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Abstract
Crowdsourcing is a very popular means of ob-
taining the large amounts of labeled data that
modern machine learning methods require. Al-
though cheap and fast to obtain, crowdsourced
labels suffer from significant amounts of er-
ror, thereby degrading the performance of down-
stream machine learning tasks. With the goal
of improving the quality of the labeled data, we
seek to mitigate the many errors that occur due
to silly mistakes or inadvertent errors by crowd-
sourcing workers. We propose a two-stage set-
ting for crowdsourcing where the worker first
answers the questions, and is then allowed to
change her answers after looking at a (noisy)
reference answer. We mathematically formulate
this process and develop mechanisms to incen-
tivize workers to act appropriately. Our mathe-
matical guarantees show that our mechanism in-
centivizes the workers to answer honestly in both
stages, and refrain from answering randomly in
the first stage or simply copying in the second.
Numerical experiments reveal a significant boost
in performance that such “self-correction” can
provide when using crowdsourcing to train ma-
chine learning algorithms.

1. Introduction
The emergence of deep learning and other complex ma-
chine learning tools have resulted in a need for huge
amounts of labeled data (Raykar et al., 2010; Deng et al.,
2009; Carlson et al., 2010). One of the most popular
means of obtaining labeled data is crowdsourcing, where
data is labeled by crowds of semi-skilled workers through
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the Internet typically in exchange from some monetary
payments. Crowdsourcing is widely used in many real-
world applications, and is particularly popular for collect-
ing training labels for machine learning powered systems
like web search engines (Burges et al., 2005; Alonso &
Mizzaro, 2009; Kazai, 2011) or to supplement automated
algorithms (Khatib et al., 2011; Lang & Rio-Ross, 2011;
Von Ahn et al., 2008). The labels obtained from crowd-
sourcing, however, have significant amounts of error (Kazai
et al., 2011; Vuurens et al., 2011; Wais et al., 2010), thereby
degrading the performance of the machine learning algo-
rithms that use this data downstream. Consequently, there
is much emphasis on gathering higher quality labels, since
a lower noise implies requirement of fewer labels for ob-
taining the same accuracy in practice.

In a study from a few years back, Kahneman & Frederick
(2002) asked the following question to many participants:
“A bat and ball cost a dollar and ten cents. The bat costs a
dollar more than the ball. How much does the ball cost?”
(See also The New Yorker (2012).) A large number of re-
spondents gave an incorrect answer of “10 cents”, includ-
ing a majority of the students surveyed at Harvard Univer-
sity, Princeton University and MIT. Indeed, making silly
mistakes is a part and parcel of being human. In several
domains of science and technology that deal with humans,
there are special provisions to mitigate the effects of such
inadvertent errors (Dijkstra, 1979; Ayewah & Pugh, 2009;
Aggarwal et al., 2013). In this work, we consider the prob-
lem of mitigating silly mistakes in crowdsourcing.

Unsurprisingly, the data obtained from crowdsourcing also
suffers from several forms of inadvertent errors. Examples
of such errors include those resulting from not following
instructions properly (Gupta et al., 2012), misreading ques-
tions (Chros & Sundell, 2011), mistakes when entering so-
lutions (Gupta et al., 2012), incorrect recollection (Lasecki
et al., 2013), framing effects (Levin et al., 1998), satisfic-
ing (Krosnick, 1991), and many others (e.g., see Tversky &
Kahneman 1974; Fleurbaay & Eveleigh 2012).
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� � � � �

Which photographs depict San Francisco?

� � � � �

� � � � �Your:

Your answers have the following differences with those of 
other workers. Please change your answer if you think you 
made a mistake.

Others : ��

Which photographs depict San Francisco?

(a) 

(b) 

(c) 

Figure 1: Illustration of self-correction in crowdsourcing.
(a) Interface at the start of the task, comprising a set of 5
questions in this example. (b) In the first stage, the worker
gives her answers to all the questions. (c) In the second
stage, the worker is intimated of all the questions where her
answers mismatched with a reference set of answers, and is
allowed to change her answer to any of these questions

One approach towards mitigating these errors is to hire
more workers to independently perform the same task and
then aggregate their responses. This approach is the topic
of several recent papers using of statistical aggregation al-
gorithms to aggregate this data (e.g., see Raykar et al.
(2010); Karger et al. (2011); Liu et al. (2012a); Zhou et al.
(2015) and references therein). Most such existing work on
crowdsourcing focuses on independent workers. Our ap-
proach is complementary to this line of work, and in fact,
can nicely supplement these algorithms by providing them
higher quality data at lower costs.

Specifically, we suggest a two stage “self-correction” set-
ting. In the first stage, all workers are required to indepen-
dently accomplish the crowdsourcing task which consists
of a set of questions (see Figure 1a and Figure 1b). Stan-
dard crowdsourcing setups stop at this stage; we will term
these settings as “single-stage” or “without self-correction”
settings. Moving on, our self-correction setting is associ-
ated to a second stage in which the worker’s answers are
compared with a reference set of answers. For instance, the
reference could be an aggregate of the responses of other
workers who may have performed this task.1 Alternatively,
the reference could be the output of a (potentially noisy)
machine learning algorithm. For every question that the

1The first worker who does this task will operate under the
single-stage setting.

worker answered differently from the reference (Figure 1),
we offer her a second chance, and allow her to change her
answer if she wishes to (see Figure 1c). In this paper we
will often refer to the proposed self-correction setting as a
“two-stage” setting.

The self-correction setting exploits the well-understood
fact that reviewing a task for mistakes takes much less time
than processing a new task (Gu, 2015; Haas et al., 2015).
Moreover, incentivizing the workers to look at the feedback
has an additional positive consequence of improving their
understanding and performance in subsequent tasks (Jiang
& Matsubara, 2012; Dow et al., 2011).

Contributions of the paper With a broad goal of design-
ing ways to improve the quality of labeled data for ma-
chine learning algorithms, the specific contributions of this
paper are three-fold. First, we introduce and mathemati-
cally formulate such a two-stage crowdsourcing setting for
self-correction to mitigate inadvertent errors. Second are
our primary contributions — theoretical results on mecha-
nism design for the two-stage setting for self-correction. In
particular, we consider tasks involving binary-choice ques-
tions. We design payment mechanisms to ensure that the
workers are indeed incentivized to report truthfully in both
stages of the task. (Any such mechanism is called “in-
centive compatible.”) The problem of designing incentive-
compatible mechanisms in this setting is challenging since
on one hand we must ensure that the worker doesn’t sim-
ply copy the reference answer, while on the other, we must
also ensure that the worker cannot earn greater amounts by
deliberately providing a false report in the first round and
then changing her answer in the second round. The mecha-
nism must accommodate all possible beliefs of the worker
regarding the distribution of the true and the reference an-
swers. We also theoretically prove attractive additional
guarantees offered by our mechanism such as minimum
slack (to be defined later) and uniqueness of the mecha-
nism. Third, we conduct extensive numerical experiments
that reveal how our self-correction setting can result in a
significant improvement in the end-to-end accuracy of ma-
chine learning systems that use crowdsourced training data.

Related literature Our proposal to use other workers’
answers as a reference is inspired from the benefits of com-
munication studied in the literature on psychology. Sev-
eral papers in the field show that interaction in a group
can improve overall group performance in decision making
(Kerr & Tindale, 2004; Kozlowski & Ilgen, 2006). How-
ever, the amount of shared information has to be limited
and controlled, for example, by the so-called Delphi tech-
nique (Clayton, 1997; Rowe & Wright, 1999; Hasson et al.,
2000). Otherwise, if the interaction in a group is rich,
such as face-to-face discussions, it could lead to social bias
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(Muchnik et al., 2013). The relationships among social
pressure, attention to the stimulus, doubt about one’s own
judgment, and conformity have been thoroughly explored
in psychology (Tesser et al., 1983), political science (Ger-
ber et al., 2008), and consumer research (Bearden & Rose,
1990). These observations influenced the design of the pro-
posed two-stage setting.

Our self-correction setting is related to but fundamentally
different from the examination-verification methods in the
crowdsourcing literature (Bernstein et al., 2010; Gao et al.,
2011; Miller & Steyvers, 2011; Liu et al., 2012b; Su et al.,
2012; Hara et al., 2013). Both allow limited information
sharing among crowdsourcing workers rather than letting
them work independently. However, in the examination-
verification approaches, workers sequentially work on a
task. Every worker examines the results from her pre-
decessor and revises them when she disagrees. Conse-
quently, workers do not have a chance for self-correction.
Moreover, to the best of our our best knowledge, there is
no incentive mechanism proposed for these examination-
verification approaches. A worker may thus be incentivized
to simply approve all the answers from her predecessor.

Several other works in the literature focus on design mech-
anisms for crowdsourcing (e.g., see Prelec 2004; Miller
et al. 2005; Ranade & Varshney 2012; Shah & Zhou 2015;
Shah et al. 2015 and references therein), a subset of which
share our focus on the aspect of better labels for machine
learning algorithms. However, these works all consider
various forms of the single-stage setup. While the variants
of the single-stage setup analyzed in these works are indeed
non-trivial, as we will see in the sequel, the proposed two-
stage self-correction setting on the other hand, comes with
a set of very unique challenges.

Strictly proper scoring rules (Brier, 1950; Savage, 1971;
Gneiting & Raftery, 2007) provide a general theory of
mechanism design for eliciting private beliefs about the
prediction of an event. Our setting of the design of pay-
ment mechanisms falls into the broad framework of strictly
proper scoring rules.

2. Problem formulation
We begin with a formal description of the problem setting.

2.1. The task interface

There are N questions asked to a worker. We focus on
binary-valued questions. The questions are objective, that
is, for every question exactly one of the two options is cor-
rect. We will denote the two options for any questions as
“A” and “B”. The task proceeds in two stages:

• Stage 1: The worker is shown N questions. For every

question, the worker selects either A or B as her answer.

• Stage 2: The worker’s answers to all the questions are
matched to a reference set of answers. For each ques-
tion whose answer does not match, the worker is alerted
about this mismatch and is given an option to either re-
tain her own answer or copy the reference answer.

In order to evaluate the worker’s performance, it is a com-
mon practice to include some “gold standard” questions in
the task, that is, questions to which the answers known apri-
ori to the mechanism designer. Specifically, we assume that
the set of N questions contain G “gold standard” questions
(1  G  N ), mixed uniformly at random in the entire
set of questions. The worker does not know the identities
of the gold standard questions. It is important to note that
the gold standard questions are used only for evaluating the
worker’s performance at the end of the entire task, and are
separate from the reference answer.

2.2. Beliefs of the worker

The worker has her own subjective probabilities with re-
spect to the true answer and the reference answer for every
question. During the first stage, from the point of view of
the worker, for any question i 2 [N ], let2

• pA,i be the probability that the correct answer is A

• pB,i (= 1 � pA,i) be the probability that the correct an-
swer is B

• qA,i be the probability that the reference answer is A

• qB,i (= 1 � qA,i) be the probability that the reference
answer is B.

In the second stage, the questions for which the worker’s
answers do not match the reference are displayed to the
worker. The worker updates her subjective probabilities
accordingly as, for any question i 2 [N ] displayed in the
second stage,

• p

0
A|B,i ( pA,i) be the probability that the correct answer

is A given that the reference answer was B

• p

0
B|A,i ( pB,i) be the probability that the correct an-

swer is B given that the reference answer was A.

We also define p0A|A,i = 1�p

0
B|A,i and p

0
B|B,i = 1�p

0
A|B,i.

We make the standard game theoretic assumptions that the
workers aim to maximize their expected payment, and that
her beliefs about the different questions are independent.
With respect to further rationality, we consider two types
of workers:

2We adopt the standard notation of letting [N ] denote the set
{1, . . . , N} for any positive integer N .
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• Fully rational: The worker ensures her beliefs are re-
stricted to obey the law of total probability

pA,i = qA,ip
0
A|A,i + qB,ip

0
A|B,i, (1a)

pB,i = qA,ip
0
B|A,i + qB,ip

0
B|B,i, (1b)

for all i.

• Partially rational: The worker may only have a
“bounded” view of the probabilities involved, in which
case the worker may assume values of pA,i, qA,i, p0A|B,i

and p

0
B|A,i without the restriction imposed in (1).

In this paper we will support both fully and partially ratio-
nal workers. The mechanisms designed subsequently will
be incentive-compatible for both these types of workers.

Finally note that the values of the worker’s beliefs are, of
course, unknown to us. The goal is to design mechanisms
that are incentive compatible for arbitrary values of these
beliefs, as formalized below.

2.3. Requirements

The goal is to design a payment mechanism that incen-
tivizes the worker to act as follows. Consider any choice of
a fixed threshold T 2

⇥

1
2 , 1

�

. The choice of the threshold T

is made by the system designer based on the application at
hand, and in this paper we will assume that the threshold is
given to us. For any question i 2 [N ], for arbitrary values
of the worker’s beliefs, the worker should be incentivized
to select her answers in the following manner.

• First stage: For every question i 2 [N ], the worker
should be incentivized to select the option that she thinks
is most likely to be correct, namely

select

(

option “A” if pA,i >
1
2

option “B” if pA,i <
1
2 .

• Second stage: For every question i 2 [N ] that had a
mismatch in the first stage, the worker should copy the
reference answer if and only if she is really sure about
the reference answer. Formally, if the worker selected
option “A” in the first stage, then she should

select

(

“Copy” if p0B|B,i > T

“Retain” if p0B|B,i < T

,

and if the worker selected option “B” in the first stage,
then she should

select

(

“Copy” if p0A|A,i > T

“Retain” if p0A|A,i < T.

Observe that in our model, we have restricted T to take a
value of 1

2 or more.3 When T =

1
2 , the setting reduces

to the conventional setting requiring the worker to select
the option she thinks is most likely to be correct. When
T is chosen to be strictly greater than a half, the worker
should copy the reference answer only if she is really sure.
This choice helps avoid the bias of simply believing in the
reference and copying it.

The worker’s final performance is evaluated based on
her responses to the G gold standard questions. The
worker’s selection for any question in the gold standard
may get evaluated to one of six possibilities, denoted by
{+M,�M,+R,�R,+C,�C}, and defined as:

• +M: Match in the first round, and correct
• �M: Match in the first round, and incorrect
• +R: Mismatch in the first round, retained in the second

round, and correct
• �R: Mismatch in the first round, retained in the second

round, and incorrect
• +C: Mismatch in the first round, copied in the second

round, and correct
• �C: Mismatch in the first round, copied in the second

round, and incorrect.

Here “match” and “mismatch” respectively stand for
whether the answer to a question given by a worker is
same as the answer to that question in the reference or not.
The terms “correct” and “incorrect” respectively refer to
whether the option selected by the worker was correct (that
is, matched the gold standard) or not.

Let µ denote the maximum pay a worker can receive in this
task. The value of µ should be chosen based on application-
specific conditions such as the recommended hourly wage
for the worker; in this paper, we assume that the value of
µ is given to us. In accordance with the requirements of
crowdsourcing platforms, we will also assume that the pay-
ments made to the workers are non-negative.

Given the notation introduced thus far, we can mathe-
matically represent any payment mechanism as a function
f : {+M,�M,+R,�R,+C,�C}G ! [0, µ]. Then by
definition of the parameter µ, we have max f(·) = µ.

As mentioned earlier in Section 2.2, we assume that the
worker aims to maximize her expected payment. The
expectation of the payment f is taken over the ran-
dom distribution of the G gold standard questions among
the N questions, and over the worker’s uncertainties
{pA,i, pB,i, qA,i, qB,i, p

0
A|B,i, p

0
B|A,i}i2[N ] about the cor-

rectness of her own answers and of the reference answers.
3Our results also extend to the case of T < 1

2 . However, we
choose to omit this case since we are interested in eliminating
the bias towards simply copying the reference answer, and hence
restrict attention to only T � 1

2 in the narrative.
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The goal is to design a mechanism f such that its expected
value (from the point of view of the worker) is strictly max-
imized when in both stages, the worker answers as per the
requirements stated above. Any such mechanism is termed
an “incentive-compatible” mechanism.

3. One Stage: Trivial Mechanism
To set the ball rolling, let us first consider the standard set-
ting of a single stage, which is typical of the crowdsourc-
ing setups of today. Under such a setting, the worker must
answer all the questions, and the payment is made to the
worker based on these answers (to the gold standard ques-
tions). The condition of incentive compatibility requires
that for all the questions, the worker must be incentivized
to select the option which she thinks is most likely to be
correct, i.e., to incentivize the worker to choose option A if
pA,i > pB,i and B if pA,i < pB,i for any question i 2 [N ].
Of course, the mechanism designer does not know the val-
ues of {pA,i, pB,i}i2[N ].

Proposition 1 (trivial). Consider any values M+ and M�
such that M+ > M� � 0 and GM+ = µ. Letting C de-
note the number of questions in the gold standard answered
correctly, the following mechanism is incentive compatible:

Payment = (M+C +M�(G� C)).

Proposition 1 presents just one of the many mechanisms
that can be constructed for the single stage setting, and it
is trivial to construct mechanisms that are incentive com-
patible if there was only one stage. The situation, how-
ever, changes dramatically upon introduction of the second
stage, as is discussed in the rest of this paper.

4. Two stages: Where Things Get Interesting
We now consider the two-stage setting of Section 2.

4.1. Impossibility of incentive compatible mechanisms

Unlike the multitude of mechanisms available in the single-
stage setting (Section 3), we are hit with an immediate
roadblock in the two-stage case.

Theorem 1. For any values of N � G � 1 and T 2 (

1
2 , 1),

there is no mechanism that is incentive compatible.

In order to circumvent this impossibility theorem4, we will
make a mild relaxation to our requirements.

4The theorem considers T > 1
2 . When T = 1

2 , the mechanism
in the proof of Theorem 2 below (with the associated parameter
⇠ = 0) is incentive compatible.

4.2. Relax: Incentive compatibility with margins

Given the impossibility result of Theorem 1, in this section,
we make a relaxation to the requirements outlined earlier in
Section 2. Recall that the aforementioned setting requires
that in the first stage, for every question i 2 [N ], the worker
must be incentivized to

select

(

option “A” if pA,i >
1
2

option “B” if pA,i <
1
2 .

We relax this requirement as: in the first stage, for every
question i 2 [N ], the worker must be incentivized to

select

(

option “A” if pA,i >
1
2 + ⇠

option “B” if pA,i <
1
2 � ⇠,

for some parameter ⇠ > 0 whose value will be specified
later. Thus, the incentivization for the first stage is changed
from a hard threshold at 1

2 to an interval between 1
2 � ⇠ and

1
2 + ⇠. The new formulation does not impose any require-
ments in the first stage when the confidence of the worker is
in the range [ 12 �⇠,

1
2 +⇠]. The incentivization requirement

in the second stage remains the same as before.

It turns out that with this relaxation, perhaps surprisingly,
for every value of ⇠ > 0 there exist infinitely many incen-
tive compatible mechanisms.

Theorem 2. For every value of N � G, T 2 [

1
2 , 1) and

⇠ > 0, there exists a mechanism that is incentive compati-
ble. Moreover, there exist infinitely many mechanisms and
the number of degrees of freedom in choosing any mecha-
nism grows exponentially in G.

The proof of Theorem 2 is constructive, that is, it provides
explicit constructions of incentive-compatible mechanisms
for every value of ⇠.

The parameter ⇠ represents the amount by which a mech-
anism is allowed to slack as compared to the guarantees
required in Section 2. Consequently, we would like to keep
the value of ⇠ small. But Theorem 2 guarantees the exis-
tence of incentive compatible mechanisms for any positive
value of ⇠, and furthermore, points to the existence of in-
finitely many mechanisms. This result thus raises the fol-
lowing two questions:

• What value of ⇠ should be chosen?

• For the chosen ⇠, what mechanism should be used?

Given that the proof of Theorem 2 constructs an explicit
class of mechanisms for use, one may then be tempted to
simply pick an arbitrary value of ⇠ and an arbitrary mecha-
nism from that class. In this paper, however, we will take a
principled approach towards this choice.
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4.3. No-free-lunch axiom and a unique mechanism

In this section, we identify a simple and naturally desirable
condition for any mechanism, that will help us answer the
two questions raised above. Specifically, we impose the
following requirement on the payment mechanism, which
we term the ‘no-free-lunch’ axiom.
Definition 1 (No-free-lunch axiom). If all the answers
(in the gold standard) given by a worker are either
wrong or copied then the worker should get a zero pay-
ment, unless all answers given by the worker are cor-
rect. More formally, we require f(x) = 0 8 x 2
{�M,�R,+C,�C}G\{+C}G.

The axiom is quite intuitive since if a worker gives only
wrong answers or copies them from the reference, then
these answers do not provide any new information to the
mechanism designer.5

The no-free-lunch axiom stated above is a variant of the
no-free-lunch axioms for other settings proposed in Shah &
Zhou (2015); Shah et al. (2015). It is important to note that
if the “zero payment” appears harsh, then one can replace
the “zero” with any fixed positive value and all the results
of this paper will continue to hold.

Given the natural requirement of the no-free-lunch axiom,
in what follows, we will investigate the effects of this re-
quirement under our self-correction setting.
Theorem 3. For any values of N � G � 1, and any T 2
⇥

1
2 , 1

�

, it is impossible to construct an incentive compatible
mechanism satisfying the no-free-lunch axiom if ⇠ < ⇠min,
where ⇠min 2

�

0,

1
2

�

is given by

⇠min =

8

<

:

1
2
1�T
1+T if T  1p

2
1
2

⇣

(2� T )�
p

(5� T )(1� T )

⌘

if T � 1p
2
.

Theorem 3 thus prohibits the choice of any ⇠ below ⇠min.

We now show that a slack of ⇠min is indeed feasible, i.e.,
it allows for incentive compatible mechanism(s) satisfying
no-free-lunch. This helps answer our first question on how
to choose ⇠: it is desirable to choose the smallest permissi-
ble value of the slack parameter, which turns out to be ⇠min.
The rest of this section thus considers ⇠ = ⇠min.

Consider the payment mechanism given in Algorithm 1.

As the following theorem shows, the proposed algorithm
indeed works as desired.
Theorem 4. For any choice of N � G � 1, T 2

⇥

1
2 , 1

�

and ⇠ = ⇠min, the mechanism of Algorithm 1 satisfies the
no-free-lunch axiom and is incentive compatible.

5The exception of the case where all answers are correct is
discussed subsequently in Section 4.4.

Algorithm 1 Incentive mechanism for self-correction
• Define function ↵ : {+M,�M,+R,�R,+C,�C} !

R+ as ↵(+M) = 1, ↵(�M) = 0, ↵(+R) =

1
2�⇠min

1�T ,

↵(�R) = 0, ↵(+C) =
1
2�⇠min

T and ↵(�C) = 0.
• If (x1, . . . , xG) 2 {+M,�M,+R,�R,+C,�C}G are

the evaluations of the answers to the G questions in the
gold standard, then the payment is

Payment(x1, . . . , xG) = 

G
Y

i=1

↵(xi)

where  = µ

⇣

max

n

1,

1
2�⇠min

1�T

o⌘�G
.

It turns out that this mechanism is unique in the following
sense.
Theorem 5. For any N � G � 1, T 2

⇥

1
2 , 1

�

and
⇠ = ⇠min, there is only one incentive-compatible mech-
anism satisfying the no-free-lunch axiom, and that is the
mechanism of Algorithm 1.

The uniqueness result of Theorem 5 thus answers our sec-
ond question about deciding which mechanism to choose.

4.4. No stronger than no-free-lunch

The reader may have wondered about the “unless” clause
in the definition of the no-free-lunch axiom (Definition 1).
This section will investigate the implications of removing
that clause. To this end, let us define a marginally stronger
version of the no-free-lunch axiom.
Definition 2 (Strong no-free-lunch). If all the answers (in
the gold standard) given by a worker are either wrong or
copied, i.e, when the worker gives no correct answer on her
own, then the worker should get a zero payment. More for-
mally, we require f(x) = 0 8 x 2 {�M,�R,+C,�C}N .

Intuitively, if a worker’s answers are all either wrong or
simply copied then she is not contributing any new infor-
mation. The strong no-free-lunch axiom is precisely the
no-free-lunch axiom but without the ‘unless’ clause. The
following theorem investigates this stronger requirement.
Theorem 6. For any choice of N � G � 1, T 2

⇥

1
2 , 1

�

and ⇠ 2 [0,

1
2 ), there is no incentive-compatible mechanism

satisfying the strong no-free-lunch condition.

The result of this theorem thus justifies the inclusion of the
‘unless’ clause in the no-free-lunch axiom.

5. Numerical Experiments
In Section 4 we analytically proved the working and the op-
timality of our proposed mechanism, Algorithm 1, for the
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Figure 2: Error incurred by SVM with a linear kernel under the self-correction (SC) setting with 5 workers, compared to
the error incurred under the standard setting with no self correction (NSC) with 5 to 9 workers.

two-stage setting. In this section we return to our primary
hypothesis of the benefits of the two-stage self-correction
setting, and via extensive numerical experiments, investi-
gate the possible benefits of using a two-stage setting as
compared to the standard one-stage setting without any
self-correction. Such an examination is worthwhile since
while the second stage would help to eliminate inadvertent
errors and improve the quality of the data, it would also re-
quire each worker to spend more time on the task. In other
words, for a fixed budget (under a fixed expected hourly
wage), our two-stage setting trades off cleaner data with al-
lowing for a slightly smaller number of workers. It turns
out, as we will see below, that in machine learning systems
that use crowdsourcing for labeled data, the self-correction
setting results in a significant reduction in the end-to-end
error rates as compared to the standard single-stage settings
employed today.

Data We consider the labeling of the following two pop-
ular data sets: (a) UCI digits dataset (Lichman, 2013):
Contains images of handwritten numeric digits from 0 to
9. We investigate two binary classification versions of this
dataset: odd vs. even digits, and small values 0�4 vs. large
values 5 � 9; (b) Boston housing dataset (Harrison & Ru-
binfeld; 1978): Contains information regarding housing in
the area of Boston, USA. The binary classification problem
is to predict whether the price of a house is greater than a
certain value.

We then simulate the crowdsourced labeling procedure in
the following manner. The number of workers hired in the
two-stage self-correction setting and the standard single-
stage setting may be different. In our simulations, the col-
lection of workers are associated to a first-stage reliability
parameter p and a second-stage improvement parameter q
as follows. The workers have a reliability of p in the first
stage, meaning that each worker, for each question, makes
an error independently with probability (1 � p) in the first
stage. In the second stage, the quality is assumed to im-
prove by q due to self correction by the workers, that is, the
reliability is (p + q) at the end of the second stage. In the
simulations, we investigate the effects of different values of

p, q and the number of workers.

Machine learning algorithms We study the perfor-
mance of two popular binary classification algorithms:

• support vector machine (SVM) with a linear kernel, and
• SVM with a radial basis function (RBF) kernel.

We perform the following operations separately for each of
the two classification algorithms, for each of the three clas-
sification problems mentioned above, and for the two set-
tings of with and without self-correction. The data is split
into two equal halves, which are used for training and test-
ing respectively. The labels for the training data are noisy,
where the noise comes from the crowdsourced labelling de-
scribed above. The test set is used to measure and compare
the final performance of the classification algorithms, and
is hence free of errors. The hyperparameters of the algo-
rithms, including the regularization parameter and the ker-
nel bandwidth, are chosen via 5-fold cross-validation.

Results In each of the plots to follow, each data point is
averaged over 50 runs. We plot the results for SVM with
linear kernel here in the main text, and noting that the re-
sults for the RBF kernel are almost identical to that for the
linear kernel, we relegate the plots of SVM with RBF ker-
nel to Appendix B.

We first investigate how the error under the self-correction
setting compares with the error in the setting with no self-
correction, for various amounts of redundancies in the task.
More specifically, we fix the number of workers per ques-
tion as 5 in the self-correction setting and vary the number
of workers per question from 5 to 9 in the setting with no
self-correction. For this set of experiments, we set p = 0.6

and q = 0.15. In each case, we use the aggregate of the
worker’s answers as training data for the two classification
algorithms described earlier. Figure 2 plots the amount of
error incurred by the SVM algorithm with the linear ker-
nel. In each case, the performance of the algorithms when
supplied the data from the self-correction setting outper-
forms the performance when data comes from the standard
crowdsourcing setup with no self-correction. It is notewor-
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Figure 3: Error incurred by SVM with a linear kernel for different reliabilities (p) of the worker in the first stage. The
no-self-correction (NSC) setting has 7 workers whereas the self-correction (SC) setting has only 5 workers.

Figure 4: Error incurred by SVM with a linear kernel for different values of the improvement in accuracy (q) via self-
correction. The no-self-correction (NSC) setting has 7 workers whereas the self-correction (SC) setting has only 5 workers.

thy that the self-correction setting shows an improved per-
formance even when the number of workers in the standard
setup is almost twice that in the self-correction setup.

Next, we compare the performance of the two settings for
various values of the first-stage reliability p of the worker.
To this end, we consider the self-correction setting with 5

workers per question and the setting with no self-correction
having 7 workers per question. We vary the reliability p of
each worker in the range 0.55 to 0.85, fixing q = 0.15.
As before, the data obtained is employed to train an SVM
algorithm with a linear kernel for the three datasets. The
accuracy of the algorithm is shown in Figure 3. Observe
that the self-correction setting consistently outperforms the
standard setting with no self-correction. The improvement
is particularly striking in high-noise conditions (i.e., when
p is small).

Finally, we now compare the performance in these two set-
tings when the second-stage accuracy parameter q is varied,
keeping p fixed. In particular, we again consider the self-
correction setting with 5 workers per question and the set-
ting with no self-correction having 7 workers per question;
we set p = 0.6 and vary q from 0.05 to 0.4. We observe
(Figure 4) that even if the second stage offers marginal im-
provements (such as q  0.1), we can still get significant
gains from the two-stage setting as compared to a one-stage
setting, despite the one stage setting having more workers.

All in all, the numerical experiments indicate significant
improvements in the quality of the labels due to self-

correction, and a corresponding increase in the accuracy
of machine learning algorithms. Such improvements arise
even in cases when the amount of self-correction may be
quite small and when the setting without self correction has
more workers than the setting with self correction.

6. Discussions
In this paper we proposed a two-stage setting for self-
correction to overcome the various inadvertent errors that
are observed widely in crowdsourcing. We showed the po-
tential of such a self-correction setting via numerical ex-
periments where we observed significant gains in the end-
to-end performance of machine learning algorithms based
on crowdsourced data. On the theoretical front, we inves-
tigated incentive mechanisms to ensure that workers report
truthfully in both stages. (The modeling choices underlying
the theory are discussed further in Appendix A.)

Our work leads to a number of interesting directions for fu-
ture work. We addressed crowdsourcing tasks with binary-
choice problems – such tasks are very popular in practice
and quite challenging to analyze theoretically. We hope to
use our results as building blocks for addressing more com-
plex tasks. Second, our numerical experiments reveal that
our proposed two-stage setup can offer significant gains
as compared to standard single-stage setups. It remains
to evaluate these mechanisms in real crowdsourcing plat-
forms, which however, will necessitate sufficient training
and exposure of the workers to this new setting.
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