a score equaling the payment that would have been made in the case of N = G = 1. The net payment across all
questions is the sum of the scores across all questions (normalized by a positive factor to satisfy the budget constraint of µ).
From the worker’s point of view, due to linearity of expectation, the expected payment for any choice of answers is the sum
of the expected scores for the N individual questions (normalized by a positive constant factor). Incentive compatibility of
the individual scores for N = G = 1 implies incentive compatibility for the general mechanism as well.

Observe that in the proof above, we started out with one particular choice of the parameters M+, M�, R+, R�, C+, C�
that satisfied (3a) and (3d). There are however infinitely many choices of these parameters that satisfy these two conditions.
The rest of the proof for G = 1 above demonstrated a procedure to construct an incentive-compatible mechanism starting
from any such choice. It is not hard to see that the set of resulting mechanisms also form an infinite set. When G > 1, one
can choose separate mechanisms for each individual question and combine them in one of an exponentially large number
of ways, e.g., multiplying or adding any of the mechanisms for the individual questions. The number of degrees of freedom
thus grows exponentially in G.
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C.5. Proof of Theorem 3: Minimum slack needed

We begin with the case of N = G = 1 which will convey many of the key ideas of the proof. We will adopt the notation
introduced in Section C.2 for this case.

It is straightforward to see that when N = G = 1, a necessary and sufficient condition to satisfy the no-free-lunch axiom
is that M� = R� = C� = 0. Substituting these conditions in Lemma 1 gives that a necessary and sufficient condition
under any ⇠ and T for the existence of an incentive-compatible mechanism satisfying the no-free-lunch axiom is

1
2 � ⇠

T

 C+

M+


1
2 + ⇠

T

min

⇢

1� T

1
2 � ⇠

, T

�

(14a)

(1� T )R+ = TC+ > 0. (14b)

Observe the following four properties of (14a): (i) the leftmost side strictly decreases with an increase in ⇠ while its
rightmost side increases strictly, (ii) when ⇠ = 0, the leftmost side is strictly greater than its rightmost side (using the fact
that T < 1), (iii) when ⇠ =

1
2 , the leftmost side is zero whereas the rightmost side is one, and (iv) both the leftmost and

rightmost sides are continuous in ⇠. It follows that the leftmost and rightmost sides of (14a) meet each other at exactly one
point in ⇠ 2 (0,

1
2 ). Solving (14a) for ⇠, with the inequalities are replaced by equalities, gives precisely the value denoted

by ⇠min in the statement of the theorem. For any ⇠ < ⇠min, the aforementioned arguments imply a violation of (14a).

Let us now consider the more general case of N � G � 1. Suppose there exists some value ⇠ < ⇠min for which there
exists an incentive compatible mechanism satisfying the no-free-lunch axiom. Then we have

1

1
2 � ⇠

=

1

1
2 + ⇠

max

⇢ 1
2 � ⇠

1� T

,

1

T

�

� �⇠,T , (15)

for some value �⇠,T > 0 that depends on the values of ⇠ and T . We will now call upon the proof of Theorem 5 to complete
our proof. The proof of Theorem 5 shows that under the no-free-lunch axiom, there is only one mechanism that can be
incentive compatible when ⇠ = ⇠min. In the proof of Theorem 5, the steps till Equation (16) are applicable to all values of
⇠ 2 (0,

1
2 ); ⇠ is set as ⇠min in (16) to obtain (17) and in subsequent steps. If ⇠min is replaced by ⇠, then the inequality (20)

becomes
✓

1

2

+ ⇠

◆

¯

h(�M) +

1
2 � ⇠

1
2 + ⇠

T

¯

h(+C)�⇠,T 
�

1
2 � ⇠

�2

1
2 + ⇠

¯

h(�M),

where ¯h(�M) � 0, ¯h(+C) > 0. One can see that when ⇠ > 0, a necessary condition for this inequality to be satisfied (and
consequently for any mechanism to be incentive compatible) is to have �⇠,T = 0. This assignment, in turn, necessitates
⇠ = ⇠min for existence of any incentive compatible mechanism, as claimed.

C.6. Proof of Theorem 4: The algorithm works

First consider the case of N = G = 1. One can verify that when ⇠ = ⇠min, the proposed payment mechanism satisfies the
necessary and sufficient conditions (3) derived earlier in Lemma 1.

For the case of N � G � 1, observe that the mechanism assigns a non-negative value to the worker for each question in the
gold standard, and the final payment is the product of these values (scaled by a positive constant). We recall our assumption
that the worker’s beliefs are independent across questions. Consequently, in either stage, the net expected payment from
the worker’s point of view equals the product of the expected values for each question (where the value is 1 if the question
is not in the gold standard). Since for every individual question, the expectation is maximized when the worker answers
as desired, the overall expected payment is also maximized when the worker answers as desired. The mechanism is thus
incentive compatible.

Finally, one can verify that the payment is always non-negative, and the maximum payment equals µ.

C.7. Proof of Theorem 5: One and only mechanism

Let us first consider the much simpler case of N = G = 1. Recall the necessary and sufficient conditions (3) for incentive
compatibility with the no free lunch condition. When ⇠ = ⇠min, the two inequalities in (14a) get tightly sandwiched and
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transform into equalities. Thus, the parameters M+, R+ and C+ now have a unique relation between them. Moreover,
M� = R� = C� = 0 are also fixed. Setting max{M+, R+, C+} = µ now fixes the entire mechanism to be identical to
Algorithm 1.

We now move on to the case of general values of the parameters (N,G). We begin with two lemmas that derive properties
that any mechanism must necessarily satisfy. The proofs of these two lemmas are provided at the end of this section. The
first of the two lemmas applies to any incentive compatible mechanism, that may or may not satisfy no free lunch.

Lemma 2. For any i 2 [G], any (y1, . . . , yi�1, yi+1, . . . , yG) 2 {+M,�M,+R,�R,+C,�C}G�1, any incentive com-
patible mechanism must satisfy

(1� T )f(y1, . . . , yi�1,+R, yi+1, . . . , yG) + Tf(y1, . . . , yi�1,�R, yi+1, . . . , yG)

= Tf(y1, . . . , yi�1,+C, yi+1, . . . , yG) + (1� T )f(y1, . . . , yi�1,�C, yi+1, . . . , yG).

The proof of Theorem 5 inducts on the number of entries in y that take values in the set {+R,�R,+C,�C}. The
hypothesis of this induction is that the payment mechanism must be of the form given in Algorithm 1 up to a constant
positive scaling. The base case of y 2 {+R,�R,+C,�C}G\{+R,+C}G is handled in Lemma 3 below.

Lemma 3. Any incentive-compatible mechanism satisfying the no-free-lunch axiom must satisfy f(y) = 0 8 y 2
{�M,+R,�R,+C,�C}G\{+R,+C}G.

From Lemmas 2 and 3, we obtain the base case of the induction that the mechanism must be identical to that of Algorithm 1
whenever y 2 {+R,�R,+C,�C}G\{+R,+C}G.

Moving on, let us now suppose that the induction hypothesis is true whenever y 2
{+M,�M,+R,�R,+C,�C}G\{+M,+R,+C}G and

PG
i=1 1{yi 2 {+R,�R,+C,�C}} � G � � + 1,

for some � 2 [G]. We now prove that the induction hypothesis remains true whenever y 2
{+M,�M,+R,�R,+C,�C}G\{+M,+R,+C}G and

PG
i=1 1{yi 2 {+R,�R,+C,�C}} = G� �.

Suppose that without loss of generality that y1, . . . , y��1 2 i 2 {+M,�M} and y�+1, . . . , yG 2 {+R,�R,+C,�C}. In
the total set of N questions, suppose that for every i  �� 1, we have qA,i = 1, pA,i >

1
2 + ⇠, and for every i � �+1, we

have qA,i = 0, pA,i > max{ 1
2 + ⇠, T}. Suppose that for all questions [N ]\{�}, the worker decides to act precisely as what

the mechanism wishes her to do. Thus in the first stage, she will select option A for all questions [N ]\{�}. Furthermore,
the worker believes that questions 1, . . . , � � 1 will surely match, whereas questions � + 1, . . . , G will surely mismatch
and go into the second stage.

Let h : {+M,�M,+R,�R,+C,�C} ! [0, µ] be a function defined as follows: h(y�) is the expected payment, from
the point of view of the worker, conditioned on the �

th question evaluating to y� . (Note that since qA,i 2 {0, 1} for every
i 6= �, and since the evaluation of question � is fixed at y� , the expected pay is identical in both stages.) The expectation
is over the randomness in the choice of the gold standard questions as well as over the worker’s uncertainty about the
correctness of her answers to the remaining N � 1 questions. One can see that for any value of y� , the function h(y�) is
composed of a convex combination of two parts: the first part is for the case when the �

th question is in the gold standard
and the second part is when the �th question is not in the gold standard. Consequently, the first part depends on y� and the
second part is independent of it. Letting ¯

h denote the first part, we can write h(y�) = ✓

¯

h(y�)+(1�✓)c for some constants
c � 0 and ✓ 2 (0, 1).

The function ¯

h is a convex combination of the function f evaluated at various points. In particular, when y� 2
{+R,�R,+C,�C}, each component of this convex combination is the function f evaluated at a vector with at least
(G � � + 1) of its entries taking values in the set {+R,�R,+C,�C}. Hence applying Lemma 2 we get that
(1 � T )

¯

h(+R) + T

¯

h(�R) = T

¯

h(+C) + (1 � T )

¯

h(�C). Furthermore, from our induction hypothesis above, we have
¯

h(y�) = 0 when y� 2 {�R,�C}. Consequently, we also have ¯

h(+R) =

T
1�T

¯

h(+C).

Let pA, pB = 1�pA, qA, qB = 1� qA, p
0
A|B , p

0
B|A be the confidences of the worker for question �. In order to incentivize

the worker appropriately for question � in the first stage, it must be that

qA(pA
¯

h(+M) + pB
¯

h(�M)) + qB max{p0A|B
¯

h(+R), (1� p

0
A|B)

¯

h(+C)}
pA< 1

2�⇠

7
pA> 1

2+⇠

qB(pB
¯

h(+M) + pA
¯

h(�M)) + max{p0B|A
¯

h(+R), (1� p

0
B|A)

¯

h(+C)}.
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Substituting ¯

h(+R) =

T
1�T

¯

h(+C) we get

qA(pA
¯

h(+M) + pB
¯

h(�M)) + qB max{p0A|B
T

1� T

, (1� p

0
A|B)}¯h(+C)

pA< 1
2�⇠

7
pA> 1

2+⇠

qB(pB
¯

h(+M) + pA
¯

h(�M)) + qA max{p0B|A
T

1� T

, (1� p

0
B|A)}¯h(+C) .

Let pA =

1
2 � ⇠. Setting p

0
B|A = 1� T and allowing p

0
A|B to be 0 or pA gives

qA

✓

1

2

� ⇠

◆

¯

h(+M) + qA

✓

1

2

+ ⇠

◆

¯

h(�M) + qBT max

⇢✓

1

2

� ⇠

◆

1

1� T

,

1

T

�

¯

h(+C)

 qB

✓

1

2

+ ⇠

◆

¯

h(+M) + qB

✓

1

2

� ⇠

◆

¯

h(�M) + qAT
¯

h(+C).

From the definition of the minimum slack (Theorem 3), when ⇠ = ⇠min, we have
1
2 � ⇠

T

=

1
2 + ⇠

T

min

⇢

1� T

1
2 � ⇠

, T

�

, (16)

and hence

qA

✓

1

2

� ⇠

◆

¯

h(+M) + qA

✓

1

2

+ ⇠

◆

¯

h(�M) + qBT

1
2 + ⇠

1
2 � ⇠

¯

h(+C)

 qB

✓

1

2

+ ⇠

◆

¯

h(+M) + qB

✓

1

2

� ⇠

◆

¯

h(�M) + qAT
¯

h(+C). (17)

Setting qA = 1 gives
✓

1

2

� ⇠

◆

¯

h(+M) +

✓

1

2

+ ⇠

◆

¯

h(�M)  T

¯

h(+C), (18)

and setting qA = 0 gives

T

1
2 + ⇠

1
2 � ⇠

¯

h(+C) 
✓

1

2

+ ⇠

◆

¯

h(+M) +

✓

1

2

� ⇠

◆

¯

h(�M). (19)

Combining the inequalities (18) and (19) yields the bound
✓

1

2

+ ⇠

◆

¯

h(�M) 
�

1
2 � ⇠

�2

1
2 + ⇠

¯

h(�M). (20)

Since ⇠ 2 (0,

1
2 ), the inequality (20) can be satisfied only if ¯h(�M) = 0. The function ¯

h(�M) is a convex combination
of various evaluations of the non-negative function f including f(y1, . . . , yG). It follows that these evaluations of f must
also be zero. We have thus proved that

f(y) = 0 8 y 2 {+M,�M,+R,�R,+C,�C}G\{+M,+R,+C}G. (21)

Continuing on, substituting the result of (21) in (18) and (19) yields the relation

T

¯

h(+C) =

✓

1

2

� ⇠

◆

¯

h(+M). (22)

We now convert this relation of the function ¯

h to an analogous relation of the function f . Suppose that for every question
i 2 {G + 1, . . . , N}, the worker has beliefs pA,i = 1, p

0
A|B,i = 1, qA,i = 0, and that every question in this set actually

results in a mismatch. Recall that the function ¯

h is a convex combination of the function f evaluated at various points
corresponding to the various choices of the G gold standard questions out of the N total questions, where the choice
necessarily includes question 1. Applying this observation to the relation (22) yields

X

j2{0,...,G�1}
i1,...,ij✓{2,...,G}

↵i1,...,ij

n

Tf(+C, yi1 , . . . , yij ,+R, . . . ,+R)� (

1

2

� ⇠)f(+M, yi1 , . . . , yij ,+R, . . . ,+R)

o

,
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where
�

↵i1,...,ij

 

are all positive constants. An inductive argument on the values of (y2, . . . , yG), starting with y2 = . . . =

yG = +R as the base case and further inducting on the number of values in y2, . . . , yG equalling +R yields the result

Tf(+C, y2, . . . , yG) =

✓

1

2

� ⇠

◆

f(+M, y2, . . . , yG), (23)

for every value of y2, . . . , yG. Calling upon Lemma 2 and using (21) also yields

Tf(+C, y2, . . . , yG) = (1� T )f(+R, y2, . . . , yG). (24)

From the relations (21), (23) and (24) and using the fact that all arguments above apply to any permutation of the G gold
standard questions yield the claimed result that f must be identical to the mechanism of Algorithm 1.

The only remaining detail is to prove Lemma 2 and Lemma 3 which we do below.

Proof of Lemma 2 We begin by introducing some additional notation that will aid in subsequent discussion. Define a
function g : {+M,�M,+R,�R,+C,�C}N ! [0, µ] as the expected payment (across the randomness in the choice of
the gold standard questions) given the evaluations to all the N questions, that is,

g(y1, . . . , yN ) =

1

�N
G

�

X

(i1,...,iG)✓{1,...,N}

f(yi1 , . . . , yiG). (25)

We first show that the function g must satisfy the relation

(1� T )g(y1, . . . , yN�1,+R) + Tg(y1, . . . , yN�1,�R) = Tg(y1, . . . , yN�1,+C) + (1� T )g(y1, . . . , yN�1,�C),
(26)

for every value of (y1, . . . , yN�1). To this end, suppose the worker is presently in the second stage. Suppose that the
worker’s beliefs regarding the various questions are unaffected by the results of matching or mismatching at the end of the
first stage. Letting S := {i 2 [N � 1] | yi 2 {+R,�R,+C,�C}, suppose that questions S [ {N} make it to the second
stage. For every i 2 [N ], let p0i be the confidence of the worker for the answer that she marked under event yi. For every
i 2 [N � 1], let ri = p

0
i if yi < 0 and ri = (1� p

0
i) if yi > 0.7 Let E = [✏1 · · · ✏N�1] 2 {�1, 1}N�1.

Since the mechanism is incentive compatible, it must be able to appropriately incentivize the worker for the N

th question.
This condition necessitates

p

0
X

E2{�1,1}N�1

0

@

g(�✏1y1, . . . ,�✏N�1yN�1,+R)

Y

j2[N�1]

r

1+✏j
2

j (1� rj)
1�✏j

2

1

A

+(1� p

0
)

X

E2{�1,1}N�1

0

@

g(�✏1y1, . . . ,�✏N�1yN�1,�R)

Y

j2[N�1]

r

1+✏j
2

j (1� rj)
1�✏j

2

1

A

p0<1�T
7

p0>1�T
(1� p

0
)

X

E2{�1,1}N�1

0

@

g(�✏1y1, . . . ,�✏N�1yN�1,+C)
Y

j2[N�1]

r

1+✏j
2

j (1� rj)
1�✏j

2

1

A

+p

0
X

E2{�1,1}N�1

0

@

g(�✏1y1, . . . ,�✏N�1yN�1,�C)
Y

j2[N ]\{�}

r

1+✏j
2

j (1� rj)
1�✏j

2

1

A

. (27)

The left hand side of (27) is the expected payment if the worker chooses to retain her answer for the N

th question, while
the right hand side is the expected payment if she chooses to copy the reference answer. Now, note that for any real valued
variable q, and for any constants a, b and c,

ay

q<c
7
q>c

b ) a > 0, c =

b

a

, b > 0 .

7For ease of exposition, we consider {+M,+R,+C} as “positive” values, and {�M,�R,�C} as the corresponding “negative”
values with inverted signs.
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Applying this fact and making some simple algebraic manipulations gives

(1� T )

X

E2{�1,1}N�1

0

@

g(�✏1y1, . . . ,�✏N�1yN�1,+R)

Y

j2[N�1]

r

1+✏j
2

j (1� rj)
1�✏j

2

1

A

+T

X

E2{�1,1}N�1

0

@

g(�✏1y1, . . . ,�✏N�1yN�1,�R)

Y

j2[N�1]

r

1+✏j
2

j (1� rj)
1�✏j

2

1

A

�T

X

E2{�1,1}N�1

0

@

g(�✏1y1, . . . ,�✏N�1yN�1,+C)
Y

j2[N�1]

r

1+✏j
2

j (1� rj)
1�✏j

2

1

A

�(1� T )

X

E2{�1,1}N�1

0

@

g(�✏1y1, . . . ,�✏N�1yN�1,�C)
Y

j2[N�1]

r

1+✏j
2

j (1� rj)
1�✏j

2

1

A

= 0. (28)

The left hand side of this equation is a polynomial in {r1, . . . , rN�1} which evaluates to zero for a solid (N � 1)-
dimensional box of values of {r1, . . . , rN�1}. It follows that the coefficients of all monomials in this polynomial must be
zero, and in particular, the constant term must be zero. The constant term appears when ✏j = �1 8 j in the summations.
This argument thus yields the relation

(1� T )g(y1, . . . , yN�1,+R)+Tg(y1, . . . , yN�1,�R)

= Tg(y1, . . . , yN�1,+C) + (1� T )g(y1, . . . , yN�1,�C),

as claimed. Furthermore, since the arguments above are invariant to any permutation of the questions, we get that for any
i 2 [N ], any (y1, . . . , yi�1, yi+1, . . . , yN ) 2 {+M,�M,+R,�R,+C,�C}N�1, any incentive compatible mechanism
must satisfy

(1� T )g(y1, . . . , yi�1,+R, yi+1, . . . , yN ) + Tg(y1, . . . , yi�1,�R, yi+1, . . . , yN )

= Tg(y1, . . . , yi�1,+C, yi+1, . . . , yN ) + (1� T )g(y1, . . . , yi�1,�C, yi+1, . . . , yN ). (29)

It remains to convert the result of Equation (29) to an equivalent condition on the function f as in the statement of the
lemma. To this end, suppose that yG+1 = . . . = yN = +R. Also suppose without loss of generality that i = 1. Then
expanding the function g in (29) in terms of its constituent components f , we obtain the relation

X

j2{0,...,G�1}
i1,...,ij✓{2,...,G}

n

↵i1,...,ij

�

(1� T )f(+R, yi1 , . . . , yij ,+R, . . . ,+R) + Tf(�R, yi1 , . . . , yij ,+R, . . . ,+R)

� Tf(+C, yi1 , . . . , yij ,+R, . . . ,+R)� (1� T )f(�C, yi1 , . . . , yij ,+R, . . . ,+R)

�

+↵

0
i1,...,ij

�

(1� T )f(yi1 , . . . , yij ,+R, . . . ,+R) + Tf(yi1 , . . . , yij ,+R, . . . ,+R)

� Tf(yi1 , . . . , yij ,+R, . . . ,+R)� (1� T )f(yi1 , . . . , yij ,+R, . . . ,+R)

�

o

= 0, (30)

where
�

↵i1,...,ij ,↵
0
i1,...,ij

 

are all positive constants. We complete the proof with inductive argument on the values of
(y2, . . . , yG). We begin by considering the base case y2 = . . . = yG = +R, for which we obtain the result

(1� T )f(+R,+R, . . . ,+R) + Tf(�R,+R, . . . ,+R) = Tf(+C,+R, . . . ,+R) + (1� T )f(�C,+R, . . . ,+R).

from (30). We further induct on the number of values in y2, . . . , yG that equal +R in (30), and this inductive argument
thus shows that

(1� T )f(+R, y2, . . . , yG) + Tf(�R, y2, . . . , yG) = Tf(+C, y2, . . . , yG) + (1� T )f(�C, y2, . . . , yG),

for all possible values of y2, . . . , yG. Finally, all arguments above are invariant to any permutation of the questions, and
consequently we get the claimed result.
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Proof of Lemma 3 We will induct on the number of entries in y whose values equal either �M or �R or �C or +C;
let us use the notation � to denote the number of such entries. When � = G, the no-free-lunch axiom implies f(y) = 0,
where we have used the assumption that y /2 {+C,+R}G when applying the no-free-lunch axiom. The statement of the
lemma is thus satisfied in this case.

Now suppose that f(y) = 0 whenever � � �0 + 1 for some integer �0 > 0. Consider any evaluation y such that
y1, . . . , y�0 2 {�M,�R,�C,+C}. Then from the induction hypothesis stated above, we will have f(y) = 0 if addition-
ally we had y�0+1 2 {�M,�R,�C,+C}. Applying Lemma 2 with i = �0 + 1 gives f(y) = 0 when y�0+1 = +R. This
inductive argument completes the proof of the lemma.

C.8. Proof of Theorem 6: No-free-lunch cannot be stronger

Suppose that for every question, the worker has pA =

3
4 = 1 � pB , and further suppose that as desired, the worker

selects option A for every question in the first stage. Suppose that there is a mismatch for every question, and hence all
the questions go to the second stage. Now suppose that in the second stage, the worker has an updated belief p0A|B =

1
4

for every question. In this case, we wish to incentivize the worker to change her answer for every question. However,
strong-no-free-lunch mandates that f(x) = 0 for every x 2 {+C,�C}G, and consequently, the worker will necessarily be
paid a zero amount under such an action. Since any other action will also fetch an amount no less than zero, the worker is
not incentivized to change her answers as required. Consequently, the strong-no-free lunch is too strong for the existence
of any incentive-compatible mechanism.
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