Mechanisms for Self-correction for better data from crowdsourcing

A. Discussion on modeling assumptions
We begin this section with a discussion on our rationale behind the modelling assumptions made in this paper.

¥ Workers maximize their expected payment: In the literature on game theory, this assumption is a standard, albeit highly
debated, assumption. We argue that this assumption is quite reasonable in our setting. In standard labeling tasks in
crowdsourcing, workers typically spend only about a few minutes for each task, and participate in hundreds of tasks
every week. As a consequence of the law of large numbers, their earning per hour quickly converges to its expected
value. Assuming that workers aim to maximize their hourly wages, the expected payment is the correct quantity to
consider.

¥ Cost-of-effort: This choice of not explicitly modelling a Ocost-for-effortO of each worker was guided by the principle of
OccamOs razor. The cost-for-effort is a highly complex quantity and is not very well understood. (For instance, what is
the monetary cost for the effort in writing or reading this paper?). Hence, instead, we consider the pgrambtea
surrogate for the cost-for-effort: the parameter must be scaled in a fashion that ensures a expected fair pay to any worker
who does a reasonable job.

¥ Workers perfectly know their beliefs: We admit this is a mathematical idealization, but is somewhat necessary to enable
a principled game-theoretic analysis of the setting, and is quite a standard assumption in the literature.

¥ Non-negative payments: To the best of our knowledge, all crowdsourcing platforms today (such as Amazon mechanical
turk, Clickworker, Mobileworks, etc.) require the payment to be non-negative.

¥ Rational workers: We do not require workers to be rational; rationality is a standard game theoretic assumption employed
to guard against the worst case of workers exploiting the payment mechanism. From a practical standpoint, workers
exposed to any mechanism for long enough durations may eventually OrationalizeO and identify loopholes (if any) in the
mechanism.

B. Simulations for SVM with RBF Kernel

In this section, we plot the results of the simulations for the SVM algorithm with the RBF kernel. To begin, Figure 5 plots
the error incurred when the number of workers in the setting with no self correction is variedbfto®, keeping the
number of workers in the setting with self correctiorbatNext, Figure 6 compares the error in the two settings wdpen

is Pxed aD.15 for various values of parametpr Finally, Figure 7 compares the error in the two settings whenbxed

at 0.6 for various values of parametgr We observe that as in the case of the linear kernel studied earlier, the two-stage
setting with self correction offers signibcant advantages over the single-stage setting with no self correction.

C. Proofs

In this section, we will present the proofs of the various theoretical claims made in the main text. We begin with the claim
for the single-stage setting followed by the proofs of the main two-stage setting considered in the paper. Towards the latter,
in Section C.2, we introduce some notation and a lemma that will subsequently be used in several other proofs.
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Figure 5: Error incurred by SVM with an RBF kernel under the self-correction (SC) settingowitirkers, compared to
the error incurred under the standard setting with no self correction (NSChwgtB workers.
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Figure 6: Error incurred by SVM with an RBF kernel for different reliabilitigg ¢f the worker in the pbrst stage. The
no-self-correction (NSC) setting h@svorkers whereas the self-correction (SC) setting has dmhgrkers.
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Figure 7: Error incurred by SVM with an RBF kernel for different values of the improvement in accugpeia(self-
correction. The no-self-correction (NSC) setting fiagorkers whereas the self-correction (SC) setting has dulgrkers.

C.1. Proof of Proposition 1: One stage is easy

The proof is straightforward, but is included for completeness. paetindps (= 1 ! pa) be the workerOs subjective
probabilities of A or B respectively being correct. If the worker selects A then her expected reward is

Ra = paM.+ + pg M,
On the other hand, if the worker selects B then her expected reward is
Rg = pg M+ + paM,
Noting thatpa + ps = 1, one can easily verify that
PA< 3<Pe
My >M| " Ra ! Rg
PA>3>Ps

which implies incentive compatibility.

C.2. Necessary and sufpcient condition for incentive compatibility whehN = G =1

In this section, we establish a key result on necessary and sufbcient conditions for incentive compatibillty wiers
1, which will be useful in subsequent proofs. The reader interested in only the proof of Theorem 1 may directly read that
proof in the next subsection without loss in continuity.

Under the special case bf = G = 1, any mechanisrh : {+M,! M,+R,! R,+C,! C# [0, ] can be debned using
six values in the intervgD, p], namelyM, = f(+M),M, =f( M),R, =f(+R),R, =f(l R),Cs =f(+0O
andC, = f(! O).

We will also use the following two functiorBg, Rc : [0,1]# [0, u]:
Rr(p):= pR+ +(1! P)Ri, (2a)

Re(p):=(1! p)Cs +pCi . (2b)
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In words,Rg (p') andRc (p') represent the expected reward of a worker (from her point of view) who has a bgtiehof
the option she chose in the pbrst stage and who either retains her answer or copies the reference answer respectively. In this
section, since we consider only one question, we will drop the subsciriptsi@he notation of the workerOs beliefs.

The following lemma establishes necessary and sufpcient conditions for incentive compatibility.

Lemma 1. WhenN = G =1, a necessary and sufbcient condition for a mechanism to be incentive compatible is that it
satisbes the following conditions:

1-T)Ry + TR =TC, +(1 —T)C-, (3a)
C, +C Ci —C Ry +R: R: — R M, + M« M, — M-
+2! -2 < +2!
max{C+, 5 2 5 , 5 2 5 } < > 2 5 , (3b)
M++M" M+—M" . C++C" C+ _C" R++R" R+ _R"
— 2 < — . I —2
3 2! 3 <min {CJr,TC+ +(1 —T)C ,max{ 5 +2! 5 3 2! 3 }},
(3¢)
M+ > M "oy R+ > C" y C+ > R "y R+ > M "o (3d)

The remainder of this subsection is devoted to the proof of this lemma.

Proof of Lemma 1 We will prove this lemma by Prst identifying the basic conditions necessary and sufpcient for incen-
tive compatibility, and then showing the equivalence of the conditions to those stated in the lemma.

Recall the conditions for incentive compatibility in the second stage (Section 2.3). One can verify that equivalently,
necessary and sufpcient conditions for incentive compatibility in the second staBg @re- T) = Rc(1 — T) and
R, >C., Cs >R+ . The brst condition is identical to (3a).

For the brst stage, by debnition, a necessary and sufpcient condition for incentive compatibility is

Ga(PaM. + PsM- )+ Gg max{Rr (Ph ), Re (Paja)}

pa< %.. |

" g (PeM+ + paM- )+ ga max{Rr(Pza) Rc(Psa)}s (4)

pa> +!
forallpa € [0,1], Py g € [0,Pal, Ps|a € [0,Pal, P5a € [0, ps], andaa € [0, 1].

Settingp{gIA = p!AIB =0 andga = g = % in (4) results in the necessity of the conditivh, > M - . Let us now
investigate the conditions (3b) and (3c).

Consider the case @ < % — 1. Here, the worst case is when the left hand side of (4) is maximized and the right hand
side is minimized. Satisfying (4) whem, < % — | is thus equivalent to satisfying the inequality

Ga(PAM- + PpeM- )+ Gg | max ]maX{RR(pMB),Rc(pMB)}
AT MPA

<ds(PoM++paM-Yra  min  max{Re(Paja): Re(Peja)}- (5)
B|A B
Recall thatgsa, = 1 — gg . Observe that the inequality (5) is lineardn. As a result, a necessary and sufbcient for (5)
to be satisbed for all values gk < [0, 1] is that the inequality (5) is satisPed for the two extreme valuaeg phamely
ga € {0,1}. Settinggs =0 in (5) gives
“max  max{Rg(Phs).Rc(Pas)} < (Pe M+ + paM-). (6)
pA|B#[Ova]
The OmaximumO® term in the left hand side of (6) is a maximum over two linear functions, and hence the term is maximized
whenijB is either0 or pa . Thus (6) reduces to

max{R- ,C+,Rr(pa),Rc(pa)} < (e M+ + paM-),
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forall ps € [0, % — &). Using the condition C'y > R_ from (3d), we obtain the equivalent condition
max{Cy — (pp My +paM_), Rr(pa) — (psMy + paM_), Re(pa) — (ps My +paM_)} <O. ©)

Each of the three expressions in the maximum on the left hand side of (7) are linear expressions in terms of the variable
pa. Consequently, the maximum is attained at one of the end-points of the permitted values of p 4, that is, when py = 0
or when p4 approaches % — &. Substituting these two values of p,4 into (7) yields the necessary and sufficient condition
of (3b), for the setting of p4 < 2 — & and g4 = 0.

Next we move to the case of g4 = 1. Setting g4 = 1 in (5) gives

(paMi +ppM_) <  min maX{RR(pblA),Rc(ng‘A)}. (8)
P54 €[0,p5]

The term “max{RR(ij‘ 1), Re (p’B| 4)}” in the right hand side of (8) is a maximum over two linear functions, and hence
the term is necessarily minimized in one of the following three cases: (i) At R R(pjgl a) = Rc(plg4) if one of the two
functions Rp (pgg‘ ) and R¢ (p%‘ ) is increasing and one decreasing in p;3| - As a consequence of (3a), the two functions
are equal when ijIA = 1 — T. Note that this value ofpjglA is a valid value because 1 — T' < % < pp. (ii) At p’B‘A =0,
which is a minimizer when both functions increase with an increase pjg‘ - (1i1) At pjg‘ 4 = pB, which is a minimizer when
both functions decrease with an increase p’B| - Putting the three cases together, we get the equivalent condition

(1—pp)Mi +ppM_ <min{C,TCy + (1 —-T)C_,max{Rr(ps), Rc(pB)}}, )

for all pp € [0, % — &). One can verify that due to linearity (in pp) of the various constituents of (9), it is necessary and
sufficient that the inequality (9) be satisfied for the extreme values of pp. Setting pp = 1 and pp = % + & and performing
some algebraic simplifications yields the condition (3c).

The case of pp < % — & gives the same result by symmetry. This completes the proof of the necessity and sufficiency of (3)
for incentive compatibility.

C.3. Proof of Theorem 1: Impossibility

We first prove the claimed impossibility result for the case of a single question N = G = 1. The proof for the case of
N = G = 1 proceeds via a contradiction-based argument, and uses the notation of Section C.2.° Suppose there is an
incentive compatible mechanism, i.e., there exist values of M, M_, R, R_,C,C_ that ensure that in both stages the
worker selects the answer she thinks is most likely to be correct.

Incentive compatibility then necessitates:
e Second stage:
— if worker answered A in the first stage and reference answer was B:

Pl p<1-T

Rr(Pap) S Re(Pyp); (10

p’A‘B>1—T

— if worker answered B in the first stage and reference answer was A:

) P a<l-T )
Rr(ppla) S Ro(ppa) (11)

p/B\A>1_T
o First stage:
qa(paMy +ppM_) + qp max{Rr(p/y 5), Ro(P'a )}

pa<i<ps

S a(ppMitpaM_Hqamax{Rr(pp ), Ro(ppa)}- (12)
pa>3>ps

SWhile one could use Lemma 1 to prove this result, we opt for a different proof here for its significantly greater simplicity.
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We now show that the requirements (10), (11) and (12) cannot be met simultaneously. To this end, consider some value
p'! [0, 3], and consider a worker who has subjective probabilfies: ps = 3,Pyg = Pgja = P' " 3, andda # Gg.
Observe that both the left and right hand sides of (12) are continudym ig ). As a result, whempa = pg = % we

must have

1 1 | |
QA(EM+ + EM" )+ g8 Max{Rr(Pajg): Rc(Pajg)}

1 1 | |
= 0B(§M+ + EM" )+ da max{Rr (Pg|a): Rc(Pg|a)}-

Some simple algebraic manipulations yield

M + + M"
' =max{Rr(p),Re (P}, (13)
for everyp' " % In the two sets of inequalities (10) and (11), the left hand sides are greater than the right hand sides for
certain values op % and vice versa for certain other valuespof" % wheneverT > % It follows that the term
max{Rr (p'), Rc (p')} in the right hand side of (13) must depend on the valug ahd cannot be a constant. On the other

hand, the left hand side of (13) is a constant, independepit his argument thus yields a contradiction.

(T

Given that the worker cannot be incentivized for even one question, the impossibility easily extends to the more general
case oN $ G $ 1 as follows. Assume that for questioBs .., N, the worker is sure that the answer is optéin both

stages, is sure that the reference answer will be oftioand the reference answer as well as the correct answer actually
turn out to equal optioi. In this setting, the incentivization requirements reduce to incentivizing the worker for only the
prst question, which is shown to be impossible in the proof foNhe G = 1 setting below.

C.4. Proof of Theorem 2: Many mechanisms for every slack

We begin with the case ™ = G = 1 which will convey many of the key ideas of the proof. We will adopt the notation
introduced in Section C.2. Léfl, =1,M- =0,R; =1,R- =0,Cy =(1 %T),C =(1 %T). Itis easy to verify

that this choice satisbes the conditions (3a) and (3d). If these payments satisfy the inequalities (3b) and (3c), then we are
done. If not then the values will result in the left hand side being greater than the right hand side in (3b) and/or (3c). In
that case, compute the difference between the left and right hand sides of (3b) and (3c)! andldenote the larger of

the two values. Perform the following modibcations to the valids: & M. + 5 M+ & M-, R, & Ry + 5L,

R- & R + 55, C, & C, + L andC: & C- + L. Atthis point, we would like to remind the reader that 0
and" > 0.

One can verify that with the changes described above, the payment values continue to satisfy the conditions (3a) and (3d).
However, importantly, with these changes, the left hand side of (3b) increases by a\!t%ﬂ\q(while the right hand side

increases byl +2")2%, and the left hand side of (3b) increases(by6 2") - while its right hand side increases by
I+

——. It follows that in both inequalities, the difference between the right and left hand sides increases by(attelgst
Thus with the updated values, both (3b) and (3c) are satisbed. Finally, scaling all paym(ﬂ{ts ddgo ensures that
the mechanism abides by the constraint of the maximum allowable payment. We have thus proved the existence of an

incentive-compatible mechanism whéer 0, for the case oN = G = 1.

For the more general caself$ G $ 1, consider a mechanism that brst considers each gold standard question separately
and allots a score equaling the payment that would have been made in the Base@f= 1. The net payment across all
guestions is the sum of the scores across all questions (normalized by a positive factor to satisfy the budget copjtraint of
From the workerOs point of view, due to linearity of expectation, the expected payment for any choice of answers is the sum
of the expected scores for theindividual questions (normalized by a positive constant factor). Incentive compatibility of

the individual scores foN = G = 1 implies incentive compatibility for the general mechanism as well.

Observe that in the proof above, we started out with one particular choice of the paravhetds: , R, R+, C,, Co

that satisbped (3a) and (3d). There are however inbPnitely many choices of these parameters that satisfy these two conditions.
The rest of the proof fo6 = 1 above demonstrated a procedure to construct an incentive-compatible mechanism starting
from any such choice. Itis not hard to see that the set of resulting mechanisms also form an inbnite s&.Wheame

can choose separate mechanisms for each individual question and combine them in one of an exponentially large number
of ways, e.g., multiplying or adding any of the mechanisms for the individual questions. The number of degrees of freedom
thus grows exponentially 6.
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C.5. Proof of Theorem 3: Minimum slack needed

We begin with the case ™ = G = 1 which will convey many of the key ideas of the proof. We will adopt the notation
introduced in Section C.2 for this case.

It is straightforward to see that whéh = G = 1, a necessary and sufpbcient condition to satisfy the no-free-lunch axiom

isthatM, = R, = C, = 0. Substituting these conditions in Lemma 1 gives that a necessary and sufpbcient condition
under any andT for the existence of an incentive-compatible mechanism satisfying the no-free-lunch axiom is
| "
v ¢ 14 10T
2 o + w2 . . :
min , 14a
T M. T 10 (143)
@a! T)Ry =TC,y > 0. (14b)

Observe the following four properties of (14a): (i) the leftmost side strictly decreases with an incrdasdile its
rightmost side increases strictly, (i) whén= 0, the leftmost side is strictly greater than its rightmost side (using the fact
thatT < 1), (iii) when! = % the leftmost side is zero whereas the rightmost side is one, and (iv) both the leftmost and
rightmost sides are continuouslinlt follows that the leftmost and rightmost sides of (14a) meet each other at exactly one
pointin! # (0, 2). Solving (14a) fort, with the inequalities are replaced by equalities, gives precisely the value denoted
by ! min in the statement of the theorem. For dny! in , the aforementioned arguments imply a violation of (14a).

Let us now consider the more general cas®lo$ G $ 1. Suppose there exists some value ! i, for which there
exists an incentive compatible mechanism satisfying the no-free-lunch axiom. Then we have

|
1 _ 1 1

v %+!max 1 TT

T (15)

for some valué, t > 0that depends on the values!oandT . We will now call upon the proof of Theorem 5 to complete
our proof. The proof of Theorem 5 shows that under the no-free-lunch axiom, there is only one mechanism that can be
incentive compatible wheh = !, . In the proof of Theorem 5, the steps till Equation (16) are applicable to all values of
I # (0, 3);! is set ad min in (16) to obtain (17) and in subsequent stepslf is replaced by, then the inequality (20)
becomes

# $ 1 %N, &

1 L o o
E+! ﬁ(!M)+§+!Tﬁ(+C) T ZTF{(!M),

N[

whereH(! M) $ 0, Bi(+ C) > 0. One can see that whér 0, a necessary condition for this inequality to be satisbed (and
consequently for any mechanism to be incentive compatible) is to'have= 0. This assignment, in turn, necessitates
I = Iin for existence of any incentive compatible mechanism, as claimed.

C.6. Proof of Theorem 4: The algorithm works

First consider the case df = G = 1. One can verify that wheh = ! i, , the proposed payment mechanism satisbes the
necessary and sufpcient conditions (3) derived earlier in Lemma 1.

Forthecasedl $ G $ 1, observe that the mechanism assigns a non-negative value to the worker for each question in the
gold standard, and the bnal payment is the product of these values (scaled by a positive constant). We recall our assumption
that the workerOs beliefs are independent across questions. Consequently, in either stage, the net expected payment from
the workerOs point of view equals the product of the expected values for each question (where thé fahegsiestion

is not in the gold standard). Since for every individual question, the expectation is maximized when the worker answers

as desired, the overall expected payment is also maximized when the worker answers as desired. The mechanism is thus
incentive compatible.

Finally, one can verify that the payment is always non-negative, and the maximum paymengequals

C.7. Proof of Theorem 5: One and only mechanism

Let us brst consider the much simpler casblof G = 1. Recall the necessary and sufbcient conditions (3) for incentive
compatibility with the no free lunch condition. Whér= ! ., , the two inequalities in (14a) get tightly sandwiched and
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transform into equalities. Thus, the paramefdrs, R, andC. now have a unique relation between them. Moreover,
M, = R, = C, =0 are also bxed. Settimgax{M. ,R.,C.} = p now bxes the entire mechanism to be identical to
Algorithm 1.

We now move on to the case of general values of the param@&te). We begin with two lemmas that derive properties
that any mechanism must necessarily satisfy. The proofs of these two lemmas are provided at the end of this section. The
prst of the two lemmas applies to any incentive compatible mechanism, that may or may not satisfy no free lunch.

Lemma 2. Foranyi ! [G], any(Y1,....Vi1 1,Yi+1,..-.Ye) '{ +M," M,+R," R,+C," C}¢' 1, any incentive com-
patible mechanism must satisfy

@" My, ...,y .+ RyYise, .o 0ye) + Ty, o0y 1," RyYisa, oo, Y6)
=Ty, Yir .+ CViva, 0 ye)+ (@ " T (v, ..t 1" CYisr, .00 Ye).

The proof of Theorem 5 inducts on the number of entriey ithat take values in the s¢t+R," R,+C," C}. The
hypothesis of this induction is that the payment mechanism must be of the form given in Algorithm 1 up to a constant
positive scaling. The base caseyof{ +R," R,+C," C}¢\{ +R,+ C}© is handled in Lemma 3 below.

Lemma 3. Any incentive-compatible mechanism satisfying the no-free-lunch axiom must $&i3fy= 0 #y !
{"M,+R," R,+C," C}°\{ +R,+C}®.

From Lemmas 2 and 3, we obtain the base case of the induction that the mechanism must be identical to that of Algorithm 1
whenevey ! { +R," R,+C," C}°\{ +R,+ C}©.

Moving on, let us now suppose that the induction hypothesis is true wheneyer !
{+M,"M,+R,"R,+C," C}°\{ +M,+R,+C}® and iG:l Hyi ! {+R,"R,+C"C}} $ G " | + 1,
for some ! ! [G]. We now prove that the induction hypothesis remains true whengver !
{(+M,"M,+R,"R,+C," C®\{ +M,+R,+C} ¢ and’ iezl Hyi'{ +R,"R,+C"C}} = G" !.

Suppose that without loss of generality that...,y,1 2! i '{ +M," M} andy: +1,...,¥c '{ +R," R,+C," C}. In
the total set oN questions, suppose that for evedp! " 1, we havegpi = 1, pa; > %+ ",andforevery $ ! +1,we
haveda; =0, pa; > max{ % + ", T}. Suppose that for all questiofi$]\{{ ! }, the worker decides to act precisely as what
the mechanism wishes her to do. Thus in the brst stage, she will select Apfiborall questiongN ]\{ ! }. Furthermore,
the worker believes that questiohs...,! " 1 will surely match, whereas questiohst 1, ..., G will surely mismatch

and go into the second stage.

Leth: {+M,"M,+R," R,+C," C & [0, ] be a function debned as followk(y, ) is the expected payment, from

the point of view of the worker, conditioned on th® question evaluating tg . (Note that sincep; ! { 0,1} for every

i = I, and since the evaluation of questibris bxed aty, , the expected pay is identical in both stages.) The expectation

is over the randomness in the choice of the gold standard questions as well as over the workerOs uncertainty about the
correctness of her answers to the remaifihg 1 questions. One can see that for any valug;qfthe functionh(y, ) is

composed of a convex combination of two parts: the brst part is for the case wHéeh theestion is in the gold standard

and the second part is when th& question is not in the gold standard. Consequently, the brst part depepdswod the

second part is independent of it. Lettifigienote the brst part, we can writgy, ) = #8(y, )+ (1 " #)cfor some constants

c$ Oand#! (0,1).

The functionR is a convex combination of the functioh evaluated at various points. In particular, whgn !
{+R," R,+C," C}, each component of this convex combination is the functioevaluated at a vector with at least
(G" ! +1) of its entries taking values in the s¢t+R," R,+C," C}. Hence applying Lemma 2 we get that
1" T)AFR)+ TH("R) = TAFC + (1 " T)A(" O. Furthermore, from our induction hypothesis above, we have
B(y:) =0 wheny, !{" R," C}. Consequently, we also haff¢+ R) = —H(+ C).

Letpa,ps =1" pa,0a,08 =1" Oa, p;us , p','3 A be the conbdences of the worker for questioin order to incentivize
the worker appropriately for questionin the prst stage, it must be that
0 (PaF(+ M)+ pe A(" M) + g max{pa g A(+ R), (1" pajs)F(+ O)}

P < g (pe A+ M)+ paf(" M)) + max {pg  B(+R), (1" pg ) B+ O}

1yn
pa> i+
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Substituting h(+R) = 1L-h(+€) we get

0a(pAB(H) + ph(— D)) + g5 max{plyyp . (1~ ply ) JR(HE)

pa<i—¢ _ _ T _
= s hHI) + paR(—I) + gamax{plp . (1~ Py )E(C)
pa>3+E -

Letpa = 5 — & Setting p’B|A = 1 — T and allowing p£4|B tobe 0 or pa gives

( - f) B+ + g4 (; n 5) R(~) + g7 max { (; - 5) . ;} B(+€)
SqB< +5) F(+) + g5 (—f) R(-0) + guTh(+).

From the definition of the minimum slack (Theorem 3), when & = £,i,,, We have

1 1 _
2 5:2+€min 711 T,T , (16)
T T 5—¢&
and hence
1 _ F4+E-
5 75 (M) + qa | 5 +€ ) h(=D0) + gsT{—h(+€)
2
<4qs ( +§> h(+9M) + g5 ( —E) h(=DN) + qaTh(+€). (17)
Setting g4 = 1 gives
1 - 1 - -
<2 — f) h(+9%) + (2 + f) h(=90) < Th(+¢), (18)
and setting g4 = 0 gives
b L)
T < (G ) A + (5 - ) R (19)
2
Combining the inequalities (18) and (19) yields the bound
2
LAY -9
— 4+ &) h(—M) < 222 h(—M). 20
(25)<>_§+§<> 0
Since & € (0, 1), the inequality (20) can be satisfied only if A(— ) . The function h(—9M) is a convex combination
of various evaluations of the non-negative function f including f(y1, ... ,yg) It follows that these evaluations of f must

also be zero. We have thus proved that
fly)=0 Vy e {+Mm, -, +R, R, +&, —C}\{+M, +R, +¢}C. 1)

Continuing on, substituting the result of (21) in (18) and (19) yields the relation

Th(+€) = <; — 5) h(+9). (22)

We now convert this relation of the function h to an analogous relation of the function f. Suppose that for every question
i € {G+1,...,N}, the worker has beliefs p4; = 1, p;uB ; = 1, qa,; = 0, and that every question in this set actually

results in a mismatch. Recall that the function & is a convex combination of the function f evaluated at various points
corresponding to the various choices of the G gold standard questions out of the /N total questions, where the choice
necessarily includes question 1. Applying this observation to the relation (22) yields

1
Z ail,...,ij{Tf(+¢,yi15"'7yija+ma"'7+m) - (5 _g)f(+m7y21>ayZJ7+m77+m)}a

je{0
1500085 C{2,. G}
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where {Oéil,...,z'j } are all positive constants. An inductive argument on the values of (y2, .. ., yg), starting with y, = ... =
ya =+ R as the base case and further inducting on the number of values in yy, . . . , yg equalling + R yields the result
1
Tf(+C7y27"'7yG)= (2! é-)f(+M’y27"'7yG)) (23)
for every value of y», . .., yg. Calling upon Lemma 2 and using (21) also yields
Tf(+C7y2a"'ayG):(1 ! T)f(+R7y23"'7yG)' (24)

From the relations (21), (23) and (24) and using the fact that all arguments above apply to any permutation of the G gold
standard questions yield the claimed result that f must be identical to the mechanism of Algorithm 1.

The only remaining detail is to prove Lemma 2 and Lemma 3 which we do below.

Proof of Lemma 2 We begin by introducing some additional notation that will aid in subsequent discussion. Define a
function g : {+M,! M,+R,! R,+C,! C}" " [0, z] as the expected payment (across the randomness in the choice of
the gold standard questions) given the evaluations to all the N questions, that is,

1
91, UN) = > FWirs - Yia)- (25)

(G) (i1,--ric){ 1,...,N}

We first show that the function g must satisfy the relation

(1| T)g(yl>"'ayN" 17+R)+ Tg(yl7"'ayN" 17! R): Tg(yl7"'7yN" 17+C)+(1 ! T)g(yla"'7yN" 17! C)7
(26)

for every value of (y1,...,yn 1). To this end, suppose the worker is presently in the second stage. Suppose that the
worker’s beliefs regarding the various questions are unaffected by the results of matching or mismatching at the end of the
first stage. Letting S := {¢ # [N! 1]| y; #{+R,! R,+C | C}, suppose that questions S $ { N} make it to the second
stage. For every i # [N1], let pf be the confidence of the worker for the answer that she marked under event y;. For every
i# [N 1) letr; = p?ify; <Oandr; = (1! pd)ify; >0 Let E=[e; ddan (]#{ L1}V L

Since the mechanism is incentive compatible, it must be able to appropriately incentivize the worker for the N question.
This condition necessitates

1t 1—¢j

P g(" ey, ..l enrayne 1,+R) [ T @ )T
E${" 1,1}N-1 JS[N" 1]
1P > gt ey, entayne 1, R) [ m P (@1 )
BS( 113V-1 FSIN" 1]
Pt T ey -
s @y Y gt e,V enayne 1, +0) [ T @ )
perr BS( 11}V JSIN 1]
# ! ! ! =1 L
+p Z g(! eyr,....! enn1yn 1,1 Q) H r;? (@ )T 27)
E${" 1,1}N-1 JSINIY ~}

The left hand side of (27) is the expected payment if the worker chooses to retain her answer for the N™ question, while
the right hand side is the expected payment if she chooses to copy the reference answer. Now, note that for any real valued
variable ¢, and for any constants a, b and c,

g<c b
ay S b % a>0c=—-,b>0.
qg>c a

"For ease of exposition, we consider {+ M ,+ R, + C} as “positive” values, and {! M,! R,! C} as the corresponding “negative”
values with inverted signs.
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Applying this fact and making some simple algebraic manipulations gives

%
! $ o 11
@arT #g( 1y, ..., Inv 1N 1, *R) e @) &
E" 1,1N'1 TTIN® 1
{ 1 itl ] %
! $ o I
+T g lays, .., Invayne 1! R) o) &
E" 1,4pN' 1 PTIN" 1
{ } W JUINT 1] %
! $ o 1
'T #o(! ayr, .. Inm YNt 1,+0) e @) &
E" 1,4pN'1t PTIN" 1
{ } " JUINT 1] %
! $ T vy
L@l 1) #9(! 1y1,...,! Invayne 1,1 © rZ (1! r)2 &=0. (28)
EN" 1,1}N'1 jUIN" 1]
The left hand side of this equation is a polynomial{in,...,rn~ 1} which evaluates to zero for a sol{dN ! 1)-
dimensional box of values ¢fr1,...,ry- 1}. It follows that the coefbcients of all monomials in this polynomial must be

zero, and in particular, the constant term must be zero. The constant term appeats whed " j in the summations.
This argument thus yields the relation

(1 ! T)g(yl, o YNt R)+ Tg(yl, o YNT 1L ! R)
=Toly1,... N1, + O+ (@2 L TV, .-y 1, O,
as claimed. Furthermore, since the arguments above are invariant to any permutation of the questions, we get that for any

i # [N], any(ye,...,Vi" 1,Yis1,...,¥n) #{+M,I M,+R,! R,+C,! GN" 1 any incentive compatible mechanism
must satisfy

Q! T)gyr, .- Yir 1.+ RyYier oo YD)+ TV, -+ Yie 1, Ry Yisr, oo YN)
=ToY1r Y 1,+CYivr, - Wn) (@ Ty, .- Yin 1, CYisryeoyn). (29)

It remains to convert the result of Equation (29) to an equivalent condition on the furictignin the statement of the

lemma. To this end, suppose thaf.1 = ... = yn = + R. Also suppose without loss of generality that 1. Then
expanding the functiog in (29) in terms of its constituent componeftswe obtain the relation
! ' (

"il ----- ij (1| T)f(+Rlyi1!"-!yij;+R;---;+R)+ Tf(l R,yil,.-.,yij,+R,...,+R)

L TEHC Y.Ly, + R, +R) D (L1 T (! C,yil,...,yij,+R,...,+R))

+"i1 _____ i (1' T)f(yil,...,yij,+R,...,+R)+ Tf(yil,...,yij,+R,...,+R) .
)
! Tf(yil,...,yij,+R,...,+R)! (1! T)f(yil,...,yij,+R,...,+R) =0, (30)
+ 1 g . . .
where ", i,-."$ i, are all positive constants. We complete the proof with inductive argument on the values of

i1,

(Y2,...,Ys). We begin by considering the base cgse ... = yg =+ R, for which we obtain the result
@' HI+R,+R,...,+R)+ Tf( R,+R,...,+R)= Tf(+C,+R,...,+R)+ (1! T)f(! C+R,...,+R).

from (30). We further induct on the number of valuesyin. .., ys that equak R in (30), and this inductive argument
thus shows that

(1' T)f(+R,y2,,yG)+ Tf(l R,yz,...,yG)z Tf(+C,y2,,y(3)+(1 ! T)f (' C,yz,...,yG),

for all possible values of-,...,ys. Finally, all arguments above are invariant to any permutation of the questions, and
consequently we get the claimed result.
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Proof of Lemma 3 We will induct on the number of entries inwhose values equal eitherM or! R or! Cor +C;

let us use the notatioh to denote the number of such entries. When G, the no-free-lunch axiom impliefs(y) = 0,
where we have used the assumption $hat{ + C,+ R}© when applying the no-free-lunch axiom. The statement of the
lemma is thus satisbed in this case.

Now suppose that (y) = 0 whenever! # !y + 1 for some integet, > 0. Consider any evaluatiop such that
Yi,.... ¥, "{! M,!'R,! C+C}. Then from the induction hypothesis stated above, we will ligyg = O if addition-
ally we hady, ,+1 "{! M,! R,! C,+C}. Applying Lemma 2 with = ! + 1 givesf (y) =0 wheny,,+1 =+ R. This
inductive argument completes the proof of the lemma.

C.8. Proof of Theorem 6: No-free-lunch cannot be stronger

Suppose that for every question, the worker pas= % = 1! pg, and further suppose that as desired, the worker
selects optiorA for every question in the brst stage. Suppose that there is a mismatch for every question, and hence all
the questions go to the second stage. Now suppose that in the second stage, the worker has an updp;%j l;elief

for every question. In this case, we wish to incentivize the worker to change her answer for every question. However,
strong-no-free-lunch mandates tifigk) = 0 for everyx "{ +C,! C}©, and consequently, the worker will necessarily be

paid a zero amount under such an action. Since any other action will also fetch an amount no less than zero, the worker is
not incentivized to change her answers as required. Consequently, the strong-no-free lunch is too strong for the existence

of any incentive-compatible mechanism.



	Introduction
	Problem formulation
	The task interface
	Beliefs of the worker
	Requirements

	One Stage: Trivial Mechanism
	Two stages: Where Things Get Interesting
	Impossibility of incentive compatible mechanisms
	Relax: Incentive compatibility with margins
	No-free-lunch axiom and a unique mechanism
	No stronger than no-free-lunch

	Numerical Experiments
	Discussions
	Discussion on modeling assumptions
	Simulations for SVM with RBF Kernel
	Proofs
	Proof of Proposition 1: One stage is easy
	Necessary and sufficient condition for incentive compatibility when N= G= 1
	Proof of Theorem 1: Impossibility
	Proof of Theorem 2: Many mechanisms for every slack
	Proof of Theorem 3: Minimum slack needed
	Proof of Theorem 4: The algorithm works
	Proof of Theorem 5: One and only mechanism
	Proof of Theorem 6: No-free-lunch cannot be stronger


