
Minimizing the Maximal Loss: How and Why

Shai Shalev-Shwartz SHAIS@CS.HUJI.AC.IL

School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel.

Yonatan Wexler YONATAN.WEXLER@ORCAM.COM

Orcam

Abstract
A commonly used learning rule is to approxi-
mately minimize the average loss over the train-
ing set. Other learning algorithms, such as Ad-
aBoost and hard-SVM, aim at minimizing the
maximal loss over the training set. The average
loss is more popular, particularly in deep learn-
ing, due to three main reasons. First, it can be
conveniently minimized using online algorithms,
that process few examples at each iteration. Sec-
ond, it is often argued that there is no sense to
minimize the loss on the training set too much, as
it will not be reflected in the generalization loss.
Last, the maximal loss is not robust to outliers.
In this paper we describe and analyze an algo-
rithm that can convert any online algorithm to a
minimizer of the maximal loss. We prove that
in some situations better accuracy on the training
set is crucial to obtain good performance on un-
seen examples. Last, we propose robust versions
of the approach that can handle outliers.

1. Introduction
In a typical supervised learning scenario, we have training
examples, S = ((x1, y1), . . . , (xm, ym)) ∈ (X ×Y)m, and
our goal is to learn a function h : X → Y . We focus on the
case in which h is parameterized by a vectorw ∈ W ⊂ Rd,
and we use hw to denote the function induced by w. The
performance of w on an example (x, y) is assessed using a
loss function, ` :W ×X × Y → [0, 1]. A commonly used
learning rule is to approximately minimize the average loss,
namely,

min
w∈W

Lavg(w) :=
1

m

m∑
i=1

`(w, xi, yi) . (1)

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

Another option is to approximately minimize the maximal
loss, namely,

min
w∈W

Lmax(w) := max
i∈[m]

`(w, xi, yi) . (2)

Obviously, if there existsw∗ ∈ W such that `(w∗, xi, yi) =
0 for every i then the minimizers of both problems coin-
cide. However, approximate solutions can be very differ-
ent. In particular, since Lmax(w) ≥ Lavg(w) for every w,
the guarantee Lmax(w) < ε is stronger than the guarantee
Lavg(w) < ε. Furthermore, for binary classification with
the zero-one loss, any vector for which Lmax(w) < 1 must
predict all the labels on the training set correctly, while the
guarantee Lavg(w) < 1 is meaningless.

Some classical machine learning algorithms can be viewed
as approximately minimizing Lmax. For example, Hard-
SVM effectively solves Lmax with respect to the loss func-
tion `(w, xi, yi) = λ‖w‖2 + 1[yi〈w, xi〉 < 1]. However,
minimizingLavg is a more popular approach, especially for
deep learning problems, in whichw is the vector of weights
of a neural network and the optimization is performed us-
ing variants of stochastic gradient descent (SGD). There are
several reasons to prefer Lavg over Lmax:

1. If m is very large, it is not practical to perform op-
erations on the entire training set. Instead, we prefer
iterative algorithms that update w based on few exam-
ples at each iteration. This can be easily done for Lavg

by observing that if we sample i uniformly at ran-
dom from [m], then the gradient of `(w, xi, yi) with
respect to w is an unbiased estimator of the gradient
of Lavg(w). This property, which lies at the heart of
the SGD algorithm, does not hold for Lmax.

2. Our ultimate goal is not to minimize the loss on the
training set but instead to have a small loss on unseen
examples. As argued before, approximately minimiz-
ing Lmax can lead to a smaller loss on the training set,
but it is not clear if this added accuracy will also be
reflected in performance on unseen examples. Formal

Minimizing the Maximal Loss: How and Why

arguments of this nature were given in (Bousquet &
Bottou, 2008; Shalev-Shwartz & Srebro, 2008).

3. The objective Lmax is not robust to outliers. It is easy
to see that even a single outlier can make the mini-
mizer of Lmax meaningless.

In this paper we tackle the aforementioned disadvantages
of Lmax, and by doing so, we show cases in which Lmax is
preferable. In particular:

1. We describe and analyze a meta algorithm that can
take any online learner for w and convert it to a min-
imizer of Lmax. A detailed description of our meta
algorithm, its analysis, and a comparison to other ap-
proaches, are given in Section 2.

2. The arguments in (Bousquet & Bottou, 2008; Shalev-
Shwartz & Srebro, 2008) rely on a comparison of up-
per bounds. We show that these upper bounds are
not tight in many cases. Furthermore, we analyze the
sample complexity of learning in situations where the
training examples are divided to “typical” scenarios
and “rare” scenarios. We argue that in many practi-
cal cases, our goal is to have a high accuracy on both
typical and rare examples. We show conditions un-
der which minimizing even few rare examples suffice
to guarantee good performance on unseen examples
from the rare scenario. In other words, few examples
can have a dramatic effect on the performance of the
learnt classifier on unseen examples. This is described
and analyzed in Section 3.

3. Finally, in Section 4 we review standard techniques
for generalizing the results from realizable cases to
scenarios in which there might be outliers in the data.

To summarize, we argue that in some situations minimiz-
ing Lmax is better than minimizing Lavg. We address the
“how” question in Section 2, the “why” question in Sec-
tion 3, and the issue of robustness in Section 4. Finally,
in Section 5 we provide some empirical evidence, showing
the effectiveness of our algorithm on real world learning
problems.

2. How
In this section we describe and analyze an algorithmic
framework for approximately solving the optimization
problem given in (2).

Denote by Sm = {p ∈ [0, 1]m : ‖p‖1 = 1} the probabilis-
tic simplex over m items. We also denote by Λ : W →
[0, 1]m the function defined by

Λ(w) = (`(w, x1, y1), . . . , `(w, xm, ym)) .

The first step is to note that the optimization problem given
in (2) is equivalent to

min
w∈W

max
p∈Sm

〈p,Λ(w)〉 . (3)

This is true because for every w, the p that maximizes the
inner optimization is the all zeros vector except 1 in the
coordinate for which `(w, xi, yi) is maximal.

We can now think of (3) as a zero-sum game between two-
players. The p player tries to maximize 〈p,Λ(w)〉 while
the w player tries to minimize 〈p,Λ(w)〉. The optimization
process is comprised of T game rounds. At round t, the p
player defines pt ∈ Sm and the w player defines wt ∈ W .
We then sample it ∼ pt and define the value of the round
to be `(wt, xit , yit).

To derive a concrete algorithm we need to specify how
player p picks pt and how player w picks wt. For the w
player one can use any online learning algorithm. We spec-
ify the requirement from the algorithm below.

Definition 1 (Mistake bound for the w player) We say
that the w player enjoys a mistake bound of C if for every
sequence of indices (i1, . . . , iT) ∈ [m]T we have that

T∑
t=1

`(wt, xit , yit) ≤ C . (4)

Example 1 Consider a binary classification problem in
which the data is linearly separable by a vector w∗

with a margin of 1. Let the loss function be the
zero-one loss, namely, `(w, x, y) = 1[y〈w, x〉 ≤ 0],
where 1[boolean expression] is 1 if the boolean expres-
sion holds and 0 otherwise. We can use the online Per-
ceptron algorithm as our w learner and it is well known
that the Perceptron enjoys the mistake bound of C =
‖w∗‖2 maxi∈[m] ‖xi‖2 (for a reference, see for example
(Shalev-Shwartz, 2011)).

For the p player, we use the seminal work of (Auer et al.,
2002). In particular, recall that the goal of the p player is
to maximize the loss, `(wt, xit , yit , where it ∼ pt. The
basic idea of the construction is therefore to think of the
m examples as m slot machines, where at round t the gain
of pulling the arms of the different machines is according
to Λ(wt) ∈ [0, 1]m. Crucially, the work of (Auer et al.,
2002) does not assume that Λ(wt) are sampled from a fixed
distribution, but rather the vectors Λ(wt) can be chosen by
an adversary. As observed in Auer et al. (2002, Section 9),
this naturally fits zero-sum games, as we consider here.

In (Auer et al., 2002) it is proposed to rely on the algorithm
EXP3.P.1 as the strategy for the p-player. The acronym
EXP3 stands for Exploration-Exploitation-Exponent, be-
cause the algorithm balances between exploration and ex-

Minimizing the Maximal Loss: How and Why

ploitation and rely on an exponentiated gradient frame-
work. The “P” in EXP3.P.1 stands for a regret bound that
holds with high probability. This is essential for our anal-
ysis because we will later apply a union bound over the m
examples. While the EXP3.P.1 algorithm gives the desired
regret analysis, the runtime per iteration of this algorithm
scales with m. Here, we propose another variant of EXP3
for which the runtime per iteration is O(log(m)).

To describe our strategy for the p player, recall that it main-
tains pt ∈ Sm. We will instead maintain another vec-
tor, qt ∈ Sm, and will set pt to be the vector such that
pt,i = 1

2qt,i + 1
2m . That is, pt is a half-half mix of qt with

the uniform distribution. While in general such a strong
mix with the uniform distribution can hurt the regret, in our
case it only affects the convergence rate by a constant fac-
tor. On the up side, this strong exploration helps us having
an update step that takes O(log(m)) per iteration.

Recall that at round t of the algorithm, we sample it ∼
pt and the value of the round is `(wt, xit , yit). Denote
zt = − `it (wt)pit

eit , then it is easy to verify that Eit∼pt [zt] =

−Λ(wt). Therefore, applying gradient descent with respect
to the linear function 〈·, zt〉 is in expectation equivalent to
applying gradient descent with respect to the linear func-
tion −〈·,Λ(wt)〉, which is the function the p player aims at
minimizing. Instead of gradient descent, we use the expo-
nentiated gradient descent approach which applies gradient
descent in the log space, namely, the update can be written
as log(qt+1) = log(qt) + ηzt.

A pseudo-code of the resulting algorithm is given in Sec-
tion 2.3. Observe that we use a tree structure to hold the
vector q, and since all but the it coordinate of zt are zeros,
we can implement the update of q in O(log(m)) time per
iteration. The following theorem summarizes the conver-
gence of the resulting algorithm.

Theorem 1 Suppose the we have an oracle access to an
online algorithm that enjoys a mistake bound of C with
respect to the training examples (x1, y1), . . . , (xm, ym).
Fix ε, δ, and suppose we run the FOL algorithm with T, k
such that C/T ≤ ε/8, T = Ω(m log(m/δ)/ε), and
k = Ω(log(m/δ)/ε), and with η = 1/(2m). Then, with
probability of at least 1− δ,

max
i

1

k

k∑
j=1

`(wtj , xi, yi) ≤ ε .

The proof of the theorem is given in Appendix A.

The above theorem tells us that we can find an ensemble
of O(log(m)/ε) predictors, such that the ensemble loss is
smaller than ε for all of the examples.

We next need to show that we can construct a single pre-

dictor with a small loss. To do so, we consider two typi-
cal scenarios. The first is classification settings, in which
`(w, x, y) is the zero-one loss and the second is convex
losses in which `(w, x, y) has the form φy(hw(x)), where
for every y, φy is a convex function.

2.1. Classification

In classification, `(w, x, y) is the zero-one loss, namely, it
equals to zero if hw(x) = y and it equals to 1 if hw(x) 6= y.
We will take ε to be any number strictly smaller than 1/2,
say 0.499.

Observe that Theorem 1 tells us that the average loss of the
classifiers wt1 , . . . , wtk is smaller than ε = 0.499. Since
the values of the loss are either 1 or 0, it means that the loss
of more than 1/2 of the classifiers is 0, which implies that
the majority classifier has a zero loss.

Corollary 1 Assume that `(w, x, y) is the zero-one loss
function, namely, `(w, x, y) = 1[hw(x) 6= y]. Apply The-
orem 1 with ε = 0.49. Then, with probability of at least
1 − δ, the majority classifier of hwt1 , . . . , hwtk is consis-
tent, namely, it makes no mistakes on the entire training
set.

Example 2 Consider again the linear binary classification
problem given in Example 1, where we use the online Per-
ceptron algorithm as our w learner, and its mistake bound
is C as given in Example 1. Then, after Õ (m+ C) iter-
ations, we will find an ensemble of O(log(m)) halfspaces,
whose majority vote is consistent with all the examples. In
Section 2.4 we compare the runtime of the method to state-
of-the-art approaches. Here we just note that to obtain a
consistent hypothesis using SGD one needs order of mC
iterations, which is significantly larger in most scenarios.

2.2. Convex Losses

Consider now the case in which `(w, x, y) has the form
φy(hw(x)), where for every y, φy is a convex function.
Note that this assumption alone does not imply that ` is a
convex function of w (this will be true only if hw(x) is an
affine function).

In the case of convex φy , combining Theorem 1 with
Jensen’s inequality we obtain:

Corollary 2 Under the assumptions of Theorem 1, if
`(w, x, y) has the form φy(hw(x)), where for every y,
φy is a convex function, then the predictor h(x) =
1
k

∑k
j=1 hwtj (x) satisfies ∀i, φyi(h(xi)) ≤ ε . If we

further assume that hw(x) is an affine function of w, and
let w = 1

k

∑k
j=1 wtj , then we also have that

∀i, φyi(hw(xi)) ≤ ε .

Minimizing the Maximal Loss: How and Why

2.3. Pseudo-code

Below we describe a pseudo-code of the algorithm. We
rely on a tree data structure for maintaining the probability
of the p-player. It is easy to verify the correctness of the
implementation. Observe that the runtime of each iteration
is the time required to perform one step of the online learner
plusO(log(m)) for sampling from pt and updating the tree
structure.

Focused Online Learning (FOL)

Input:
Training examples (x1, y1), . . . , (xm, ym)
Loss function ` :W ×X × Y → [0, 1]
Parameters η, T, k
Oracle access to online learning algorithm OLA

Initialization:
Tree.initialize(m) (see the Tree pseudo-code)
w1 = OLA.initialize()

Loop over t ∈ {1, . . . , T}:
(it, pit) = Tree.sample(1/2)
OLA.step(xit , yit)
Tree.update(it, exp(η `(wt, xit , yit)/pit))

Output:
Sample (t1, . . . , tk) indices uniformly from [T]
Output Majority/Average of (hwt1 , . . . , hwtk)

Tree

initialize(m)
Build a full binary tree of height h = dlog2(m)e
Set value of the first m leaves to 1 and the rest to 0
Set the value of each internal node to be

the sum of its two children
Let qi be the value of the i’th leaf divided by

the value of the root
sample(γ)

Sample b ∈ {0, 1} s.t. P[b = 0] = γ
If b = 0

Sample i uniformly at random from [m]
Else

Set v to be the root node of the tree
While v is not a leaf:

Go to the left/right child by sampling
according to their values

Let i be the obtained leaf
Return: (i, γ/m+ (1− γ)qi)

update(i, f)
Let v be the current value of the i’th leaf of the tree
Let δ = f v − v
Add δ to the values of all nodes on

the path from the i’th leaf to the root

2.4. Related Work

As mentioned before, our algorithm is a variant of the ap-
proach given in Auer et al. (2002, Section 9), but has the
advantage that the update of the p player at each iteration
scales with log(m) rather than with m. Phrasing the max-
loss minimization as a two players game has also been
proposed by (Clarkson et al., 2012; Hazan et al., 2011).
These works focus on the specific case of binary classifica-
tion with a linear predictor, namely, they tackle the prob-
lem minw∈Rd:‖w‖2≤1 maxp∈Sm

∑
i pi〈w, xi〉. Assuming

the setup of Example 1, (Clarkson et al., 2012) presents
an algorithm that finds a consistent hypothesis in runtime
of Õ((m + d) · C). For the same problem, our algorithm
(with the Perceptron as the weak learner) finds a consistent
hypothesis in runtime of Õ((m + C) · d). Furthermore, if
the instances are d̄-sparse (meaning that the number of non-
zeros in each xi is at most d̄), then the term d in our bound
can be replaced by d̄. In any case, our bound is sometimes
better and sometimes worse than the one in (Clarkson et al.,
2012). We note that we can also use AdaBoost (Freund &
Schapire, 1995) on top of the Perceptron algorithm for the
same problem. It can be easily verified that the resulting
runtime will be identical to our bound. In this sense, our
algorithm can be seen as an online version of AdaBoost.

Finally, several recent works use sampling strategies for
speeding up optimization algorithms for minimizing the
average loss. See for example (Bengio & Senécal, 2008;
Bouchard et al., 2015; Zhao & Zhang, 2014; Allen-Zhu &
Yuan, 2015).

3. Why
In this section we tackle the “Why” question, namely, why
should we prefer minimizing the maximal loss instead of
the average loss. For simplicity of presentation, through-
out this section we deal with binary classification problems
with the zero-one loss, in the realizable setting. In this con-
text, minimizing the maximal loss to accuracy of ε < 1
leads to a consistent hypothesis1. On the other hand, min-
imizing the average loss to any accuracy of ε > 1/m does
not guarantee to return a consistent hypothesis. Therefore,
in this context, the “why” question becomes: why should
we find a consistent hypothesis and not be satisfied with a
hypothesis with Lavg(h) ≤ ε for some ε > 1/m.

In the usual PAC learning model (see (Shalev-Shwartz &
Ben-David, 2014) for an overview), there is a distribution
D over X ×Y and the training examples are assumed to be

1Recall that a consistent hypothesis is a hypothesis that makes
no mistakes on the training set. We also use the term Empirical
Risk Minimization (ERM) to describe the process of finding a
consistent hypothesis, and use ERM(S) to denote any hypothesis
which is consistent with a sample S.

Minimizing the Maximal Loss: How and Why

sampled i.i.d. from D. The goal of the learner is to mini-
mize LD(h) := E(x,y)∼D[`(h, x, y)] = P(x,y)∼D[h(x) 6=
y]. For a fixed h ∈ H, the random variable Lavg(h) is an
unbiased estimator ofLD(h). Furthermore, it can be shown
(Boucheron et al. (2005, Section 5.1.2)) that with probabil-
ity of at least 1− δ over the choice of the sample S ∼ Dm
we have that:

∀h ∈ H, LD(h) ≤ Lavg(h)+

Õ

(√
Lavg(h)

VC(H)− log(δ)

m
+

VC(H)− log(δ)

m

)
where VC(H) is the VC dimension of the class H and the
notation Õ hides constants and logarithmic terms.

From the above bound we get that any h with Lavg(h) =
0 (i.e., a consistent h) guarantees that LD(h) =

Õ
(

VC(H)+log(1/δ)
m

)
. However, we will obtain the same

guarantee (up to constants) if we will choose any h with
Lavg(h) ≤ ε, for ε = Õ

(
VC(H)+log(1/δ)

m

)
. Based on this

observation, it can be argued that it is enough to minimize
Lavg to accuracy of ε = Õ

(
VC(H)+log(1/δ)

m

)
> 1

m , be-
cause a better accuracy on the training set will in any case
get lost by the sampling noise.

Furthermore, because of either computational reasons or
high dimensionality of the data, we often do not directly
minimize the zero-one loss, and instead minimize a convex
surrogate loss, such as the hinge-loss. In such cases, we
often rely on a margin based analysis, which means that the
term VC(H) is replaced byB2, whereB is an upper bound
on the norm of the weight vector that defines the classifier.
It is often the case that the convergence rate of SGD is of
the same order, and therefore there is no added value of
solving the ERM problem over performing a single SGD
pass over the data (or few epochs over the data). Formal
arguments of this nature were given in (Bousquet & Bottou,
2008; Shalev-Shwartz & Srebro, 2008).

Despite of these arguments, we show below reasons to pre-
fer the max loss formulation over the average loss formula-
tion. The first reason is straightforward: arguments that are
based on worst case bounds are problematic, since in many
cases the behavior is rather different than the worst case
bounds. In subsection 3.1 we present a simple example in
which there is a large gap between the sample complexity
of SGD and the sample complexity of ERM, and we further
show that the runtime of our algorithm will be much better
than the runtime of SGD for solving this problem.

Next, we describe a family of problems in which the distri-
bution from which the training data is being sampled is a
mix of “typical” examples and “rare” examples. We show
that in such a case, few “rare” examples may be sufficient
for learning a hypothesis that has a high accuracy on both

the “typical” and “rare” examples, and therefore, it is really
required to solve the ERM problem as opposed to being
satisfied with a hypothesis for which Lavg(h) is small.

3.1. A Simple Example of a Gap

Consider the following distribution. Let z1 = (α, 1) and
z2 = (α,−2α) for some small α > 0. To generate an
example (x, y) ∼ D, we first sample a label y uniformly at
random from {±1}, then we set x = yz1 with probability
1 − ε and set x = yz2 with probability ε. The hypothesis
class is halfspaces: H = {x→ sign(〈w, x〉) : w ∈ R2}.

The following three lemmas, whose proofs are given in
the appendix, establish the gap between the different ap-
proaches.

Lemma 1 For every δ ∈ (0, 1), if m ≥ 2 log(4/δ)
ε then,

with probability of at least 1 − δ over the choice of the
training set, S ∼ Dm, any hypothesis in ERM(S) has a
generalization error of 0.

Lemma 2 Suppose we run SGD with the hinge-loss and
any η > 0 for less than T = Ω(1/(αε)) iterations. Then,
with probability of 1−O(ε) we have that SGD will not find
a solution with error smaller than ε.

Lemma 3 Running FOL (with the Perceptron as its w
player) takes Õ

(
1
ε + 1

α

)
iterations.

3.2. Typical vs. Rare Distributions

To motivate the learning setting, consider the problem of
face detection, in which the goal is to take an image crop
and determine whether it is an image of a face or not. An
illustration of typical random positive and negative exam-
ples is given in Figure 1 (top row). By having enough train-
ing examples, we can learn that the discrimination between
face and non-face is based on few features like “an ellipse
shape”, “eyes”, “nose”, and “mouth”. However, from the
typical examples it is hard to tell whether an image of a wa-
termelon is a face or not — it has the ellipse shape like a
face, and something that looks like eyes, but it doesn’t have
a nose, or a mouth. The bottom row of Figure 1 shows some
additional “rare” examples.

Such a phenomenon can be formally described as follows.
There are two distributions over the examples, D1 and D2.
Our goal is to have an error of at most ε on both distribu-
tions, namely, we would like to find h such thatLD1

(h) ≤ ε
and LD2

(h) ≤ ε. However, the training examples that
we observe are sampled i.i.d. from a mixed distribution,
D = λ1D1+λ2D2, where λ1, λ2 ∈ (0, 1) and λ1+λ2 = 1.
We assume that λ2 � λ1, namely, typical examples in the
training set are from D1 while examples from D2 are rare.

Fix some ε. If λ2 < ε, then a hypothesis with Lavg(h) ≤ ε

Minimizing the Maximal Loss: How and Why

Figure 1. Top: typical positive (left) and negative (right) exam-
ples. Bottom: rare negative examples.

might err on most of the “rare” examples, and is therefore
likely to have LD2

(h) > ε. If we want to guarantee a good
performance on D2 we must optimize to a very high accu-
racy, or put another way, we would like to minimize Lmax

instead of Lavg. The question is how many examples do we
need in order to guarantee that a consistent hypothesis on
S will have a small error on both D1 and D2. A naive ap-
proach is to require order of VC(H)/(λ2ε) examples, thus
ensuring that we have order of VC(H)/ε examples from
both D1 and D2. However, this is a rough estimate and the
real sample complexity might be much smaller. Intuitively,
we can think of the typical examples from D1 as filtering
out most of the hypotheses in H, and the goal of the rare
examples is just to fine tune the exact hypothesis. In the
example of face detection, the examples from D1 will help
us figure out what is an “ellipse like shape”, what is an
“eye”, and what is a “mouth” and a “nose”. After we un-
derstand all this, the rare examples from D2 will tell us the
exact requirement of being a face (e.g., you need an ellipse
like shape and either eyes or a mouth). We can therefore
hope that the number of required “rare” examples is much
smaller than the number of required “typical” examples.
This intuition is formalized in the following theorem.

Theorem 2 Fix ε, δ ∈ (0, 1), distributions D1, D2, and let
D = λ1D1 + λ2D2 where λ1 + λ2 = 1, λ1, λ2 ∈ [0, 1],
and λ2 < λ1. Define H1,ε = {h ∈ H : LD1(h) ≤ ε}
and c = max{c′ ∈ [ε, 1) : ∀h ∈ H1,ε, LD2

(h) ≤ c′ ⇒
LD2

(h) ≤ ε}. Then, if

m ≥ Ω

(
VC(H) log(1/ε) + log(1/δ)

ε
+

VC(H1,ε) log(1/c) + log(1/δ)

c λ2

)
we have, with probability of at least 1−δ over the sampling
of a sample S ∼ Dm:

LD1
(ERM(S)) ≤ ε and LD2

(ERM(S)) ≤ ε

The proof of the theorem is given in the appendix. The
first term in the sample complexity is a standard VC-based
sample complexity. The second term makes two crucial

improvement. First, we measure the VC dimension of a re-
duced class (H1,ε), containing only those hypotheses in H
that have a small error on the “typical” distribution. Intu-
itively, this will be a much smaller hypothesis class com-
pared to the original class. Second, we apply an analysis
of the sample complexity similar to the “shell analysis” of
(Haussler et al., 1996), and assume that the error of all hy-
potheses in H1,ε on D2 is either smaller than ε or larger
than c, where we would like to think of c as being signifi-
cantly larger than ε. Naturally, this will not always be the
case. But, Theorem 2 provides data dependent conditions,
under which a much smaller number of examples from D2

is sufficient. As a motivation, consider again Figure 1, and
suppose H1,ε contains conjunctions over all subsets of the
features “has eyes”, “has nose”, “has mouth”, “has skin
color”. Let h∗ be the conjunction of all these 4 features.
It is reasonable to assume that examples in D2 lack one of
these features. Let us also assume for simplicity that each
lacking feature takes at least 1/8 of the mass ofD2. Hence,
the error of all “wrong” functions in H1,ε on D2 is at least
1/8, while the error of h∗ is 0. We see that in this simple
example, c = 1/8.

All in all, the theorem shows that a small number of “rare”
examples in the training set can have a dramatic effect on
the performance of the algorithm on the rare distribution
D2. But, we will see this effect only if we will indeed find
a hypothesis consistent with all (or most) examples from
D2, which requires an algorithm for minimizing Lmax and
not Lavg.

4. Robustness
In the previous section we have shown cases in which min-
imizing Lmax is better than minimizing Lavg. However,
in the presence of outliers, minimizing Lmax might lead to
meaningless results — even a single outlier can change the
value of Lmax and might lead to a trivial, non-interesting,
solution. In this section we describe two tricks for address-
ing this problem. The first trick replaces the original sam-
ple with a new sample whose examples are sampled from
the original sample. The second trick relies on slack vari-
ables. We note that these tricks are not new and appears in
the literature in various forms. See for example (Huber &
Ronchetti, 2009; Maronna et al., 2006). The goal of this
section is merely to show how to apply known tricks to the
max loss problem.

Recall that in the previous section we have shown that a
small amount of “rare” examples can have a dramatic effect
on the performance of the algorithm on the “rare” distribu-
tion. Naturally, if the number of outliers is larger than the
number of rare examples we cannot hope to enjoy the bene-
fit of rare examples. Therefore, throughout this section we
assume that the number of outliers, denoted k, is smaller

Minimizing the Maximal Loss: How and Why

than the number of “rare” examples, which we denote by
m2.

4.1. Sub-sampling with repetitions

The first trick we consider is to simply take a new sam-
ple of n examples, where each example in the new sample
is sampled independently according to the uniform distri-
bution over the original m examples. Then, we run our
algorithm on the obtained sample of n examples.

Intuitively, if there are k outliers, and the size of the new
sample is significantly smaller than m/k, then there is a
good chance that no outliers will fall into the new sam-
ple. On the other hand, we want that enough “rare” exam-
ples will fall into the new sample. The following theorem,
whose proof is in the appendix, shows for which values of
k and m2 this is possible.

Theorem 3 Let k be the number of outliers, m2 be the
number of rare examples, m be the size of the original
sample, and n be the size of the new sample. Assume that
m ≥ 10k. Then, the probability that the new sample con-
tains outliers and/or does not contain at least m2/2 rare
examples is at most 0.01 + 0.99kn/m+ e−0.1nm2/m.

For example, if n = m/(100k) and m2 ≥
1000 log(100) k, then the probability of the bad event is
at most 0.03.

4.2. Slack variables

Another common trick, often used in the SVM literature,
is to introduce a vector of slack variables, ξ ∈ Rm, such
that ξi > 0 indicates that example i is an outlier. We first
describe the ideal version of outlier removal. Suppose we
restrict ξi to take values in {0, 1}, and we restrict the num-
ber of outliers to be at most K. Then, we can write the
following optimization problem:

min
w∈W,ξ∈Rm

max
i∈[m]

(1− ξi) `(w, xi, yi) s.t.

ξ ∈ {0, 1}m, ‖ξ‖1 ≤ K .

This optimization problem minimizes the max loss over a
subset of examples of size at leastm−K. That is, we allow
the algorithm to refer to at most K examples as outliers.

Note that the above problem can be written as a max-loss
minimization:

min
w̄∈W̄

max
i

¯̀(w̄, xi, yi) where

W̄ = {(w, ξ) : w ∈ W, ξ ∈ {0, 1}m, ‖ξ‖1 ≤ K} and
¯̀((w, ξ), xi, yi) = (1− ξi)`(w, xi, yi)

We can now apply our framework on this modified prob-
lem. The p player remains as before, but now the w̄

player has a more difficult task. To make the task eas-
ier we can perform several relaxations. First, we can re-
place the non-convex constraint ξ ∈ {0, 1}m with the con-
vex constraint ξ ∈ [0, 1]m. Second, we can replace the
multiplicative slack with an additive slack, and re-define:
¯̀((w, ξ), xi, yi) = `(w, xi, yi) − ξi. This adds a convex
term to the loss function, and therefore, if the original loss
was convex we end up with a convex loss. The new prob-
lem can often be solved by combining gradient updates
with projections of ξ onto the set ξ ∈ [0, 1]m, ‖ξ‖1 ≤ K.
For efficient implementations of this projection see for ex-
ample (Duchi et al., 2008). We can further replace the con-
straint ‖ξ‖1 ≤ K with a constraint of ‖ξ‖22 ≤ K, because
projection onto the Euclidean ball is a simple scaling, and
the operation can be done efficiently with an adequate data
structure (as described, for example, in (Shalev-Shwartz
et al., 2011)).

5. Experiments
In this section we demonstrate several merits of our ap-
proach on the well studied problem of face detection. De-
tection problems in general have a biased distribution as
they are often expected to detect few needles in a haystack.
Furthermore, a mix of typical and rare distributions is to be
expected. For example, users of smartphones won’t be in
the same continent as the manufacturers who collect data
for training. This domain requires weighting of examples,
and therefore is a good playground to examine our algo-
rithm.

To create a dataset we downloaded 30k photos from Google
images that are tagged with “face”. We then applied an
off-the-shelf face detector, and it found 32k rectangles that
aligned on faces. This was the base of our positive exam-
ples. For negative examples we randomly sampled 250k
rectangles in the same images that do not overlap faces.
Each rectangle was cropped and scaled to 28×28 pixels.
Using a fixed size simplifies the experiments so we can fo-
cus on the merits of our method rather than justify various
choices that are not relevant here, such as localization and
range of scale.

Recall that our FOL algorithm relies on an online algorithm
as the w player. In the experiments, w is the vector con-
taining all the weights of a convolutional neural network
(CNN) with a variant of the well known LeNet architec-
ture. The layers of the network are as follows. Convolution
with a 5×5 kernel, stride of 1, and 40 output channels, fol-
lowed by ReLU and max-pooling. Then a convolution with
a 5×5 kernel, stride of 1, and 80 output channels, followed
by ReLU and max-pooling. Then a convolution with a 7×7
kernel, stride of 1, and 160 output channels, followed by
ReLU. Finally, a linear prediction over the resulting 160
channels yields the binary prediction for the input 28×28

Minimizing the Maximal Loss: How and Why

104 105 106 107 108
0

0.2

0.4 SGD
FOL

104 105 106 107 108

0.2

0.4

0.6

0.8 SGD
FOL

Figure 2. Comparing the error percentage of FOL vs. SGD as a
function of the number of iterations. Left: Train Error. Right:
Test Error.

1 5 9 13 17 21 25
0.00

0.10

0.20

0.30

0.45 AdaBoost
FOL

Figure 3. Train error of FOL vs. AdaBoost as a function of the
number of epochs.

image crop. Overall the model has 710, 642 weights. We
denote byH the resulting hypothesis class.

In the comparison, we focus on the case in which the data
is realizable by H. To guarantee that, we first used vanilla
SGD to find a network in H. We then kept only samples
that were labeled correctly by the network. This yielded
28k positive examples and 246k negative examples. This
set was then randomly mixed and split 9 : 1 for train and
test sets.

For the w player we used the SGD algorithm with Nes-
terov’s momentum, as this is a standard solver for learning
convolutional neural networks. The parameters we used
are a batch size of 64, an `2 regularization of 0.0005, mo-
mentum parameter of 0.9, and a learning rate of ηt =
0.01(1 + 0.0001 t)−0.75. We used the logistic loss as a sur-
rogate loss for the classification error.

We performed two experiments to highlight different prop-
erties of our algorithm. The first experiment shows that
FOL is much faster than SGD, and this is reflected both
in train and test errors. The second experiment compares
FOL to the application of AdaBoost on top of the same
base learner.

Experiment 1: Convergence speed In this experiment
we show that FOL is faster than SGD. Figure 2 shows the
train and test errors of SGD and FOL. Both models were
initialized with the same randomly selected weights. As
mentioned before, FOL relies on SGD as its w player. Ob-
serve that FOL essentially solves the problem (zero training
error) after 30 epochs, whereas SGD did not converge to a
zero training error even after 14, 000 epochs and achieved
0.1313% error. While the logarithmic scale in the figure
shows that SGD is still improving, it is doing so at a de-
creasing rate. This is reflected by our theoretical analysis.

To understand why SGD slows down, observe that when
the error of SGD is as small as here (0.13%), only one ex-
ample in 769 is informative. Even when at classification
error of 0.4% (left-side of the graph), only 4 in 1, 000 ex-
amples are informative. Hence, even with batch size of 64,
SGD picks one useful sample only once every fifteen it-
erations. FOL expects an average of 32 useful samples in
every iteration so every iteration is informative. In our case,
since the training set size is 246k, only 984 examples are
informative and FOL makes sure to focus on these rather
than waste time on solved examples.

As can be seen in Figure 2, the faster convergence of FOL
on the training set is also translated to a better test error. In-
deed, FOL achieves a test error of 0.14% (after 27 epochs)
whereas even after 14k epochs SGD results 0.35% error.

Experiment 2: Comparison to AdaBoost As men-
tioned in Section 2.4, FOL can be seen as an online version
of AdaBoost. Specifically, we can apply the AdaBoost al-
gorithm while using SGD as its weak learner. For concrete-
ness and reproducibility of our experiment, we briefly de-
scribe the resulting algorithm. We initialize a uniform dis-
tribution over the m examples, p = (1/m, . . . , 1/m). At
iteration t of AdaBoost, we run one epoch of SGD over the
data, while sampling examples according to p. Let ht be the
resulting classifier. We then calculate ht(xi) over all the m
examples, calculate the averaged zero-one error of ht, with
weights based on p, define a weight αt = 0.5 log(1/εt−1),
and update p such that pi ∝ pi exp(−αtyiht(xi)). We re-
peat this process for T iterations, and output the hypothesis
h(x) = sign(

∑T
t=1 αtht(x)).

Observe that each such iteration of AdaBoost is equivalent
to 2 epochs of our algorithm. In Figure 3 we show the train
error of AdaBoost and FOL as a function of the number of
epochs over the data. The behavior on the test set shows a
similar trend. As can be seen in the figure, AdaBoost finds
a consistent hypothesis after 20 epochs, while FOL requires
27 epochs to converge to a consistent hypothesis. However,
once FOL converged, its last hypothesis has a zero training
error. In contrast, the output hypothesis of AdaBoost is a
weighted majority of T hypotheses (T = 10 in this case).
It follows that at prediction time, applying AdaBoost’s pre-
dictor is 10 times slower than applying FOL’s predictor.
Often, we prefer to spend more time during training, for
the sake of finding a hypothesis which can be evaluated
faster at test time. While based on our theory, the output
hypothesis of FOL should also be a majority of log(m) hy-
potheses, we found out that in practice, the last hypothesis
of FOL converges to a zero classification error at almost the
same rate as the majority classifier.

Acknowledgements: S. Shalev-Shwartz is supported by
ICRI-CI and by the European Research Council (Theo-

Minimizing the Maximal Loss: How and Why

ryDL project).

References
Allen-Zhu, Zeyuan and Yuan, Yang. Even faster accel-

erated coordinate descent using non-uniform sampling.
arXiv preprint arXiv:1512.09103, 2015.

Auer, Peter, Cesa-Bianchi, Nicolo, Freund, Yoav, and
Schapire, Robert E. The nonstochastic multiarmed ban-
dit problem. SIAM Journal on Computing, 32(1):48–77,
2002.

Bengio, Yoshua and Senécal, Jean-Sébastien. Adaptive im-
portance sampling to accelerate training of a neural prob-
abilistic language model. Neural Networks, IEEE Trans-
actions on, 19(4):713–722, 2008.

Bouchard, Guillaume, Trouillon, Théo, Perez, Julien, and
Gaidon, Adrien. Accelerating stochastic gradient de-
scent via online learning to sample. arXiv preprint
arXiv:1506.09016, 2015.

Boucheron, Stéphane, Bousquet, Olivier, and Lugosi,
Gábor. Theory of classification: A survey of some recent
advances. ESAIM: probability and statistics, 9:323–375,
2005.

Bousquet, Olivier and Bottou, Léon. The tradeoffs of large
scale learning. In Advances in neural information pro-
cessing systems, pp. 161–168, 2008.

Clarkson, Kenneth L, Hazan, Elad, and Woodruff, David P.
Sublinear optimization for machine learning. Journal of
the ACM (JACM), 59(5):23, 2012.

Duchi, John, Shalev-Shwartz, Shai, Singer, Yoram, and
Chandra, Tushar. Efficient projections onto the l 1-ball
for learning in high dimensions. In Proceedings of the
25th international conference on Machine learning, pp.
272–279. ACM, 2008.

Fan, Xiequan, Grama, Ion, and Liu, Quansheng. Ho-
effding’s inequality for supermartingales. Stochastic
Processes and their Applications, 122(10):3545–3559,
2012.

Freund, Yoav and Schapire, Robert E. A desicion-theoretic
generalization of on-line learning and an application to
boosting. In Computational learning theory, pp. 23–37.
Springer, 1995.

Haussler, David, Kearns, Michael, Seung, H Sebastian, and
Tishby, Naftali. Rigorous learning curve bounds from
statistical mechanics. Machine Learning, 25(2-3):195–
236, 1996.

Hazan, Elad, Koren, Tomer, and Srebro, Nati. Beating sgd:
Learning svms in sublinear time. In Advances in Neural
Information Processing Systems, pp. 1233–1241, 2011.

Huber, Peter J. and Ronchetti, Elvezio M. Robust Statistics
(second edition). J. Wiley, 2009.

Kivinen, J. and Warmuth, M. Exponentiated gradient ver-
sus gradient descent for linear predictors. Information
and Computation, 132(1):1–64, January 1997.

Maronna, Ricardo A, Martin, R Douglas, and Yohai, Vic-
tor J. Robust Statistics: Theory and Methods. J. Wiley,
2006.

Shalev-Shwartz, Shai. Online learning and online con-
vex optimization. Foundations and Trends in Machine
Learning, 4(2):107–194, 2011.

Shalev-Shwartz, Shai and Ben-David, Shai. Understanding
Machine Learning: From Theory to Algorithms. Cam-
bridge university press, 2014.

Shalev-Shwartz, Shai and Singer, Yoram. On the equiva-
lence of weak learnability and linear separability: New
relaxations and efficient boosting algorithms. Machine
learning, 80(2-3):141–163, 2010.

Shalev-Shwartz, Shai and Srebro, Nathan. Svm optimiza-
tion: inverse dependence on training set size. In Pro-
ceedings of the 25th international conference on Ma-
chine learning, pp. 928–935. ACM, 2008.

Shalev-Shwartz, Shai, Singer, Yoram, Srebro, Nathan, and
Cotter, Andrew. Pegasos: Primal estimated sub-gradient
solver for svm. Mathematical programming, 127(1):3–
30, 2011.

Zhao, Peilin and Zhang, Tong. Stochastic opti-
mization with importance sampling. arXiv preprint
arXiv:1401.2753, 2014.

Minimizing the Maximal Loss: How and Why

A. Proof of Theorem 1
A.1. Background

Bernstein’s type inequality for martingales: A sequence B1, . . . , BT of random variables is Markovian if for every t,
given Bt−1 we have that Bt is independent of B1, . . . , Bt−2. A sequence A1, . . . , AT of random variables is a martingale
difference sequence with respect to B1, . . . , BT if for every t we have E[At|B1, . . . , Bt] = 0.

Lemma 4 (Hazan et al. (2011, Lemma C.3) and Fan et al. (2012, Theorem 2.1)) Let B1, . . . , BT be a Markovian se-
quence and let A1, . . . , AT be a martingale difference sequence w.r.t. B1, . . . , BT . Assume that for every t we have
|At| ≤ V and E[A2

t |B1, . . . , Bt] ≤ s. Then, for every α > 0 we have

P

(
1

T

T∑
t=1

At ≥ α

)
≤ exp

(
−T α2/2

s+ αV/3

)

In particular, for every δ ∈ (0, 1), if

T ≥ 2(s+ αV/3) log(1/δ)

α2
,

then with probability of at least 1− δ we have that 1
T

∑T
t=1At ≤ α.

The EG algorithm: Consider a sequence of vectors, z1, . . . , zT , where every zt ∈ Rm. Consider the following sequence
of vectors, parameterized by η > 0. The first vector is q̃1 = (1, . . . , 1) ∈ Rm and for t ≥ 1 we define q̃t+1 to be such that:

∀i ∈ [m], q̃t+1,i = q̃t,i exp(−ηzt,i) .

In addition, for every t define qt = q̃/(
∑m
i=1 q̃i) ∈ Sm. The algorithm that generates the above sequence is known as the

EG algorithm (Kivinen & Warmuth, 1997).

Lemma 5 (Theorem 2.22 in (Shalev-Shwartz, 2011)) Assume that ηzt,i ≥ −1 for every t and i. Then, for every u ∈ Sm
we have:

T∑
t=1

〈qt − u, zt〉 ≤
log(m)

η
+ η

T∑
t=1

m∑
i=1

qt,iz
2
t,i .

A.2. Proof

To simplify our notation we denote `i(wt) = `(wt, xi, yi). We sometimes omit the time index t when it is clear from the
context (e.g., we sometime use qi instead of qt,i).

A.2.1. THE w PLAYER

By our assumption that C/T ≤ ε/8 we have that, for every i1, . . . , iT ,

1

T

T∑
t=1

`it(wt) ≤ ε/8 (5)

A.2.2. THE p PLAYER

Recall that pi = 1
2m + qi

2 . Note that, for every i,

1

pi
≤ 2m and

qi
pi
≤ 2

Define zt = − `it (wt)pit
eit . Observe that the p player applies the EG algorithm w.r.t. the sequence z1, . . . , zT . Since

Minimizing the Maximal Loss: How and Why

zt,i ≥ −2m we obtain from Lemma 5 that if η ≤ 1/(2m) then, for every u ∈ Sm,

1

T

T∑
t=1

〈qt − u, zt〉 ≤
log(m)

ηT
+
η

T

T∑
t=1

m∑
i=1

qt,iz
2
t,i

≤ log(m)

ηT
+
η

T

T∑
t=1

qt,it
`it(wt)

2

p2
t,it

≤ log(m)

ηT
+
η

T

T∑
t=1

4m`it(wt)
2

≤ log(m)

ηT
+
η4m

T

T∑
t=1

`it(wt)

≤ ε/8 +
2

T

T∑
t=1

`it(wt) ,

where in the last inequality we used η = 1/(2m) and T = Ω(m log(m)/ε). Rearranging, and combining with (5) we
obtain

1

T

T∑
t=1

〈u, 1

pt,it
`it(wt)eit〉 ≤

1

T

T∑
t=1

(
qt,it
pt,it

+ 2

)
`it(wt) + ε/8 ≤ 4

T

T∑
t=1

`it(wt) + ε/8 ≤ 5ε

8
. (6)

A.2.3. MEASURE CONCENTRATION

Note that, if u = ei, then

E[〈u, 1

pt,it
`it(wt)eit〉2|qt, wt] =

m∑
j=1

pt,j
p2
t,j

`j(wt)
2uj ≤

1

pt,i
≤ 2m .

Define the martingale difference sequence A1, . . . , AT where At = `i(wt) − 〈u, 1
pt,it

`it(wt)eit〉. We have that
|At| ≤ (2m + 1) and E[A2

t |qt, wt] ≤ 2m. Therefore, the conditions of Lemma 4 holds and we obtain that if
T ≥ 6m log(m/δ)/(ε/8)2 then with probability of at least 1 − δ/m we have that 1

T

∑
tAt ≤ ε/8. Applying a union

bound over i ∈ [m] we obtain that with probability of at least 1− δ it holds that

∀i ∈ [m],
1

T

∑
t

`i(wt) ≤
1

T

∑
t

〈ei,
1

pit
`it(wt)eit〉+ ε/8 .

Combining with (6) we obtain that, with probability of at least 1− δ,

∀i ∈ [m],
1

T

T∑
t=1

`i(wt) ≤
6ε

8
.

Finally, relying on Bernstein’s inequality (see Lemma B.10 in (Shalev-Shwartz & Ben-David, 2014)), it is not hard to see
that if k = Ω(log(m/δ)/ε) then, with probability of at least 1− δ we have that

∀i ∈ [m],
1

k

k∑
j=1

`i(wtj) ≤
1

T

T∑
t=1

`i(wt) +
ε

4
,

and this concludes our proof.

B. Proofs of Lemmas in Section 3.1
Proof [Proof of Lemma 1] There are only 4 possible examples, so an ERM will have a generalization error of 0
provided we see all the 4 examples. By a simple direct calculation together with the union bound over the 4 examples it

Minimizing the Maximal Loss: How and Why

is easy to verify that the probability not to see all the examples is at most 4(1−ε/2)m ≤ 4e−mε/2, and the claim follows.

Proof [Proof of Lemma 2] For SGD, we can assume (due to symmetry) that y is always 1. Therefore, there are only two
possible examples z1, z2. With probability 1− ε the first examples is z1. Also, wT has always the form

η(kz1 + rz2) = η((k + r)α, k − 2rα) ,

where k is the number of times we had a margin error on z1 and r is the number of times we had a margin error on z2. To
make sure that 〈wT , z2〉 > 0 we must have that

(k + r)α2 − 2(k − 2rα)α > 0 ⇒ r > k
2α− α2

5α2
≈ k 2

5α
(7)

Note that the first example is z1 with probability of 1 − ε, hence we have that k ≥ 1 with probability of at least 1 − ε. In
addition, r is upper bounded by the number of times we saw z2 as the example, and by Chernoff’s bound we have that that
the probability that this number is greater than 2mε is at most e−ε/3 ≈ (1− ε/3). Therefore, with probability of 1−O(ε)
we have the requirement that m must be at least Ω(1/(αε)), which concludes our proof.

Proof [Proof of Lemma 3] We have shown that m = 1/ε examples suffices. Specifying our general analysis to classi-
fication with the zero-one loss, it suffices to ensure that the regret of both players will be smaller than 1/2. The regret
of the sampling player is bounded by O(m log(m)). As for the halfspace player, to simplify the derivation, lets use the
Perceptron as the underlying player. It is easy to verify that the vector wT has the form kz1 + rz2 = ((k + r)α, k − 2rα),
for some integers k, r. Lets consider two regimes. The first is the first time when r, k satisfies 〈wT , z2〉 > 0. As we have
shown before, this happens when r is roughly 2k/(5α). Once this happens we also have that

〈wT , z1〉 = ((k + r)α2 + k − 2rα) ≈ (k − 2rα)
≈
> 4k/5 > 0 ,

So, the Perceptron will stop making changes and will give us an optimal halfspace. Next, suppose that we have a pair r, k
for which 〈wT , z2〉 ≤ 0. If we now encounter z2 then we increase r. If we encounter z1 then

〈wT , z1〉 ≈ (k − 2rα)
≈
> 4k/5 > 0 ,

so we’ll not increase k. Therefore, k will increase only up to a constant, while r will continue to increase until roughly
2k/(5α), and then the Perceptron will stop making updates. This implies that the mistake bound of the Perceptron is
bounded by O(1/α), which concludes our proof.

C. Proof of Theorem 2
We can think of the ERM algorithm as following the following three steps. First, we sample (i1, . . . , im) ∈ {1, 2}m, where
P[ir = j] = λj . Let m1 be the number of indices for which ir = 1 and let m2 = m−m1. Second, we sample S1 ∼ Dm1

1 ,
and define Ĥ1 to be all hypotheses in H which are consistent with S1. Last, we sample S2 ∼ Dm2

2 and set the output
hypotheses to be some hypothesis in Ĥ1 which is consistent with S2.

The proof relies on the following three claims, where we use C to denote a universal constant:

• Claim 1: With probability of at least 1 − δ/3 over the choice of (i1, . . . , im) we have that both m1 ≥ λ1m/2 and
m2 ≥ λ2m/2.

• Claim 2: Assuming that m1 ≥ C
(

VC(H) log(1/ε)+log(1/δ)
ε

)
, then with probability of at least 1− δ/3 over the choice

of S1 we have that Ĥ1 ⊆ H1,ε.

• Claim 3: Assume that m2 ≥ C
(

VC(H1,ε) log(1/c)+log(1/δ)
c

)
, then with probability of at least 1− δ/3 over the choice

of S2, any hypothesis inH1,ε which is consistent with S2 must have LD2(h) ≤ c.

Minimizing the Maximal Loss: How and Why

Claim 1 follows directly from Chernoff’s bound, while Claim 2-3 follows directly from standard VC bounds (see for
example Shalev-Shwartz & Ben-David (2014, Theorem 6.8)).

Equipped with the above three claims we are ready to prove the theorem. First, we apply the union bound to get that
with probability of at least 1 − δ, the statements in all the above three claims hold. This means that Ĥ1 ⊆ H1,ε hence
LD1(ERM(S)) ≤ ε. It also means that ERM(S) must be inH1,ε, and therefore from the third claim and the assumption in
the theorem we have that LD2(ERM(S)) ≤ ε as well, which concludes our proof.

D. Proof of Theorem 3
The probability that all of the outliers do not fall into the sample of n examples is

(1− k/m)n ≥ 0.99 e−kn/m .

Therefore, the probability that at least one outlier falls into the sample is at most

1− 0.99 e−kn/m ≤ 1− 0.99(1− kn/m) = 0.01 + 0.99kn/m

On the other hand, the expected number of rare examples in the sample is nm2/m and by Chernoff’s bound, the probability
that less than half of the rare examples fall into the sample is at most exp(−0.1nm2/m). Applying the union bound we
conclude our proof.

