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Abstract
We show how deep learning methods can be ap-
plied in the context of crowdsourcing and unsu-
pervised ensemble learning. First, we prove that
the popular model of Dawid and Skene, which
assumes that all classifiers are conditionally in-
dependent, is equivalent to a Restricted Boltz-
mann Machine (RBM) with a single hidden node.
Hence, under this model, the posterior probabil-
ities of the true labels can be instead estimated
via a trained RBM. Next, to address the more
general case, where classifiers may strongly vi-
olate the conditional independence assumption,
we propose to apply RBM-based Deep Neural
Net (DNN). Experimental results on various sim-
ulated and real-world datasets demonstrate that
our proposed DNN approach outperforms other
state-of-the-art methods, in particular when the
data violates the conditional independence as-
sumption.

1. Introduction
In recent years, crowdsourcing applications gained signif-
icant popularity, and consequently much academic atten-
tion. At the same time, deep learning has become a major
tool in machine learning and artificial intelligence, demon-
strating impressive performance in several applications, in-
cluding computer vision, speech recognition and natural
language processing.

The goal of this paper is to show that deep learning methods
can also be applied to the areas of crowdsourcing and un-
supervised ensemble learning, and provide state-of-the-art
results. In unsupervised ensemble learning, one is given the
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predictions of d classifiers on a set of n instances and the
goal is to recover the true, unknown label of each instance.
Dawid & Skene (1979) were among the first to consider
such a setup. They assumed that the classifiers are condi-
tionally independent given the true labels. We refer to this
model as the DS model and also as the Conditional Inde-
pendence model.

Despite its simplicity, computing the maximum likelihood
estimates of the classifiers’ accuracies and the true labels
in the DS model is a non-convex optimization problem. In
their paper, Dawid and Skene estimated these quantities by
the EM algorithm, which is only guaranteed to converge to
a local optimum. In recent years, several authors developed
computationally efficient spectral methods that are asymp-
totically consistent under the DS model, see Zhang et al.
(2014); Parisi et al. (2014); Jain & Oh (2013); Jaffe et al.
(2014) and references therein.

The model of Dawid and Skene relied on two key assump-
tions that typically do not hold in practice: (i) that classi-
fiers make perfectly independent errors; and (ii) that these
errors are uniformly distributed across all instances. To
address the second issue above, several authors proposed
richer models, that include parameters such as instance dif-
ficulty and varying skills of annotators across different re-
gions of the input space, see for example Raykar et al.
(2010), Whitehill et al. (2009) and Welinder et al. (2010).

In contrast, relatively few works considered relaxations of
the conditional independence assumption: Platanios et al.
(2014) proposed to estimate the accuracies of possibly de-
pendent classifiers, via their agreement rates over classifier
groups of different sizes. Donmez et al. (2010) proposed
a model with pairwise interactions between all classifiers.
Closest to our approach is the work of Jaffe et al. (2015),
who assumed that some of the classifiers may be condi-
tionally dependent, yet their dependency structure can be
accurately described by a tree of depth 2.

In this manuscript, we propose a deep learning approach
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to unsupervised ensemble learning problems with possibly
dependent classifiers, where the conditional independence
assumption is strongly violated. We make the following
contributions. First, we show that the DS model has an
equivalent parametrization in terms of a Restricted Boltz-
mann Machine (RBM) with a single hidden node. Hence,
under this model, the posterior probability of the true labels
can be estimated from a trained RBM. Next, to tackle vio-
lations of conditional independence, we show how a RBM-
based Deep Neural Net (DNN) can be applied to unsuper-
vised ensemble learning, and propose a heuristic for de-
termining the DNN architecture. Experimentally, we com-
pare our approach to several state-of-the-art methods that
are based on the conditional independence assumption and
relaxations of it. We show that our DNN approach often
performs better than the other methods on both simulated
and real world datasets. Remarkably, we demonstrate that
in some cases, while the raw representation of the data con-
tains correlated features, the learned features in the last hid-
den layer are almost perfectly uncorrelated.

The structure of this manuscript is as follows: in Section 2
we give a formal definition of the problem. A brief back-
ground on RBMs is given in Section 3. In Section 4 we
show how RBMs can be used to predict the true labels,
under the assumption of conditional independence. In Sec-
tion 5 we describe how to estimate the labels using a RBM-
based DNN. Experimental results are reported in Section 6.
The manuscript concludes with a brief summary in Sec-
tion 7. Proofs appear in the appendix.

1.1. Notation

Throughout this manuscript, X,H, Y are random vari-
ables, p✓, p� are probability densities, parametrized by ✓,�,
respectively. We think of p✓ as the distribution generating
the data and of p� as the RBM model distribution. When
the context is clear, we occasionally write p(x) as a short-
hand for p(X = x). The dimensions of the input data and
the sample size are denoted by d and n, respectively. We
use �(·) to denote the sigmoid function �(z) = 1

1+e�z .

2. Problem Setup
Let X 2 {0, 1}d, Y 2 {0, 1} be random variables.
We refer to Y as the label of X . The pair (X,Y ) has
a joint distribution, parametrized by ✓ which is given
by p✓(X,Y ) = p✓(Y )p✓(X|Y ). The joint distribution
p✓(X,Y ) is not known to us, and neither are the marginals
p✓(X), p✓(Y ). Let (x(1), y(1)), . . . , (x(n), y(n)) be n i.i.d
samples from p✓(X,Y ). In unsupervised ensemble learn-
ing, we observe x(1), . . . , x(n) and the learning task is to
recover y(1), . . . , y(n). In this application, the binary vec-
tor X = (X1, . . . , Xd)

T contains the predictions of d clas-
sifiers or annotators on an instance, whose label Y is unob-

Y
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Figure 1. The conditional independence model, studied by Dawid
& Skene (1979).

served.

2.1. The Conditional Independence Model

In their seminal paper, Dawid & Skene (1979), assumed
that the conditional distribution p✓(X|Y ) factorizes, i.e.,

p✓(X|Y ) ⌘
dY

i=1

p✓(Xi|Y ). (1)

Eq. (1), also known as the conditional independence model,
is depicted in Figure 1. It is fully parametrized by ✓ =

({ i : i = 1, ..., d}, {⌘i : i = 1, ..., d},⇡), where

 i = Pr(Xi = 1|Y = 1), ⌘i = Pr(Xi = 0|Y = 0),

⇡ = Pr(Y = 1).

 i, ⌘i are often referred to as sensitivity and specificity, re-
spectively. Under the interpretation of the Xi’s being clas-
sifiers, the sensitivity and specificity quantify the compe-
tence of the classifiers or annotators and the conditional in-
dependence assumption means that all d classifiers make
independent errors.

The conditional independence model is often overly sim-
plistic. In this manuscript we propose to apply deep learn-
ing techniques, specifically RBM-based DNNs, for unsu-
pervised ensemble learning problems, where the condi-
tional independence is not likely to hold. The following
section gives essential background on RBMs, section 4
shows that a RBM with a single hidden node is equiva-
lent to the conditional independence model, and section 5
presents our RBM-based DNN approach.

3. Restricted Boltzmann Machines
A Restricted Boltzmann Machine (RBM) is an undirected
bipartite graphical model, consisting of a set X of d vis-
ible binary random variables and a set H of m hidden
binary random variables, arranged in two layers, which
are fully connected to each other. An illustration of a
RBM is depicted in Figure 2. A RBM is parametrized by
� = (W,a, b), where W is the weight matrix of the con-
nections between the visible and hidden units, and a, b are
the bias vectors of the visible and hidden layers, respec-
tively. Each configuration (X = x,H = h) of a RBM is
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Figure 2. A RBM with d visible and m hidden units.

associated with the following energy

E�(x, h) = �(aTx+ bTh+ xTWh) (2)

which defines the probability of the configuration

p�(X = x,H = h) =
e�E�(x,h)

Z
,

where Z ⌘
P

x,h e
�E�(x,h) is the partition function. The

bipartite structure of the RBM implies factorial conditional
probabilities

p�(X|H) =

Y

i

p�(Xi|H), p�(H|X) =

Y

j

p�(Hj |X),

given by

p�(Xi = 1|H) = �(ai +Wi.H)

p�(Hj = 1|X) = �(bj +XTW.j),

where �(z) is the sigmoid function, Wi. is the i-th row of
W and W.j is its j-th column.

Given iid training data x(1), .., x(n) ⇠ p✓(X), the RBM
parameters � = (W,a, b) are typically tuned to maximize
the log-likelihood of the training data, where the likeli-
hood that the RBM associates with a vector x is given by
p�(X = x) =

P
h p�(X = x,H = h).

A popular approach to learn the RBM parameters is via
gradient-based optimization, where the gradients are ap-
proximated using contrastive divergence (Hinton et al.,
2006; Bengio, 2009).

4. RBM in the Conditional Independence
Case

In this section we show that given observed data
x(1), . . . , x(n) 2 {0, 1}d from the conditional indepen-
dence model of Eq. (1), the posterior probabilities of the
true, unknown labels y(1), . . . , y(n) can be consistently es-
timated via a RBM with a single hidden node.

We begin by showing that there is a bijective map from the
parameters � of a RBM with a single hidden node to the
parameters ✓ of the conditional independence model, such
that the joint distribution specified by the RBM is equiva-
lent to that of the conditional independence model.

Lemma 4.1. The joint probability p�(X = x,H = y)
of a RBM with parameters � = (a, b,W ) is equivalent to
the joint probability p✓(X = x, Y = y) of a conditional
independence model with parameters ✓ = ({ i}, {⌘i},⇡)
given by

 i ⌘ �(ai +Wi), ⌘i ⌘ 1� �(ai)

⇡ ⌘
P

x2{0,1}d ea
T x+b+xTW

P
x2{0,1}d

�
eaT x

+ eaT x+b+xTW
�

Furthermore, the map � 7! ✓ is a bijection.

We are now ready to prove the main result of this sec-
tion, namely, that the posterior distribution of the true la-
bels y(1), . . . , y(n) can be consistently estimated by a RBM
with a single hidden node. To do so, we rely on a spe-
cial case of a result proved by Chang (1996), that provides
conditions under which the parameters of the conditional
independence model are identifiable.
Lemma 4.2. Let x(1), ..., x(n) be observed data from the
conditional independence model, specified by p✓. Assume
that ✓ is such that for each i = 1, . . . , d, Xi is not indepen-
dent of Y (i.e., each classifier is not just a random guess),
and that d � 3. Let ˆ�MLE be a maximum likelihood param-
eter estimate of a RBM with a single hidden node. Then
the RBM posterior probability p�̂MLE

(H = 1|X = x) con-
verges to the true posterior p✓(Y = 1|X = x), as n ! 1.

Remark 4.3. The identifiability of the parameters is up to
a single global 0/1 label flip. This means that one recovers
either p✓(Y = y|X) or p✓(Y = 1 � y|X). Assuming
that on average, the Xi’s are more accurate than a random
guess, this sign ambiguity can be resolved by comparing
the predictions to the majority vote decision.
Remark 4.4. Lemma 4.2 assumes that we found the MLE
of the RBM parameters. Obtaining such a MLE is problem-
atic for two main reasons. First, RBMs are typically trained
to maximize a proxy for the likelihood, as the true likeli-
hood is not tractable. Second, the RBM likelihood function
is not concave, hence there are no guarantees that after
training a RBM one obtains the maximum likelihood pa-
rameter ˆ�MLE.

5. RBM-based Deep Neural Net
In many practical settings, the variables X1, . . . , Xd are not
conditionally independent. Fitting a conditionally indepen-
dent model to such data may yield highly sub-optimal pre-
dictions for the true labels yi. To tackle this general case,
we propose to train a RBM-based Deep Neural Net (DNN)
and use it to estimate the posterior probabilities p✓(Y |X).
In such a DNN, the hidden layer of each RBM is the in-
put for the successive RBM. As suggested by Hinton et al.
(2006), the RBMs are trained one at a time, bottom to top,
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i.e., the DNN is trained in a layer-wise fashion. Specifi-
cally, given training data x(1), . . . , x(n) 2 {0, 1}d, we start
by training the bottom RBM, and then obtain the first layer
hidden representation of the data by sampling h(i) from the
conditional RBM distribution p�(H|X = x(i)

). The vec-
tors h(1), . . . , h(n) are then used as a training set for the
second RBM and so on.

In the case considered in this manuscript, where the true
label y is binary, the upper-most RBM in the DNN has
a single hidden unit, from which the posterior probability
p✓(Y |X) can be estimated. Such a DNN is depicted in Fig-
ure 3.

ˆY

H2
1 H2

i H2
m2

H1
1 H1

i H1
m1

X1 Xi Xd

Figure 3. A sketch of RBM-based DNN with two hidden layers.

5.1. Motivation

Deep learning algorithms have recently achieved state-of-
the-art performance in a wide range of applications (LeCun
et al., 2015). While a rigorous theoretical understanding of
deep nets is still lacking, many researchers believe that a
key property in their success is their ability to disentangle
factors of variation in the inputs; see for example Bengio
et al. (2013), Tishby & Zaslavsky (2015), and Mehta &
Schwab (2014). That is, as one moves through the net,
the hidden units become less statistically dependent. We
have seen in Section 4 that given a representation in which
the units are independent conditional on the true label, a
single node RBM gives a consistent estimation of the true
label posterior probability. Propagating the data through
several RBM layers can hence be seen as a processing of
the data, which reduces the conditional dependence of the
units while preserving most of the information on the true
label Y . In Section 6 we will demonstrate cases where such
decoupling does indeed happen in practice, i.e., although
the original input variables Xi’s are not conditionally in-
dependent given the true label Y , after training, the units
in the uppermost hidden layer are, remarkably, approxi-
mately conditionally independent. Thus, the assumptions

of the conditional independence model apply (with respect
to the uppermost hidden layer H last), and therefore one is
able to consistently estimate the label posterior probability,
Pr(Y |H last

), as in Section 4.

Another motivation for using deep nets with several hidden
layers for unsupervised ensemble learning is their rich ex-
pressive power. In our setting, we wish to approximate the
posterior probability p(Y |X), which in general may be a
complicated nonlinear function of X . When p(Y |X) can-
not be accurately estimated by a RBM with a single hidden
node (i.e., when the conditional independence assumption
of Dawid and Skene does not hold), a better approximation
may be obtained from a deeper network. Several works
show that there exist functions that are significantly more
efficiently represented by deeper networks, compared to
shallower ones, where efficiency corresponds to the num-
ber of units. For example, Montufar et al. (2014) show that
deep networks with piece-wise linear activations can repre-
sent functions with greater number of linear regions com-
pared to shallow networks with the same number of units.
In a recent work, Eldan & Shamir (2015) give an example
for a radial function that can be efficiently computed by a
3-layer network, while requiring exponentially many units
to be approximated accurately by a 2-layer network.

Finally, we would like to emphasize that a RBM-based
DNN is a discriminative model to estimate the posterior
p(Y |X). In general, it may not correspond to any genera-
tive model (Arora et al., 2015). Indeed, there is no guaran-
tee that the marginal distributions implied by two adjacent
RBMs match. Yet, it can be shown (see Appendix C) that
stacking RBMs is a variational inference procedure assum-
ing a specific class of data generation models. The nature
of approximation of a top down generative model, where
the data X is generated from a label Y , by a RBM-based
DNN is explored in Appendix D.

5.2. Predicting the Label from a Trained DNN

Given a trained DNN and a sample x ⇠ p✓(X), the la-
bel y is estimated by propagating x through the network.
Specifically, the units of each layer can be set by either (i)
sampling from the conditional distribution given the layer
below, i.e., hj ⇠ p�(hj |x), or (ii) by MAP estimate, setting
each hidden unit hj = argmaxhj2{0,1} p�(hj |x). Since
the first option is stochastic, one may propagate x through
the net multiple times and average the outputs p(y|x) to
obtain an approximation of E(Y |X = x). Experimentally,
we found both options to be equally effective, while each
option slightly outperforms the other in some cases.

5.3. Choosing the DNN Architecture

The specific DNN architecture (i.e., number and sizes of
layers) might have a dramatic effect on the quality of pre-
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dictions. To determine the number of units in each layer we
employed the following procedure: we first train a RBM
with d hidden units. Next, we compute the singular value
decomposition of the weight matrix W , and determine its
rank (i.e., the number of sufficiently large singular values).
Given that the rank is some m  d, we re-train the RBM,
setting the number of hidden units to be m. If m > 1, we
add another layer on top of the current layer, and proceed
recursively. The process stops when m = 1, so that the last
layer of the DNN contains a single node. We refer to this
method as the SVD approach. In our experiments, as a rule
of thumb, we set m to be the minimal number of singular
values (in descending order) whose cumulative sum is at
least 95% of the total sum.

This method takes advantage of the co-adaptation of hidden
units, which is a well known phenomenon in RBM train-
ing (see, for example, (Hinton et al., 2012)). The term co-
adaptation describes a situation where several hidden units
tend to behave very similarly; this implies that the rank of
the weight matrix might be small, although the number of
hidden units may be larger. The idea to use SVD to set the
number of hidden units in neural networks has been pro-
posed before, see (Teoh et al., 2006).

6. Experimental Results
In this section we compare the performance of the pro-
posed DNN approach to several other approaches, and re-
port experimental results obtained on four simulated data
sets as well as real world data sets from two different do-
mains. Our datasets, as well as the scripts used to ob-
tain the reported results are publicly available at https:
//github.com/ushaham/RBMpaper

1.

Specifically, we compare between the following unsuper-
vised ensemble methods:

• Vote. Majority voting, which is the maximum likeli-
hood prediction, assuming that all classifiers are con-
ditionally independent and have the same accuracy.

• DS. Approximate maximum likelihood predictions
under the Dawid and Skene model. Specifically, we
use Spectral Meta Learner (Parisi et al., 2014), and
Restricted Likelihood (Jaffe et al., 2014).

• CUBAM The method of Welinder et al. (2010), which
assumes conditional independence, but allows the ac-
curacy of each classifier to vary across different re-
gions of the input domain.

• L-SML Latent SML (Jaffe et al., 2015). This method
1 Our scripts are based on the publicly available code in Ge-

offrey Hinton’s website http://www.cs.toronto.edu/

˜

hinton/MatlabForSciencePaper.html.

relaxes the conditional independence assumption to a
depth 2 tree model.

• DNN The approach presented in this manuscript, with
the depth and number of hidden units in each layer
determined by the SVD approach, described in Sec-
tion 5.3.

Following Jaffe et al. (2015), the performance measure we
chose is the balanced accuracy, given by

P
I{true label is 0 and predicted label is 0}

2

P
I{true label is 0}

+

P
I{true label is 1 and predicted label is 1}

2

P
I{true label is 1} ,

where I{·} is the indicator function.

6.1. Simulated Datasets

In this experiment we carefully generated four synthetic
datasets, in order to demonstrate the performance of the
DNN approach in several specific scenarios. In all four
datasets the observed data is a n ⇥ d binary matrix, with
input dimension d = 15 and sample size n = 10, 000.
A detailed description of the datasets generation process is
given in Appendix E.1.

• CondInd A dataset where the conditional indepen-
dence holds, and 10 of the 15 classifiers are in fact
random guess.

• Tree15-3-1 A dataset generated from a depth-2 tree
with layer sizes 1,3,15. Every node in the intermedi-
ate layer is connected to five nodes in the bottom layer.
This dataset is generated from the model considered
by L-SML, and does not satisfy the conditional inde-
pendence assumption, as is shown in Figure 6.

• LayeredGraph15-5-5-1 A dataset generated from a
depth-3 layered graph, with layer sizes 1,5,5,15. In
this case, the conditional independence assumption
does not hold, although in practice the amount of de-
pendence in the data is not high (see Figure 11).

• TruncatedGaussian. Here X = (1 + sign(Z))/2,
where the random variable Z follows a a mixture
of two d-dimensional Gaussians with different means
and same covariance matrix. The label Y indicates
the specific Gaussian from which X is sampled. In
this case, the data is highly dependent, as can be seen
in Figure 11.

The results are summarized in Table 1. Along with the five
unsupervised methods, the table also shows the accuracy
of a supervised learner and the estimated accuracy of the

https://github.com/ushaham/RBMpaper
https://github.com/ushaham/RBMpaper
http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html
http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html
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Table 1. Balanced accuracy of various unsupervised ensemble methods on the four synthetic datasets, along with a supervised learner
(SUP), and the Bayes optimal classifier (Bayes-Opt). The results are presented as mean ± standard deviation, based on 5 repetitions,
where in each repetition a new dataset was sampled from the model. The numbers in brackets denote the architecture of the DNN, found
by the SVD approach.

method condInd Tree15-3-1 LG15-5-5-1 TG
Vote 75.93 ± 0.5 93.45 ± 0.19 76.61 ± 0.09 80.14 ± 0.4
DS 94.78 ± 0.13 92.68 ± 0.14 86.36 ± 0.2 82.03 ± 0.27
CUBAM 91.96 ± 0.18 90.74 ± 0.3 77.12 ± 0.26 83.43 ± 0.31
L-SML 55.94 ± 21.88 95.83 ± 0.15 85.87 ± 0.21 79.5 ± 1.35
DNN 94.78 ± 0.13 (15-1) 95.13 ± 0.71 (15-3-1) 86.83 ± 0.2 (15-4-1) 88.09 ± 0.52 (15-3-1)
SUP 94.45 ± 0.11 95.54 ± 0.27 87.01 ± 0.18 90.8 ± 0.4
Bayes-Opt 95.32 96.12 87.05 91.39

Figure 4. The RBM weight vector on the condInd dataset. The
hidden unit is strongly connected only to the first five visible units,
reflecting the fact that in an unsupervised manner, the RBM de-
tected that the remaining units are random guess classifiers.

Bayes-optimal classifier. The supervised learner is a Multi
Layer Perceptron (MLP) with two hidden layers of sizes 4
and 2, that was trained on a dataset with n = 10, 000 sam-
ples (independent of the test dataset). The Bayes-optimal
approximated accuracy was computed on a sample of size
10, 000, with the true posterior probabilities of all 2d pos-
sible binary vectors estimated using a sample of size 10

6

from the corresponding model.

On all of the above datasets, the DNN always outperformed
the majority vote rule and CUBAM. On the CondInd
dataset, the DNN performs similarly to DS, and signifi-
cantly better than the other methods. Despite being un-
supervised, on this dataset both methods perform slightly
better than the specific supervised learner we considered,
and around the Bayes-optimal accuracy. The architecture
determined by the SVD approach in this case is indeed a
single RBM (with a single hidden node). The weight ma-
trix of the RBM is shown in Figure 4, and corresponds to
the fact that only the first five classifiers actually contain
information about the true label in this dataset.

Figure 5 shows the recovery of the true conditional inde-
pendence model parameters { i, ⌘i} of a similar condi-
tional independent dataset (however with no random guess
classifiers) from a RBM with a single hidden node, using
the map in Lemma 4.1.

On the Tree15-3-1 dataset, L-SML, which is tailored for
data generated by a tree, outperforms the DNN. This result
is expected, since it can be shown that the distribution of

Figure 5. Recovery of the conditional Independence model pa-
rameters { i, ⌘i} from a RBM with a single hidden node, on a
dataset sampled from a conditional independence model. The pa-
rameters were uniformly sampled from [0.5, 1]. Each circle cor-
responds to a single parameter (e.g.,  i for some i). For conve-
nience, the identity line was added to the plot.

the bottom two layers of a tree cannot be parametrized as
a RBM (see Appendix D). Still, the DNN performs signifi-
cantly better than DS, CUBAM and majority vote, and not
far from the supervised learner and the optimal Bayes clas-
sifier. Figure 6 shows the correlation matrix at the input
and hidden layers, as well as the first layer weight matrix,
demonstrating that the DNN captured the true data gener-
ation model. Consequently, the 3 hidden units are nearly
conditionally uncorrelated given the label y.

Figure 7 shows the cumulative proportion of the singular
values on the condInd and Tree15-3-1 datasets, which ex-
plains the architecture determined by the SVD approach for
both datasets.

On the LayeredGraph15-5-5-1 dataset, while outperform-
ing the other methods, the DNN achieved accuracy close
to the supervised learner and the Bayes optimal accuracy;
however, the chosen DNN architecture is different from the
one of the true data generation model.

The conditional independence assumption is strongly vio-
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Figure 6. The Tree15-3-1 experiment. Left: correlation matrix of the input data for the y = 0 class. The first and middle five X 0
is are

not conditionally independent of each other. Center: correlation matrix of the hidden layer of the DNN for the y = 0 class. The hidden
units are approximately uncorrelated. Right: weight matrix of the bottom RBM of the DNN, showing that each hidden unit is strongly
connected to 5 visible units, as in the original data generation model.

Table 2. Balanced accuracy of various methods on the DREAM
datasets S1, S2 and S3. DNN results are averaged over 5 rep-
etitions, and are presented as mean ± standard deviation. The
numbers in brackets denotes the architecture of the DNN, found
by the SVD approach. * results reported in (Jaffe et al., 2015)

Dataset Vote DS CUBAM L-SML DNN
S1 97.2 * 98.3 * 92.31 98.4 * 98.42 ± 0.0 (124-1)
S2 96 * 97.2 * 69.19 97.7 * 97.55 ± 0.01 (114-1)
S3 95.7 * 97.7 * 87.65 98.2 * 98.51 ± 0.01 (99-25-1)

lated in the case of the TruncatedGaussian dataset. Here
the DNN performs better than all other methods by a large
margin.

6.2. Real-World Datasets

In this section we experiment with two groups of datasets,
from two different domains, as follows:

DREAM Three datasets from the DREAM mutation call-
ing challenge (Ewing et al., 2015); this challenge is an in-
ternational effort to improve standard methods for identi-

Figure 7. Cumulative proportion of singular values on the
condInd and Tree15-3-1 datasets. While in the condInd case the
first singular value is more than 95% of the total sum of singular
values, the first three singular values are needed on the Tree15-
3-1 dataset. The horizontal line at 0.95 is added to the plot for
convenience.

fying cancer-associated mutations and rearrangements in
whole-genome sequencing data. The accuracy of current
variant calling algorithms is not optimal due to sequenc-
ing errors, other experimental factors, parametric choices
in each algorithm and preprocessing and filtering decisions.
Unsupervised ensemble learning of multiple variant callers
is expected to provide more robust predictions. One of the
goals of this challenge is to develop a state-of-the-art meta
pipeline for somatic mutation detection, to output accurate
as possible mutation calls associated with cancer. Specif-
ically, we used three datasets, (S1, S2, S3) containing the
predictions of classifiers that determine the presence or ab-
sence of of mutations in genome sequencing data. The data
is available at (Ellrot, 2013). In S1, d = 124, n = 92, 362.
In S2, d = 114, n = 70,561. In S3, d = 99, n = 78, 643.

Magic Forty datasets, which are constructed from the
Magic dataset in the UCI repository2. This dataset contains
n = 19, 020 instances with 11 attributes, which consists
of physical measurements of gamma particles; the learn-
ing task is to classify each instance as background or high
energy gamma rays. Each of the Forty datasets we con-
structed contains binary predictions of d = 16 classifiers,
obtained in the Weka machine learning software. The 16
classifiers belong to four groups: four random forest clas-
sifiers, three logistic trees classifiers, four SVM classifiers,
and five naive Bayes classifiers. This setting is adopted
from (Jaffe et al., 2015). The group of SVM classifiers is
highly correlated, as well as the group of Naive Bayes clas-
sifiers, as can be seen in Appendix E.2. Each of the forty
datasets was obtained by predictions of the same classifiers,
however trained on a different subset of the original Magic
dataset (a random subset of size 500 each time).

Table 2 shows the performance of the various methods on
2
https://archive.ics.uci.edu/ml/datasets/

MAGIC+Gamma+Telescope

https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope
https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope
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Figure 8. correlation matrices of the input (left) and hidden (right) layers of the DNN on the S3 dataset, for the y = 0 class. Remarkably,
the hidden units are almost perfectly uncorrelated, conditioned on the class.

the DREAM datasets. As can be seen, the DNN and L-
SML perform similarly on S1, while the former performs
better on S3 and the latter on S2. The two methods outper-
form the majority vote rule, DS and CUBAM on all three
datasets. Remarkably, the hidden representation on the S3
dataset is such that the units are perfectly uncorrelated, con-
ditioned on the hidden label. This is shown in Figure 8.

The results on the Magic datasets are shown in Figure 9.
On most of these datasets, the DNN outperforms all other
methods, with a relatively large margin. On all forty
datasets, the SVD approach yielded a 15-3-1 architecture.
We also used paired t-test to compare the DNN result to
each of the other methods. The null hypothesis of this test
is that the means of the performance of each method are
equal. In all four tests the null hypothesis was rejected with
p-value  10

�13.

To summarize our experiments, we observed that RBM-
based DNN performs at least as well and often better than
various other methods, on both simulated and real datasets,
and that the SVD approach can serve as an effective tool

Figure 9. Performance of the various methods on the Magic
datasets. For convenience, the identity line is added to the plot.
Most of the points are below the identity line, which indicates that
the DNN tend to outperform all other methods on these datasets.

for determination of the DNN architecture.

We remark that in our experiments, we observed that
RBMs tend to be highly sensitive to hyper-parameter tun-
ing (such as learning rate, momentum, regularization type
and penalty), and these hyper-parameters need to be care-
fully tuned. To obtain a reasonable hyper-parameter set-
ting we found it useful to apply the random configura-
tion sampling procedure, proposed in (Bergstra & Ben-
gio, 2012), and evaluate different models by average log-
likelihood approximation, (see, for example, (Salakhutdi-
nov & Murray, 2008) and the corresponding MATLAB
scripts in (Salakhutdinov, 2010)).

7. Summary and Discussion
We demonstrated how deep learning techniques can be
used for unsupervised ensemble learning, and showed that
the DNN approach proposed in this manuscript often per-
forms at least as well and often better than state-of the art
methods, especially when the conditional independence as-
sumption made by Dawid & Skene (1979) does not hold.

Possible directions for future research include extending
the approach to multiclass problems, possible using Dis-
crete RBMs (Montúfar & Morton, 2013), theoretical analy-
sis of the SVD approach, and information theoretic analysis
of the de-correlation, while preserving label information,
that occurs while propagating data through a RBM-based
DNN.
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Montúfar, Guido and Morton, Jason. Discrete restricted
boltzmann machines. arXiv preprint arXiv:1301.3529,
2013.

Montufar, Guido F, Pascanu, Razvan, Cho, Kyunghyun,
and Bengio, Yoshua. On the number of linear regions
of deep neural networks. In Advances in Neural Infor-
mation Processing Systems, pp. 2924–2932, 2014.

Parisi, Fabio, Strino, Francesco, Nadler, Boaz, and Kluger,
Yuval. Ranking and combining multiple predictors with-
out labeled data. Proceedings of the National Academy
of Sciences, 111(4):1253–1258, 2014.

Platanios, A, Blum, Avrim, and Mitchell, Tom M. Estimat-
ing accuracy from unlabeled data. In In Proceedings of
UAI, 2014.

https://www.synapse.org/#!Synapse:syn312572/wiki/58893
https://www.synapse.org/#!Synapse:syn312572/wiki/58893


A Deep Learning Approach to Unsupervised Ensemble Learning

Raykar, Vikas C, Yu, Shipeng, Zhao, Linda H, Valadez,
Gerardo Hermosillo, Florin, Charles, Bogoni, Luca, and
Moy, Linda. Learning from crowds. The Journal of Ma-
chine Learning Research, 11:1297–1322, 2010.

Salakhutdinov, Ruslan. Ruslan salakhutdinov’s web
page, 2010. URL http://www.cs.toronto.

edu/

˜

rsalakhu/code.html.

Salakhutdinov, Ruslan and Murray, Iain. On the quantita-
tive analysis of deep belief networks. In Proceedings of
the 25th international conference on Machine learning,
pp. 872–879. ACM, 2008.

Teoh, Eu Jin, Tan, Kay Chen, and Xiang, Cheng. Esti-
mating the number of hidden neurons in a feedforward
network using the singular value decomposition. Neu-
ral Networks, IEEE Transactions on, 17(6):1623–1629,
2006.

Tishby, Naftali and Zaslavsky, Noga. Deep learning and
the information bottleneck principle. arXiv preprint
arXiv:1503.02406, 2015.

Welinder, Peter, Branson, Steve, Perona, Pietro, and Be-
longie, Serge J. The multidimensional wisdom of
crowds. In Advances in neural information processing
systems, pp. 2424–2432, 2010.

Whitehill, Jacob, Wu, Ting-fan, Bergsma, Jacob, Movel-
lan, Javier R, and Ruvolo, Paul L. Whose vote should
count more: Optimal integration of labels from labelers
of unknown expertise. In Advances in neural informa-
tion processing systems, pp. 2035–2043, 2009.

Zhang, Yuchen, Chen, Xi, Zhou, Dengyong, and Jordan,
Michael I. Spectral methods meet em: A provably opti-
mal algorithm for crowdsourcing. In Advances in neural
information processing systems, pp. 1260–1268, 2014.

http://www.cs.toronto.edu/~rsalakhu/code.html
http://www.cs.toronto.edu/~rsalakhu/code.html

