
Mechanisms for Self-correction for better data from crowdsourcing

A. Discussion on modeling assumptions

We begin this section with a discussion on our rationale behind the modelling assumptions made in this paper.

¥ Workers maximize their expected payment: In the literature on game theory, this assumption is a standard, albeit highly
debated, assumption. We argue that this assumption is quite reasonable in our setting. In standard labeling tasks in
crowdsourcing, workers typically spend only about a few minutes for each task, and participate in hundreds of tasks
every week. As a consequence of the law of large numbers, their earning per hour quickly converges to its expected
value. Assuming that workers aim to maximize their hourly wages, the expected payment is the correct quantity to
consider.

¥ Cost-of-effort: This choice of not explicitly modelling a Òcost-for-effortÓ of each worker was guided by the principle of
OccamÕs razor. The cost-for-effort is a highly complex quantity and is not very well understood. (For instance, what is
the monetary cost for the effort in writing or reading this paper?). Hence, instead, we consider the parameterµ to be a
surrogate for the cost-for-effort: the parameter must be scaled in a fashion that ensures a expected fair pay to any worker
who does a reasonable job.

¥ Workers perfectly know their beliefs: We admit this is a mathematical idealization, but is somewhat necessary to enable
a principled game-theoretic analysis of the setting, and is quite a standard assumption in the literature.

¥ Non-negative payments: To the best of our knowledge, all crowdsourcing platforms today (such as Amazon mechanical
turk, Clickworker, Mobileworks, etc.) require the payment to be non-negative.

¥ Rational workers: We do not require workers to be rational; rationality is a standard game theoretic assumption employed
to guard against the worst case of workers exploiting the payment mechanism. From a practical standpoint, workers
exposed to any mechanism for long enough durations may eventually ÒrationalizeÓ and identify loopholes (if any) in the
mechanism.

B. Simulations for SVM with RBF Kernel

In this section, we plot the results of the simulations for the SVM algorithm with the RBF kernel. To begin, Figure 5 plots
the error incurred when the number of workers in the setting with no self correction is varied from5 to 9, keeping the
number of workers in the setting with self correction at5. Next, Figure 6 compares the error in the two settings whenq
is Þxed at0.15 for various values of parameterp. Finally, Figure 7 compares the error in the two settings whenp is Þxed
at 0.6 for various values of parameterq. We observe that as in the case of the linear kernel studied earlier, the two-stage
setting with self correction offers signiÞcant advantages over the single-stage setting with no self correction.

C. Proofs

In this section, we will present the proofs of the various theoretical claims made in the main text. We begin with the claim
for the single-stage setting followed by the proofs of the main two-stage setting considered in the paper. Towards the latter,
in Section C.2, we introduce some notation and a lemma that will subsequently be used in several other proofs.

Figure 5: Error incurred by SVM with an RBF kernel under the self-correction (SC) setting with5 workers, compared to
the error incurred under the standard setting with no self correction (NSC) with5 to 9 workers.
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Figure 6: Error incurred by SVM with an RBF kernel for different reliabilities (p) of the worker in the Þrst stage. The
no-self-correction (NSC) setting has7 workers whereas the self-correction (SC) setting has only5 workers.

Figure 7: Error incurred by SVM with an RBF kernel for different values of the improvement in accuracy (q) via self-
correction. The no-self-correction (NSC) setting has7 workers whereas the self-correction (SC) setting has only5 workers.

C.1. Proof of Proposition 1: One stage is easy

The proof is straightforward, but is included for completeness. LetpA andpB (= 1 ! pA ) be the workerÕs subjective
probabilities of A or B respectively being correct. If the worker selects A then her expected reward is

RA := pA M + + pB M ! .

On the other hand, if the worker selects B then her expected reward is

RB := pB M + + pA M ! .

Noting thatpA + pB = 1 , one can easily verify that

M + > M ! " RA

pA < 1
2 <p B

!
pA > 1

2 >p B

RB

which implies incentive compatibility.

C.2. Necessary and sufÞcient condition for incentive compatibility whenN = G = 1

In this section, we establish a key result on necessary and sufÞcient conditions for incentive compatibility whenN = G =
1, which will be useful in subsequent proofs. The reader interested in only the proof of Theorem 1 may directly read that
proof in the next subsection without loss in continuity.

Under the special case ofN = G = 1 , any mechanismf : { + M , ! M , + R, ! R, + C, ! C} # [0, µ] can be deÞned using
six values in the interval[0, µ], namelyM + := f (+ M ), M ! := f (! M ), R+ := f (+ R), R! := f (! R), C+ := f (+ C)
andC! := f (! C).

We will also use the following two functionsRR , RC : [0, 1] # [0, µ]:

RR (p") := p"R+ + (1 ! p")R! , (2a)

RC (p") := (1 ! p")C+ + p"C! . (2b)



Mechanisms for Self-correction for better data from crowdsourcing

In words,RR (p!) andRC (p!) represent the expected reward of a worker (from her point of view) who has a belief ofp! in
the option she chose in the Þrst stage and who either retains her answer or copies the reference answer respectively. In this
section, since we consider only one question, we will drop the subscripts ÒiÓ in the notation of the workerÕs beliefs.

The following lemma establishes necessary and sufÞcient conditions for incentive compatibility.

Lemma 1. WhenN = G = 1 , a necessary and sufÞcient condition for a mechanism to be incentive compatible is that it
satisÞes the following conditions:

(1 � T)R+ + T R" = T C+ + (1 � T)C" , (3a)

max
⇢

C+ ,
C+ + C"

2
+ 2 !

C+ � C"

2
,

R+ + R"

2
� 2!

R+ � R"

2

�

 M + + M "

2
+ 2 !

M + � M "

2
, (3b)

M + + M "

2
� 2!

M + �M "

2
min

⇢

C+ , T C+ +(1 � T)C" , max{C+ + C"

2
+2 !

C+ �C"

2
,

R+ + R"

2
� 2!

R+ �R"

2
}
�

,

(3c)

M + > M " , R+ > C " , C+ > R " , R+ > M " . (3d)

The remainder of this subsection is devoted to the proof of this lemma.

Proof of Lemma 1 We will prove this lemma by Þrst identifying the basic conditions necessary and sufÞcient for incen-
tive compatibility, and then showing the equivalence of the conditions to those stated in the lemma.

Recall the conditions for incentive compatibility in the second stage (Section 2.3). One can verify that equivalently,
necessary and sufÞcient conditions for incentive compatibility in the second stage areRR (1 � T) = RC (1 � T) and
R+ > C " , C+ > R " . The Þrst condition is identical to (3a).

For the Þrst stage, by deÞnition, a necessary and sufÞcient condition for incentive compatibility is

qA (pA M + + pB M " ) + qB max{RR (p!
A |B ), RC (p!

A |B )}
pA< 1

2 " !

!
pA> 1

2 + !
qB (pB M + + pA M " ) + qA max{RR (p!

B |A ), RC (p!
B |A )}, (4)

for all pA 2 [0, 1], p!
A |B 2 [0, pA ], p!

B |A 2 [0, pA ], p!
B |A 2 [0, pB ], andqA 2 [0, 1].

Settingp!
B |A = p!

A |B = 0 andqA = qB = 1
2 in (4) results in the necessity of the conditionM + > M " . Let us now

investigate the conditions (3b) and (3c).

Consider the case ofpA < 1
2 � ! . Here, the worst case is when the left hand side of (4) is maximized and the right hand

side is minimized. Satisfying (4) whenpA < 1
2 � ! is thus equivalent to satisfying the inequality

qA (pA M + + pB M " ) + qB max
p0
A|B# [0,pA]

max{RR (p!
A |B ), RC (p!

A |B )}

< qB (pB M + +pA M " )+qA min
p0
B|A# [0,pB ]

max{RR (p!
B |A ), RC (p!

B |A )}. (5)

Recall thatqA = 1 � qB . Observe that the inequality (5) is linear inqA . As a result, a necessary and sufÞcient for (5)
to be satisÞed for all values ofqA 2 [0, 1] is that the inequality (5) is satisÞed for the two extreme values ofqA , namely
qA 2 {0, 1}. SettingqA = 0 in (5) gives

max
p0
A|B# [0,pA]

max{RR (p!
A |B ), RC (p!

A |B )} < (pB M + + pA M " ). (6)

The ÔmaximumÕ term in the left hand side of (6) is a maximum over two linear functions, and hence the term is maximized
whenp!

A |B is either0 or pA . Thus (6) reduces to

max{R" , C+ , RR (pA ), RC (pA )} < (pB M + + pA M " ),



Mechanisms for Self-correction for better data from crowdsourcing

for all pA 2 [0,

1
2 � ⇠). Using the condition C+ > R� from (3d), we obtain the equivalent condition

max{C+ � (pBM+ + pAM�), RR(pA)� (pBM+ + pAM�), RC(pA)� (pBM+ + pAM�)} < 0. (7)

Each of the three expressions in the maximum on the left hand side of (7) are linear expressions in terms of the variable
pA. Consequently, the maximum is attained at one of the end-points of the permitted values of pA, that is, when pA = 0

or when pA approaches 1
2 � ⇠. Substituting these two values of pA into (7) yields the necessary and sufficient condition

of (3b), for the setting of pA <

1
2 � ⇠ and qA = 0.

Next we move to the case of qA = 1. Setting qA = 1 in (5) gives

(pAM+ + pBM�) < min

p0
B|A2[0,pB ]

max{RR(p
0
B|A), RC(p

0
B|A)}. (8)

The term “max{RR(p
0
B|A), RC(p

0
B|A)}” in the right hand side of (8) is a maximum over two linear functions, and hence

the term is necessarily minimized in one of the following three cases: (i) At RR(p
0
B|A) = RC(p

0
B|A) if one of the two

functions RR(p
0
B|A) and RC(p

0
B|A) is increasing and one decreasing in p

0
B|A. As a consequence of (3a), the two functions

are equal when p

0
B|A = 1 � T . Note that this value of p0B|A is a valid value because 1 � T  1

2  pB . (ii) At p0B|A = 0,
which is a minimizer when both functions increase with an increase p

0
B|A. (iii) At p0B|A = pB , which is a minimizer when

both functions decrease with an increase p

0
B|A. Putting the three cases together, we get the equivalent condition

(1� pB)M+ + pBM� < min{C+, TC+ + (1� T )C�,max{RR(pB), RC(pB)}}, (9)

for all pB 2 [0,

1
2 � ⇠). One can verify that due to linearity (in pB) of the various constituents of (9), it is necessary and

sufficient that the inequality (9) be satisfied for the extreme values of pB . Setting pB = 1 and pB =

1
2 + ⇠ and performing

some algebraic simplifications yields the condition (3c).

The case of pB <

1
2 �⇠ gives the same result by symmetry. This completes the proof of the necessity and sufficiency of (3)

for incentive compatibility.

C.3. Proof of Theorem 1: Impossibility

We first prove the claimed impossibility result for the case of a single question N = G = 1. The proof for the case of
N = G = 1 proceeds via a contradiction-based argument, and uses the notation of Section C.2.6 Suppose there is an
incentive compatible mechanism, i.e., there exist values of M+,M�, R+, R�, C+, C� that ensure that in both stages the
worker selects the answer she thinks is most likely to be correct.

Incentive compatibility then necessitates:

• Second stage:

– if worker answered A in the first stage and reference answer was B:

RR(p
0
A|B)

p0
A|B<1�T

7
p0
A|B>1�T

RC(p
0
A|B), (10)

– if worker answered B in the first stage and reference answer was A:

RR(p
0
B|A)

p0
B|A<1�T

7
p0
B|A>1�T

RC(p
0
B|A). (11)

• First stage:

qA(pAM+ + pBM�) + qB max{RR(p
0
A|B), RC(p

0
A|B)}

pA< 1
2<pB

7
pA> 1

2>pB

qB(pBM++pAM�)+qA max{RR(p
0
B|A), RC(p

0
B|A)}. (12)

6While one could use Lemma 1 to prove this result, we opt for a different proof here for its significantly greater simplicity.
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We now show that the requirements (10), (11) and (12) cannot be met simultaneously. To this end, consider some value
p! ! [0, 1

2 ], and consider a worker who has subjective probabilitiespA = pB = 1
2 , p!

A |B = p!
B |A = p! " 1

2 , andqA #= qB .
Observe that both the left and right hand sides of (12) are continuous in(pA , pB ). As a result, whenpA = pB = 1

2 we
must have

qA (
1
2

M + +
1
2

M " ) + qB max{ RR (p!
A |B ), RC (p!

A |B )}

= qB (
1
2

M + +
1
2

M " ) + qA max{ RR (p!
B |A ), RC (p!

B |A )} .

Some simple algebraic manipulations yield
M + + M "

2
= max { RR (p!), RC (p!)} , (13)

for everyp! " 1
2 . In the two sets of inequalities (10) and (11), the left hand sides are greater than the right hand sides for

certain values ofp! " 1
2 , and vice versa for certain other values ofp! " 1

2 , wheneverT > 1
2 . It follows that the term

max{ RR (p!), RC (p!)} in the right hand side of (13) must depend on the value ofp! and cannot be a constant. On the other
hand, the left hand side of (13) is a constant, independent ofp!. This argument thus yields a contradiction.

Given that the worker cannot be incentivized for even one question, the impossibility easily extends to the more general
case ofN $ G $ 1 as follows. Assume that for questions2, . . . , N , the worker is sure that the answer is optionA in both
stages, is sure that the reference answer will be optionA, and the reference answer as well as the correct answer actually
turn out to equal optionA. In this setting, the incentivization requirements reduce to incentivizing the worker for only the
Þrst question, which is shown to be impossible in the proof for theN = G = 1 setting below.

C.4. Proof of Theorem 2: Many mechanisms for every slack

We begin with the case ofN = G = 1 which will convey many of the key ideas of the proof. We will adopt the notation
introduced in Section C.2. LetM + = 1 , M " = 0 , R+ = 1 , R" = 0 , C+ = (1 %T), C" = (1 %T). It is easy to verify
that this choice satisÞes the conditions (3a) and (3d). If these payments satisfy the inequalities (3b) and (3c), then we are
done. If not then the values will result in the left hand side being greater than the right hand side in (3b) and/or (3c). In
that case, compute the difference between the left and right hand sides of (3b) and (3c), and let! > 0 denote the larger of
the two values. Perform the following modiÞcations to the values:M + & M + + ! +1

" , M " & M " , R+ & R+ + ! +1
2" ,

R" & R" + ! +1
2" , C+ & C+ + ! +1

2" , andC" & C" + ! +1
2" . At this point, we would like to remind the reader that! > 0

and" > 0.

One can verify that with the changes described above, the payment values continue to satisfy the conditions (3a) and (3d).
However, importantly, with these changes, the left hand side of (3b) increases by at most! +1

2" while the right hand side

increases by(1 + 2 " ) ! +1
2" , and the left hand side of (3b) increases by(1 %2" ) ! +1

2" while its right hand side increases by
! +1
2" . It follows that in both inequalities, the difference between the right and left hand sides increases by at least(! + 1) .

Thus with the updated values, both (3b) and (3c) are satisÞed. Finally, scaling all payments byµ
M +

also ensures that
the mechanism abides by the constraint of the maximum allowable payment. We have thus proved the existence of an
incentive-compatible mechanism when" > 0, for the case ofN = G = 1 .

For the more general case ofN $ G $ 1, consider a mechanism that Þrst considers each gold standard question separately
and allots a score equaling the payment that would have been made in the case ofN = G = 1 . The net payment across all
questions is the sum of the scores across all questions (normalized by a positive factor to satisfy the budget constraint ofµ).
From the workerÕs point of view, due to linearity of expectation, the expected payment for any choice of answers is the sum
of the expected scores for theN individual questions (normalized by a positive constant factor). Incentive compatibility of
the individual scores forN = G = 1 implies incentive compatibility for the general mechanism as well.

Observe that in the proof above, we started out with one particular choice of the parametersM + , M " , R+ , R" , C+ , C"

that satisÞed (3a) and (3d). There are however inÞnitely many choices of these parameters that satisfy these two conditions.
The rest of the proof forG = 1 above demonstrated a procedure to construct an incentive-compatible mechanism starting
from any such choice. It is not hard to see that the set of resulting mechanisms also form an inÞnite set. WhenG > 1, one
can choose separate mechanisms for each individual question and combine them in one of an exponentially large number
of ways, e.g., multiplying or adding any of the mechanisms for the individual questions. The number of degrees of freedom
thus grows exponentially inG.
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C.5. Proof of Theorem 3: Minimum slack needed

We begin with the case ofN = G = 1 which will convey many of the key ideas of the proof. We will adopt the notation
introduced in Section C.2 for this case.

It is straightforward to see that whenN = G = 1 , a necessary and sufÞcient condition to satisfy the no-free-lunch axiom
is thatM ! = R! = C! = 0 . Substituting these conditions in Lemma 1 gives that a necessary and sufÞcient condition
under any! andT for the existence of an incentive-compatible mechanism satisfying the no-free-lunch axiom is

1
2 ! !

T
"

C+

M +
"

1
2 + !

T
min

!
1 ! T
1
2 ! !

, T
"

(14a)

(1 ! T)R+ = T C+ > 0. (14b)

Observe the following four properties of (14a): (i) the leftmost side strictly decreases with an increase in! while its
rightmost side increases strictly, (ii) when! = 0 , the leftmost side is strictly greater than its rightmost side (using the fact
thatT < 1), (iii) when ! = 1

2 , the leftmost side is zero whereas the rightmost side is one, and (iv) both the leftmost and
rightmost sides are continuous in! . It follows that the leftmost and rightmost sides of (14a) meet each other at exactly one
point in ! # (0, 1

2 ). Solving (14a) for! , with the inequalities are replaced by equalities, gives precisely the value denoted
by ! min in the statement of the theorem. For any! < ! min , the aforementioned arguments imply a violation of (14a).

Let us now consider the more general case ofN $ G $ 1. Suppose there exists some value! < ! min for which there
exists an incentive compatible mechanism satisfying the no-free-lunch axiom. Then we have

1
1
2 ! !

=
1

1
2 + !

max
! 1

2 ! !
1 ! T

,
1
T

"
! " !,T , (15)

for some value"!,T > 0 that depends on the values of! andT. We will now call upon the proof of Theorem 5 to complete
our proof. The proof of Theorem 5 shows that under the no-free-lunch axiom, there is only one mechanism that can be
incentive compatible when! = ! min . In the proof of Theorem 5, the steps till Equation (16) are applicable to all values of
! # (0, 1

2 ); ! is set as! min in (16) to obtain (17) and in subsequent steps. If! min is replaced by! , then the inequality (20)
becomes

#
1
2

+ !
$

øh(! M ) +
1
2 ! !
1
2 + !

Tøh(+ C)"!,T "

%
1
2 ! !

&2

1
2 + !

øh(! M ),

whereøh(! M ) $ 0, øh(+ C) > 0. One can see that when! > 0, a necessary condition for this inequality to be satisÞed (and
consequently for any mechanism to be incentive compatible) is to have"!,T = 0 . This assignment, in turn, necessitates
! = ! min for existence of any incentive compatible mechanism, as claimed.

C.6. Proof of Theorem 4: The algorithm works

First consider the case ofN = G = 1 . One can verify that when! = ! min , the proposed payment mechanism satisÞes the
necessary and sufÞcient conditions (3) derived earlier in Lemma 1.

For the case ofN $ G $ 1, observe that the mechanism assigns a non-negative value to the worker for each question in the
gold standard, and the Þnal payment is the product of these values (scaled by a positive constant). We recall our assumption
that the workerÕs beliefs are independent across questions. Consequently, in either stage, the net expected payment from
the workerÕs point of view equals the product of the expected values for each question (where the value is1 if the question
is not in the gold standard). Since for every individual question, the expectation is maximized when the worker answers
as desired, the overall expected payment is also maximized when the worker answers as desired. The mechanism is thus
incentive compatible.

Finally, one can verify that the payment is always non-negative, and the maximum payment equalsµ.

C.7. Proof of Theorem 5: One and only mechanism

Let us Þrst consider the much simpler case ofN = G = 1 . Recall the necessary and sufÞcient conditions (3) for incentive
compatibility with the no free lunch condition. When! = ! min , the two inequalities in (14a) get tightly sandwiched and



Mechanisms for Self-correction for better data from crowdsourcing

transform into equalities. Thus, the parametersM + , R+ andC+ now have a unique relation between them. Moreover,
M ! = R! = C! = 0 are also Þxed. Settingmax{ M + , R+ , C+ } = µ now Þxes the entire mechanism to be identical to
Algorithm 1.

We now move on to the case of general values of the parameters(N, G). We begin with two lemmas that derive properties
that any mechanism must necessarily satisfy. The proofs of these two lemmas are provided at the end of this section. The
Þrst of the two lemmas applies to any incentive compatible mechanism, that may or may not satisfy no free lunch.

Lemma 2. For anyi ! [G], any(y1, . . . , yi ! 1, yi +1 , . . . , yG ) ! { + M , " M , + R, " R, + C, " C} G! 1, any incentive com-
patible mechanism must satisfy

(1 " T)f (y1, . . . , yi ! 1, + R, yi +1 , . . . , yG ) + T f (y1, . . . , yi ! 1, " R, yi +1 , . . . , yG )

= T f (y1, . . . , yi ! 1, + C, yi +1 , . . . , yG ) + (1 " T)f (y1, . . . , yi ! 1, " C, yi +1 , . . . , yG ).

The proof of Theorem 5 inducts on the number of entries iny that take values in the set{ + R, " R, + C, " C} . The
hypothesis of this induction is that the payment mechanism must be of the form given in Algorithm 1 up to a constant
positive scaling. The base case ofy ! { + R, " R, + C, " C} G \{ + R, + C} G is handled in Lemma 3 below.

Lemma 3. Any incentive-compatible mechanism satisfying the no-free-lunch axiom must satisfyf (y ) = 0 # y !
{" M , + R, " R, + C, " C} G \{ + R, + C} G .

From Lemmas 2 and 3, we obtain the base case of the induction that the mechanism must be identical to that of Algorithm 1
whenevery ! { + R, " R, + C, " C} G \{ + R, + C} G .

Moving on, let us now suppose that the induction hypothesis is true whenevery !
{ + M , " M , + R, " R, + C, " C} G \{ + M , + R, + C} G and

! G
i =1 1{ yi ! { + R, " R, + C, " C}} $ G " ! + 1 ,

for some ! ! [G]. We now prove that the induction hypothesis remains true whenevery !
{ + M , " M , + R, " R, + C, " C} G \{ + M , + R, + C} G and

! G
i =1 1{ yi ! { + R, " R, + C, " C}} = G " ! .

Suppose that without loss of generality thaty1, . . . , y! ! 1 ! i ! { + M , " M } andy! +1 , . . . , yG ! { + R, " R, + C, " C} . In
the total set ofN questions, suppose that for everyi % ! " 1, we haveqA,i = 1 , pA,i > 1

2 + " , and for everyi $ ! + 1 , we
haveqA,i = 0 , pA,i > max{ 1

2 + ", T } . Suppose that for all questions[N ]\{ ! } , the worker decides to act precisely as what
the mechanism wishes her to do. Thus in the Þrst stage, she will select optionA for all questions[N ]\{ ! } . Furthermore,
the worker believes that questions1, . . . , ! " 1 will surely match, whereas questions! + 1 , . . . , G will surely mismatch
and go into the second stage.

Let h : { + M , " M , + R, " R, + C, " C} & [0, µ] be a function deÞned as follows:h(y! ) is the expected payment, from
the point of view of the worker, conditioned on the! th question evaluating toy! . (Note that sinceqA,i ! { 0, 1} for every
i '= ! , and since the evaluation of question! is Þxed aty! , the expected pay is identical in both stages.) The expectation
is over the randomness in the choice of the gold standard questions as well as over the workerÕs uncertainty about the
correctness of her answers to the remainingN " 1 questions. One can see that for any value ofy! , the functionh(y! ) is
composed of a convex combination of two parts: the Þrst part is for the case when the! th question is in the gold standard
and the second part is when the! th question is not in the gold standard. Consequently, the Þrst part depends ony! and the
second part is independent of it. Lettingøh denote the Þrst part, we can writeh(y! ) = #øh(y! )+ (1 " #)c for some constants
c $ 0 and# ! (0, 1).

The functionøh is a convex combination of the functionf evaluated at various points. In particular, wheny! !
{ + R, " R, + C, " C} , each component of this convex combination is the functionf evaluated at a vector with at least
(G " ! + 1) of its entries taking values in the set{ + R, " R, + C, " C} . Hence applying Lemma 2 we get that
(1 " T)øh(+ R) + Tøh(" R) = Tøh(+ C) + (1 " T)øh(" C). Furthermore, from our induction hypothesis above, we have
øh(y! ) = 0 wheny! ! {" R, " C} . Consequently, we also haveøh(+ R) = T

1! T
øh(+ C).

Let pA , pB = 1 " pA , qA , qB = 1 " qA , p"
A |B , p"

B |A be the conÞdences of the worker for question! . In order to incentivize
the worker appropriately for question! in the Þrst stage, it must be that

qA (pA
øh(+ M ) + pB

øh(" M )) + qB max{ p"
A |B

øh(+ R), (1 " p"
A |B )øh(+ C)}

pA< 1
2 ! "

7
pA> 1

2 + "
qB (pB

øh(+ M ) + pA
øh(" M )) + max { p"

B |A
øh(+ R), (1 " p"

B |A )øh(+ C)} .
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Substituting ¯

h(+R) =

T
1�T

¯

h(+C) we get

qA(pA
¯

h(+M) + pB
¯

h(�M)) + qB max{p0A|B
T

1� T

, (1� p

0
A|B)}¯h(+C)

pA< 1
2�⇠

7
pA> 1

2+⇠

qB(pB
¯

h(+M) + pA
¯

h(�M)) + qA max{p0B|A
T

1� T

, (1� p

0
B|A)}¯h(+C) .

Let pA =

1
2 � ⇠. Setting p

0
B|A = 1� T and allowing p

0
A|B to be 0 or pA gives

qA

✓

1

2

� ⇠

◆

¯

h(+M) + qA

✓

1

2

+ ⇠

◆

¯

h(�M) + qBT max

⇢✓

1

2

� ⇠

◆

1

1� T

,

1

T

�

¯

h(+C)

 qB

✓

1

2

+ ⇠

◆

¯

h(+M) + qB

✓

1

2

� ⇠

◆

¯

h(�M) + qAT
¯

h(+C).

From the definition of the minimum slack (Theorem 3), when ⇠ = ⇠min, we have
1
2 � ⇠

T

=

1
2 + ⇠

T

min

⇢

1� T

1
2 � ⇠

, T

�

, (16)

and hence

qA

✓

1

2

� ⇠

◆

¯

h(+M) + qA

✓

1

2

+ ⇠

◆

¯

h(�M) + qBT

1
2 + ⇠

1
2 � ⇠

¯

h(+C)

 qB

✓

1

2

+ ⇠

◆

¯

h(+M) + qB

✓

1

2

� ⇠

◆

¯

h(�M) + qAT
¯

h(+C). (17)

Setting qA = 1 gives
✓

1

2

� ⇠

◆

¯

h(+M) +

✓

1

2

+ ⇠

◆

¯

h(�M)  T

¯

h(+C), (18)

and setting qA = 0 gives

T

1
2 + ⇠

1
2 � ⇠

¯

h(+C) 
✓

1

2

+ ⇠

◆

¯

h(+M) +

✓

1

2

� ⇠

◆

¯

h(�M). (19)

Combining the inequalities (18) and (19) yields the bound
✓

1

2

+ ⇠

◆

¯

h(�M) 
�

1
2 � ⇠

�2

1
2 + ⇠

¯

h(�M). (20)

Since ⇠ 2 (0,

1
2 ), the inequality (20) can be satisfied only if ¯h(�M) = 0. The function ¯

h(�M) is a convex combination
of various evaluations of the non-negative function f including f(y1, . . . , yG). It follows that these evaluations of f must
also be zero. We have thus proved that

f(y) = 0 8 y 2 {+M,�M,+R,�R,+C,�C}G\{+M,+R,+C}G. (21)

Continuing on, substituting the result of (21) in (18) and (19) yields the relation

T

¯

h(+C) =

✓

1

2

� ⇠

◆

¯

h(+M). (22)

We now convert this relation of the function ¯

h to an analogous relation of the function f . Suppose that for every question
i 2 {G + 1, . . . , N}, the worker has beliefs pA,i = 1, p

0
A|B,i = 1, qA,i = 0, and that every question in this set actually

results in a mismatch. Recall that the function ¯

h is a convex combination of the function f evaluated at various points
corresponding to the various choices of the G gold standard questions out of the N total questions, where the choice
necessarily includes question 1. Applying this observation to the relation (22) yields

X

j2{0,...,G�1}
i1,...,ij✓{2,...,G}

↵i1,...,ij

n

Tf(+C, yi1 , . . . , yij ,+R, . . . ,+R)� (

1

2

� ⇠)f(+M, yi1 , . . . , yij ,+R, . . . ,+R)

o

,
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where
�

↵i1,...,ij

 

are all positive constants. An inductive argument on the values of (y2, . . . , yG), starting with y2 = . . . =
yG = + R as the base case and further inducting on the number of values in y2, . . . , yG equalling + R yields the result

Tf (+ C, y2, . . . , yG) =
✓

1
2

! ⇠

◆

f (+ M , y2, . . . , yG), (23)

for every value of y2, . . . , yG. Calling upon Lemma 2 and using (21) also yields

Tf (+ C, y2, . . . , yG) = (1 ! T )f (+ R , y2, . . . , yG). (24)

From the relations (21), (23) and (24) and using the fact that all arguments above apply to any permutation of the G gold
standard questions yield the claimed result that f must be identical to the mechanism of Algorithm 1.

The only remaining detail is to prove Lemma 2 and Lemma 3 which we do below.

Proof of Lemma 2 We begin by introducing some additional notation that will aid in subsequent discussion. Define a
function g : { + M , ! M ,+ R , ! R ,+ C, ! C} N " [0, µ] as the expected payment (across the randomness in the choice of
the gold standard questions) given the evaluations to all the N questions, that is,

g(y1, . . . , yN ) =
1
�N
G

�

X

(i1,...,iG) !{ 1,...,N }

f (yi1 , . . . , yiG ). (25)

We first show that the function g must satisfy the relation

(1 ! T )g(y1, . . . , yN " 1,+ R) + Tg(y1, . . . , yN " 1, ! R) = Tg(y1, . . . , yN " 1,+ C) + (1 ! T )g(y1, . . . , yN " 1, ! C),
(26)

for every value of (y1, . . . , yN " 1). To this end, suppose the worker is presently in the second stage. Suppose that the
worker’s beliefs regarding the various questions are unaffected by the results of matching or mismatching at the end of the
first stage. Letting S := { i # [N ! 1] | yi # { + R , ! R ,+ C, ! C} , suppose that questions S $ { N } make it to the second
stage. For every i # [N ], let p#

i be the confidence of the worker for the answer that she marked under event yi. For every
i # [N ! 1], let ri = p

#
i if yi < 0 and ri = (1 ! p

#
i) if yi > 0.7 Let E = [ ✏1 á á á✏N " 1] # {! 1, 1} N " 1.

Since the mechanism is incentive compatible, it must be able to appropriately incentivize the worker for the N

th question.
This condition necessitates

p

#
X

E${" 1,1} N�1

0

@

g(! ✏1y1, . . . , ! ✏N " 1yN " 1,+ R)
Y

j$ [N " 1]

r

1+✏j
2

j (1 ! rj)
1�✏j

2

1

A

+(1 ! p

#)
X

E${" 1,1} N�1

0

@

g(! ✏1y1, . . . , ! ✏N " 1yN " 1, ! R)
Y

j$ [N " 1]

r

1+✏j
2

j (1 ! rj)
1�✏j

2

1

A

p0<1" T
7

p0>1" T
(1 ! p

#)
X

E${" 1,1} N�1

0

@

g(! ✏1y1, . . . , ! ✏N " 1yN " 1,+ C)
Y

j$ [N " 1]

r

1+✏j
2

j (1 ! rj)
1�✏j

2

1

A

+ p

#
X

E${" 1,1} N�1

0

@

g(! ✏1y1, . . . , ! ✏N " 1yN " 1, ! C)
Y

j$ [N ]\{ �}

r

1+✏j
2

j (1 ! rj)
1�✏j

2

1

A

. (27)

The left hand side of (27) is the expected payment if the worker chooses to retain her answer for the N

th question, while
the right hand side is the expected payment if she chooses to copy the reference answer. Now, note that for any real valued
variable q, and for any constants a, b and c,

ay

q<c
7
q>c

b % a > 0, c =
b

a

, b > 0 .

7For ease of exposition, we consider { + M , + R, + C} as “positive” values, and {! M , ! R, ! C} as the corresponding “negative”
values with inverted signs.
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Applying this fact and making some simple algebraic manipulations gives

(1 ! T)
!

E !{" 1,1} N ! 1

"

# g(! ! 1y1, . . . , ! ! N " 1yN " 1, + R)
$

j ! [N " 1]

r
1+ ! j

2
j (1 ! r j )

1! ! j
2

%

&

+ T
!

E !{" 1,1} N ! 1

"

# g(! ! 1y1, . . . , ! ! N " 1yN " 1, ! R)
$

j ! [N " 1]

r
1+ ! j

2
j (1 ! r j )

1! ! j
2

%

&

! T
!

E !{" 1,1} N ! 1

"

# g(! ! 1y1, . . . , ! ! N " 1yN " 1, + C)
$

j ! [N " 1]

r
1+ ! j

2
j (1 ! r j )

1! ! j
2

%

&

! (1 ! T)
!

E !{" 1,1} N ! 1

"

# g(! ! 1y1, . . . , ! ! N " 1yN " 1, ! C)
$

j ! [N " 1]

r
1+ ! j

2
j (1 ! r j )

1! ! j
2

%

& = 0 . (28)

The left hand side of this equation is a polynomial in{ r 1, . . . , rN " 1} which evaluates to zero for a solid(N ! 1)-
dimensional box of values of{ r 1, . . . , rN " 1} . It follows that the coefÞcients of all monomials in this polynomial must be
zero, and in particular, the constant term must be zero. The constant term appears when! j = ! 1 " j in the summations.
This argument thus yields the relation

(1 ! T)g(y1, . . . , yN " 1, + R)+ T g(y1, . . . , yN " 1, ! R)

= T g(y1, . . . , yN " 1, + C) + (1 ! T)g(y1, . . . , yN " 1, ! C),

as claimed. Furthermore, since the arguments above are invariant to any permutation of the questions, we get that for any
i # [N ], any(y1, . . . , yi " 1, yi +1 , . . . , yN ) # { + M , ! M , + R, ! R, + C, ! C} N " 1, any incentive compatible mechanism
must satisfy

(1 ! T)g(y1, . . . , yi " 1, + R, yi +1 , . . . , yN ) + T g(y1, . . . , yi " 1, ! R, yi +1 , . . . , yN )

= T g(y1, . . . , yi " 1, + C, yi +1 , . . . , yN ) + (1 ! T)g(y1, . . . , yi " 1, ! C, yi +1 , . . . , yN ). (29)

It remains to convert the result of Equation (29) to an equivalent condition on the functionf as in the statement of the
lemma. To this end, suppose thatyG+1 = . . . = yN = + R. Also suppose without loss of generality thati = 1 . Then
expanding the functiong in (29) in terms of its constituent componentsf , we obtain the relation

!

j "{ 0 ,...,G ! 1 }

i 1 ,...,i j #{ 2,...,G }

'
" i 1 ,...,i j

(
(1 ! T)f (+ R, yi 1 , . . . , yi j , + R, . . . , + R) + T f (! R, yi 1 , . . . , yi j , + R, . . . , + R)

! T f (+ C, yi 1 , . . . , yi j , + R, . . . , + R) ! (1 ! T)f (! C, yi 1 , . . . , yi j , + R, . . . , + R)
)

+ " $
i 1 ,...,i j

(
(1 ! T)f (yi 1 , . . . , yi j , + R, . . . , + R) + T f (yi 1 , . . . , yi j , + R, . . . , + R)

! T f (yi 1 , . . . , yi j , + R, . . . , + R) ! (1 ! T)f (yi 1 , . . . , yi j , + R, . . . , + R)
) *

= 0 , (30)

where
+

" i 1 ,...,i j , " $
i 1 ,...,i j

,
are all positive constants. We complete the proof with inductive argument on the values of

(y2, . . . , yG ). We begin by considering the base casey2 = . . . = yG = + R, for which we obtain the result

(1 ! T)f (+ R, + R, . . . , + R) + T f (! R, + R, . . . , + R) = T f (+ C, + R, . . . , + R) + (1 ! T)f (! C, + R, . . . , + R).

from (30). We further induct on the number of values iny2, . . . , yG that equal+ R in (30), and this inductive argument
thus shows that

(1 ! T)f (+ R, y2, . . . , yG ) + T f (! R, y2, . . . , yG ) = T f (+ C, y2, . . . , yG ) + (1 ! T)f (! C, y2, . . . , yG ),

for all possible values ofy2, . . . , yG . Finally, all arguments above are invariant to any permutation of the questions, and
consequently we get the claimed result.
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Proof of Lemma 3 We will induct on the number of entries iny whose values equal either! M or ! R or ! C or + C;
let us use the notation! to denote the number of such entries. When! = G, the no-free-lunch axiom impliesf (y ) = 0 ,
where we have used the assumption thaty /" { + C, + R} G when applying the no-free-lunch axiom. The statement of the
lemma is thus satisÞed in this case.

Now suppose thatf (y ) = 0 whenever! # ! 0 + 1 for some integer! 0 > 0. Consider any evaluationy such that
y1, . . . , y! 0 " {! M , ! R, ! C, + C} . Then from the induction hypothesis stated above, we will havef (y ) = 0 if addition-
ally we hady! 0 +1 " {! M , ! R, ! C, + C} . Applying Lemma 2 withi = ! 0 + 1 givesf (y ) = 0 wheny! 0 +1 = + R. This
inductive argument completes the proof of the lemma.

C.8. Proof of Theorem 6: No-free-lunch cannot be stronger

Suppose that for every question, the worker haspA = 3
4 = 1 ! pB , and further suppose that as desired, the worker

selects optionA for every question in the Þrst stage. Suppose that there is a mismatch for every question, and hence all
the questions go to the second stage. Now suppose that in the second stage, the worker has an updated beliefp!

A |B = 1
4

for every question. In this case, we wish to incentivize the worker to change her answer for every question. However,
strong-no-free-lunch mandates thatf (x) = 0 for everyx " { + C, ! C} G , and consequently, the worker will necessarily be
paid a zero amount under such an action. Since any other action will also fetch an amount no less than zero, the worker is
not incentivized to change her answers as required. Consequently, the strong-no-free lunch is too strong for the existence
of any incentive-compatible mechanism.
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