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A. Proofs
A.1. Proof of Theorem 1

Although the proof structure generally mimics the proof of Theorem 1 in (Shamir, 2015) for the k = 1 special case, it is
more intricate and requires several new technical tools. To streamline the presentation of the proof, we begin with proving
a series of auxiliary lemmas in Subsection A.1.1, and then move to the main proof in Subsection A.1. The main proof itself
is divided into several steps, each constituting one or more lemmas.

Throughout the proof, we use the well-known facts that for all matrices B,C,D of suitable dimensions, Tr(B + C) =
Tr(B) + Tr(C), Tr(BC) = Tr(CB), Tr(BCD) = Tr(DBC), and Tr(B>B) = ‖B‖2F . Moreover, since Tr is a linear
operation, E[Tr(B)] = E[Tr(B)] for a random matrix B.

A.1.1. AUXILIARY LEMMAS

Lemma 2. For any B,C,D � 0, it holds that Tr(BC) ≥ Tr(B(C −D)) and Tr(BC) ≥ Tr((B −D)C).

Proof. It is enough to prove that for any positive semidefinite matrices E,G, it holds that Tr(EG) ≥ 0. The lemma
follows by taking either E = B,G = D (in which case, Tr(BC) = Tr(B(C − D)) + Tr(BD) ≥ Tr(B(C − D))), or
E = D,G = C (in which case, Tr(BC) = Tr((B −D)C) + Tr(DC) ≥ Tr((B −D)C)).

Any positive semidefinite matrix M can be written as the product M1/2M1/2 for some symmetric matrix M1/2 (known
as the matrix square root of M ). Therefore,

Tr(EG) = Tr(E1/2E1/2G1/2G1/2) = Tr(G1/2E1/2E1/2G1/2)

= Tr((E1/2G1/2)>(E1/2G1/2)) = ‖E1/2G1/2‖2F ≥ 0.

Lemma 3. If B � 0 and C � 0, then
Tr(BC−1) ≥ Tr(B(2I − C)),

where I is the identity matrix.

Proof. We begin by proving the one-dimensional case, where B,C are scalars b ≥ 0, c > 0. The inequality then becomes
bc−1 ≥ b(2− c), which is equivalent to 1 ≥ c(2− c), or upon rearranging, (c− 1)2 ≥ 0, which trivially holds.

Turning to the general case, we note that by Lemma 2, it is enough to prove that C−1 − (2I − C) � 0. To prove this,
we make a couple of observations. The positive definite matrix C (like any positive definite matrix) has a singular value
decomposition which can be written as USU>, where U is an orthogonal matrix, and S is a diagonal matrix with positive
entries. Its inverse is US−1U>, and 2I − C = 2I − USU> = U(2I − S)U>. Therefore,

C−1 − (2I − C) = US−1U> − U(2I − S)U> = U(S−1 − (2I − S))U>.

To show this matrix is positive semidefinite, it is enough to show that each diagonal entry of S−1 − (2I − S) is non-
negative. But this reduces to the one-dimensional result we already proved, when b = 1 and c > 0 is any diagonal entry in
S. Therefore, C−1 − (2I − C) � 0, from which the result follows.

Lemma 4. For any matrices B,C,
Tr(BC) ≤ ‖B‖F ‖C‖F

and
‖BC‖F ≤ ‖B‖2‖C‖F .

Proof. The first inequality is immediate from Cauchy-Shwartz. As to the second inequality, letting ci denote the i-th
column of C, and ‖ · ‖2 the Euclidean norm for vectors,

‖BC‖F =

√∑
i

‖Bci‖22 ≤
√∑

i

(‖B‖2‖ci‖2)
2

= ‖B‖2
√∑

i

‖ci‖22 = ‖B‖2‖C‖F .
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Lemma 5. Let B1, B2, Z1, Z2 be k × k square matrices, where B1, B2 are fixed and Z1, Z2 are stochastic and zero-
mean (i.e. their expectation is the all-zeros matrix). Furthermore, suppose that for some fixed α, γ, δ > 0, it holds with
probability 1 that

• For all ν ∈ [0, 1], B2 + νZ2 � δI .

• max{‖Z1‖F , ‖Z2‖F } ≤ α.

• ‖B1 + ηZ1‖2 ≤ γ.

Then

E
[
Tr
(
(B1 + Z1)(B2 + Z2)−1

)]
≥ Tr(B1B

−1
2 )− α2(1 + γ/δ)

δ2
.

Proof. Define the function
f(ν) = Tr

(
(B1 + νZ1)(B2 + νZ2)−1

)
, ν ∈ [0, 1].

Since B2 + νZ2 is positive definite, it is always invertible, hence f(ν) is indeed well-defined. Moreover, it can be differ-
entiated with respect to ν, and we have

f ′(ν) = Tr
(
Z1(B2 + νZ2)−1 − (B1 + νZ1)(B2 + νZ2)−1Z2(B2 + νZ2)−1

)
.

Again differentiating with respect to ν, we have

f ′′(ν) = Tr
(
− 2Z1(B2 + νZ2)−1Z2(B2 + νZ2)−1

+ 2(B1 + νZ1)(B2 + νZ2)−1Z2(B2 + νZ2)−1Z2(B2 + νZ2)−1
)

= 2 Tr
((
− Z1 + (B1 + νZ1)(B2 + νZ2)−1Z2

)
(B2 + νZ2)−1Z2(B2 + νZ2)−1

)
.

Using Lemma 4 and the triangle inequality, this is at most

2‖ − Z1 + (B1 + νZ1)(B2 + νZ2)−1Z2‖F ‖(B2 + νZ2)−1Z2(B2 + νZ2)−1‖F
≤ 2

(
‖Z1‖F + ‖(B1 + νZ1)(B2 + νZ2)−1Z2‖F

)
‖(B2 + νZ2)−1‖22‖Z2‖F

≤ 2
(
‖Z1‖F + ‖B1 + νZ1‖2‖ (B2 + νZ2)

−1 ‖2‖Z2‖F
)
‖(B2 + νZ2)−1‖22‖Z2‖F

≤ 2

(
α+ γ

1

δ
α

)
1

δ2
α =

2α2(1 + γ/δ)

δ2
.

Applying a Taylor expansion to f(·) around ν = 0, with a Lagrangian remainder term, and substituting the values for
f ′(ν), f ′′(ν), we can lower bound f(1) as follows:

f(1) ≥ f(0) + f ′(0) ∗ (1− 0)− 1

2
max
ν
|f ′′(ν)| ∗ (1− 0)2

= Tr
(
B1B

−1
2

)
+ Tr

(
Z1B

−1
2 −B1B

−1
2 Z2B

−1
2

)
− α2(1 + γ/δ)

δ2
.

Taking expectation over Z1, Z2, and recalling they are zero-mean, we get that

E[f(1)] ≥ Tr
(
B1B

−1
2

)
− α2(1 + γ/δ)

δ2
.

Since E[f(1)] = E
[
Tr
(
(B1 + Z1)(B2 + Z2)−1

)]
, the result in the lemma follows.

Lemma 6. Let U1, . . . , Uk and R1, R2 be positive semidefinite matrices, such that R2 −R1 � 0, and define the function

f(x1 . . . xk) = Tr

( k∑
i=1

xiUi +R1

)(
k∑
i=1

xiUi +R2

)−1 .

over all (x1 . . . xk) ∈ [α, β]d for some β ≥ α ≥ 0. Then min(x1...xk)∈[α,β]d f(x) = f(α, . . . , α).
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Proof. Taking a partial derivative of f with respect to some xj , we have

∂

∂xj
f(x)

= Tr

Uj ( k∑
i=1

xiUi +R2

)−1
−

(
k∑
i=1

xiUi +R1

)(
k∑
i=1

xiUi +R2

)−1
Uj

(
k∑
i=1

xiUi +R2

)−1
= Tr

I −( k∑
i=1

Ui +R1

)(
k∑
i=1

xiUi +R2

)−1Uj

(
k∑
i=1

xiUi +R2

)−1
= Tr

(( k∑
i=1

xiUi +R2

)
−

(
k∑
i=1

xiUi +R1

))(
k∑
i=1

xiUi +R2

)−1
Uj

(
k∑
i=1

xiUi +R2

)−1
= Tr

(R2 −R1)

(
k∑
i=1

xiUi +R2

)−1
Uj

(
k∑
i=1

xiUi +R2

)−1 .

By the lemma’s assumptions, each matrix in the product above is positive semidefinite, hence the product is positive
semidefinite, and the trace is non-negative. Therefore, ∂

∂xj
f(x) ≥ 0, which implies that the function is minimized when

each xj takes its smallest possible value, i.e. α.

Lemma 7. Let B be a k × k matrix with minimal singular value δ. Then

1− ‖B
>B‖2F
‖B‖2F

≥ max

{
1− ‖B‖2F ,

δ2

k

(
k − ‖B‖2F

)}
.

Proof. We have

1− ‖B
>B‖2F
‖B‖2F

≥ 1− ‖B‖
2
F ‖B‖2F
‖B‖2F

= 1− ‖B‖2F ,

so it remains to prove 1 − ‖B
>B‖2F
‖B‖2F

≥ δ2

k

(
k − ‖B‖2F

)
. Let σ1, . . . , σk denote the vector of singular values of B. The

singular values of B>B are σ2
1 , . . . , σ

2
k, and the Frobenius norm of a matrix equals the Euclidean norm of its vector of

singular values. Therefore, the lemma is equivalent to requiring

1−
∑k
i=1 σ

4
i∑k

i=1 σ
2
i

≥ δ2

k

(
k −

k∑
i=1

σ2
i

)
,

assuming σi ∈ [δ, 1] for all i. This holds since

1−
∑
i σ

4
i∑

i σ
2
i

=

∑
i σ

2
i −

∑
i σ

4
i∑

i σ
2
i

=

∑
i σ

2
i

(
1− σ2

i

)∑
i σ

2
i

≥
δ2
∑
i

(
1− σ2

i

)
k

=
δ2

k

(
k −

∑
i

σ2
i

)
.

Lemma 8. For any d× k matrices C,D with orthonormal columns, let

DC = arg min
DB : (DB)>(DB)=I

‖C −DB‖2F

be the nearest orthonormal-columns matrix to C in the column space of D (where B is a k × k matrix). Then the matrix
B minimizing the above equals B = V U>, where C>D = USV > is the SVD decomposition of C>D, and it holds that

‖C −DC‖2F ≤ 2(k − ‖C>D‖2F ).



Fast SVD and PCA Algorithms: Convergence Properties and Convexity

Proof. Since D has orthonormal columns, we have D>D = I , so the definition of B is equivalent to

B = arg min
B : B>B=I

‖C −DB‖2F .

This is the orthogonal Procrustes problem (see e.g. (Golub & Van Loan, 2012)), and the solution is easily shown to be
B = V U> where USV > is the SVD decomposition of C>D. In this case, and using the fact that ‖C‖2F = ‖D‖2F = k (as
C,D have orthonormal columns), we have that ‖C −DC‖2F equals

‖C −DB‖2F = ‖C‖2F + ‖D‖2F − 2 Tr(C>DB) = 2
(
k − Tr(USV >(V U>))

)
= 2

(
k − Tr(USU>)

)
.

Since the trace function is similarity-invariant, this equals 2k − Tr(S). Let s1 . . . , sk be the diagonal elements of S, and
note that they can be at most 1 (since they are the singular values of C>D, and both C and D have orthonormal columns).
Recalling that the Frobenius norm equals the Euclidean norm of the singular values, we can therefore upper bound the
above as follows:

2
(
k − Tr(USU>)

)
= 2 (k − Tr(S)) = 2

(
k −

k∑
i=1

si

)
≤ 2

(
k −

k∑
i=1

s2i

)
= 2

(
k − ‖C>D‖2F

)
.

Lemma 9. Let Wt,W
′
t be as defined in Algorithm 2, where we assume η < 1

3 . Then for any d × k matrix Vk with
orthonormal columns, it holds that ∣∣‖V >k Wt‖2F − ‖V >k Wt−1‖2F

∣∣ ≤ 12kη

1− 3η
.

Proof. Letting st, st−1 denote the vectors of singular values of V >k Wt and V >k Wt−1, and noting that they are both in
[0, 1]k (as Vk,Wt−1,Wt all have orthonormal columns), the left hand side of the inequality in the lemma statement equals

|‖st‖2 − ‖st−1‖2| = (‖st‖2 + ‖st−1‖2) | ‖st‖2 − ‖st−1‖2 | ≤ 2
√
k‖st − st−1‖2 ≤ 2k‖st − st−1‖∞,

where ‖ · ‖∞ is the infinity norm. By Weyl’s matrix perturbation theorem4 (Horn & Johnson, 2012), this is upper bounded
by

2k‖V >k Wt − V >k Wt−1‖2 ≤ 2k‖Vk‖2‖Wt −Wt−1‖2 ≤ 2k‖Wt −Wt−1‖2. (8)

Recalling the relationship between Wt and Wt−1 from Algorithm 2, we have that

W ′t = Wt−1 + ηN,

where

‖N‖2 ≤ ‖xitx>itWt−1‖2 + ‖xitx>itW̃s−1Bt−1‖2 + ‖ 1

n

n∑
i=1

xix
>
i W̃s−1Bt−1‖2 ≤ 3,

as Wt−1, W̃s−1, Bt−1 all have orthonormal columns, and xitx
>
it

and 1
n

∑n
i=1 xix

>
i have spectral norm at most 1. There-

fore, W ′t equals Wt−1, up to a matrix perturbation of spectral norm at most 3η. Again by Weyl’s theorem, this implies
that the k non-zero singular values of the d × k matrix W ′t are different from those of Wt−1 (which has orthonormal

columns) by at most 3η, and hence all lie in [1 − 3η, 1 + 3η]. As a result, the singular values of
(
W
′>
t W ′t

)−1/2
all lie in[

1
1+3η ,

1
1−3η

]
. Collecting these observations, we have

‖Wt −Wt−1‖2 = ‖(Wt−1 + ηN)
(
W
′>
t−1W

′
t−1

)−1/2
−Wt−1‖2

≤ ‖Wt−1

((
W
′>
t−1W

′
t−1

)−1/2
− I
)

+ ηN
(
W
′>
t−1W

′
t−1

)−1/2
‖2

≤ ‖
(
W
′>
t−1W

′
t−1

)−1/2
− I‖2 + η‖N‖2‖

(
W
′>
t−1W

′
t−1

)−1/2
‖2

≤ 3η

1− 3η
+

3η

1− 3η
=

6η

1− 3η
.

Plugging back to Eq. (8), the result follows.

4Using its version for singular values, which implies that the singular values of matricesB andB+E are different by at most ‖E‖2.
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A.1.2. MAIN PROOF

To simplify the technical derivations, note that the algorithm remains the same if we divide each xi by
√
r, and multiply

η by r. Since maxi ‖xi‖2 ≤ r, this corresponds to running the algorithm with step-size ηr rather than η, on a re-scaled
dataset of points with squared norm at most 1, and with an eigengap of λ/r instead of λ. Therefore, we can simply analyze
the algorithm assuming that maxi ‖xi‖2 ≤ 1, and in the end plug in λ/r instead of λ, and ηr instead of η, to get a result
which holds for data with squared norm at most r.

PART I: ESTABLISHING A STOCHASTIC RECURRENCE RELATION

We begin by focusing on a single iteration t of the algorithm, and analyze how ‖V >k Wt‖2F (which measures the similarity
between the column spaces of Vk and Wt) evolves during that iteration. The key result we need is Lemma 10 below, which
is specialized for our algorithm in Lemma 11.

Lemma 10. Let A be a d × d symmetric matrix with all eigenvalues s1 ≥ s2 ≥ . . . ≥ sd in [0, 1], and suppose that
sk − sk+1 ≥ λ for some λ > 0.

Let N be a d× k zero-mean random matrix such that ‖N‖F ≤ σFN and ‖N‖2 ≤ σspN with probability 1, and define

rN = 46 (σFN )2

(
1 +

8

3

(
1

4
σspN + 2

)2
)

Let W be a d× k matrix with orthonormal columns, and define

W ′ = (I + ηA)W + ηN , W ′′ = W ′(W
′>W ′)−1/2,

for some η ∈
[
0, 1

4max{1,σFN}

]
.

If Vk = [v1,v2 . . . ,vk] is the d× k matrix of A’s first k eigenvectors, then the following holds:

• E
[
1− ‖V >k W ′′‖2F

]
≤
(
1− 4

5ηλ‖V
>
k W‖2F

) (
1− ‖V >k W‖2F

)
+ η2rN

• If ‖V >k W‖2F ≥ k − 1
2 , then

EN
[
k − ‖V >k W ′′‖2F

]
≤
(
k − ‖V >k W‖2F

)(
1− 1

10
ηλ

)
+ η2rN .

Proof. Using the fact that Tr(BCD) = Tr(CDB) for any matrices B,C,D, we have

E
[
‖V >k W ′′‖2F

]
= E

[
Tr
(
W
′′>VkV

>
k W

′′
)]

= E
[
Tr

((
W
′>W ′

)−1/2
W
′>VkV

>
k W

′
(
W
′>W ′

)−1/2)]
= E

[
Tr

((
W
′>VkV

>
k W

′
)(

W
′>W ′

)−1)]
. (9)

By definition of W ′, we have

W
′>VkV

>
k W

′ = ((I + ηA)W + ηN)
>
VkV

>
k ((I + ηA)W + ηN)

= B1 + Z1,

where we define

B1 = W>(I + ηA)VkV
>
k (I + ηA)W + η2N>VkV

>
k N

Z1 = ηN>VkV
>
k (I + ηA)W + ηW>(I + ηA)VkV

>
k N.
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Also, we have

W
′>W ′ = ((I + ηA)W + ηN)

>
((I + ηA)W + ηN)

= B2 + Z2,

where

B2 = W>(I + ηA)(I + ηA)W + η2N>N

Z2 = ηN>(I + ηA)W + ηW>(I + ηA)N.

With these definitions, we can rewrite Eq. (9) as E
[
Tr((B1 + Z1)(B2 + Z2)−1)

]
. We now wish to remove Z1, Z2, by

applying Lemma 5. To do so, we check the lemma’s conditions:

• Z1, Z2 are zero mean: This holds since they are linear in N , and N is assumed to be zero-mean.

• B2 + νZ2 � 3
8I for all ν ∈ [0, 1]: Recalling the definition of B2, Z2, and the facts that A � 0, N>N � 0 (by

construction), and W>W = I , we have that B2 � I . Moreover, the spectral norm of Z2 is at most

2η‖N>(I + ηA)W‖2 ≤ 2η‖N‖2‖I + ηA‖2‖W‖2 ≤ 2ησspN (1 + η) ≤ 2ησFN (1 + η),

which by the assumption on η is at most 2 1
4

(
1 + 1

4

)
= 5

8 . This implies that the smallest singular value of B2 + νZ2

is at least 1− ν(5/8) ≥ 3/8.

• max{‖Z1‖F , ‖Z2‖F } ≤ 5
2ησ

F
N : By definition of Z1, Z2, and using Lemma 4, the Frobenius norm of these two

matrices is at most
2η‖N‖F ‖(I + ηA)‖2‖W‖2 ≤ 2ησFN (1 + η),

which by the assumption on η is at most 2ησFN
(
1 + 1

4

)
= 5

2ησ
F
N .

• ‖B1 + ηZ1‖2 ≤
(
1
4σ

sp
N + 2

)2
: Using the definition of B1, Z1 and the assumption η ≤ 1

4 ,

‖B1 + ηZ1‖2 ≤ ‖B1‖2 + η‖Z1‖2
≤ (1 + η)2 + η2(σspN )2 + 2ησspN (1 + η)

≤
(

5

4

)2

+
1

16
(σspN )2 +

5

8
σspN

<

(
1

4
σspN + 2

)2

.

Applying Lemma 5 and plugging back to Eq. (9), we get

E
[
‖V >k W ′′‖2F

]
≥ E

[
Tr((B1 + Z1)(B2 + Z2)−1)

]
≥ Tr

(
B1B

−1
2

)
− 400

9
(ησFN )2

(
1 +

8

3

(
1

4
σspN + 2

)2
)
. (10)

We now turn to lower bound Tr
(
B1B

−1
2

)
, by first re-writing B1, B2 in a different form. For i = 1, . . . , d, let

Ui = W>viv
>
i W,

where vi is the eigenvector of A corresponding to the eigenvalue si. Note that each Ui is positive semidefinite, and∑d
i=1 Ui = W>W = I . We have

B1 = W>(I + ηA)VkV
>
k (I + ηA)W + η2N>VkV

>
k N

= W> ((I + ηA)Vk) ((I + ηA)Vk)
>
W + η2N>VkV

>
k N

=

k∑
i=1

(1 + ηsi)
2W>viv

>
i W + η2N>VkV

>
k N

=

k∑
i=1

(1 + ηsi)
2Ui + η2N>VkV

>
k N. (11)



Fast SVD and PCA Algorithms: Convergence Properties and Convexity

Similarly,

B2 = W>(I + ηA)(I + ηA)W + η2N>N

=

d∑
i=1

(1 + ηsi)
2W>viv

>
i W + η2N>N

=

d∑
i=1

(1 + ηsi)
2Ui + η2N>N. (12)

Plugging Eq. (11) and Eq. (12) back into Eq. (10), we get

E
[
‖V >k W ′′‖2F

]
≥ Tr

( k∑
i=1

(1 + ηs1)2Ui + η2N>VkV
>
k N

)(
d∑
i=1

(1 + ηsi)
2Ui + η2N>N

)−1
− 400

9
(ησFN )2

(
1 +

8

3

(
1

4
σspN + 2

)2
)
. (13)

Recalling that s1 ≥ s2 ≥ . . . ≥ sk and letting α = (1 + ηsk)2, β = (1 + ηs1)2, the trace term can be lower bounded by

min
x1,...,xk∈[α,β]

Tr

( k∑
i=1

xiUi + η2N>VkV
>
k N

)(
k∑
i=1

xiUi +

d∑
i=k+1

(1 + ηsi)
2Ui + η2N>N

)−1 .

Applying Lemma 6 (noting that as required by the lemma,
∑d
i=k+1(1 + ηsi)

2Ui + η2N>N − η2N>VkV
>
k N =∑d

i=k+1(1 + ηsi)
2Ui + η2N>

(
I − VkV >k

)
N � 0), we can lower bound the above by

Tr

((1 + ηsk)2
k∑
i=1

Ui + η2N>VkV
>
k N

)(
(1 + ηsk)2

k∑
i=1

Ui +

d∑
i=k+1

(1 + ηsi)
2Ui + η2N>N

)−1 .

Using Lemma 2, this can be lower bounded by

Tr

((1 + ηsk)2
k∑
i=1

Ui

)(
(1 + ηsk)2

k∑
i=1

Ui +

d∑
i=k+1

(1 + ηsi)
2Ui + η2N>N

)−1
= Tr

( k∑
i=1

Ui

)(
k∑
i=1

Ui +

d∑
i=k+1

(
1 + ηsi
1 + ηsk

)2

Ui +

(
η

1 + ηsk

)2

N>N

)−1

Applying Lemma 3, this is at least

Tr

((
k∑
i=1

Ui

)(
2I −

k∑
i=1

Ui −
d∑

i=k+1

(
1 + ηsi
1 + ηsk

)2

Ui −
(

η

1 + ηsk

)2

N>N

))
.

Recalling that I =
∑d
i=1 Ui =

∑k
i=1 Ui +

∑d
i=k+1 Ui, this can be simplified to

Tr

((
k∑
i=1

Ui

)(
k∑
i=1

Ui +

d∑
i=k+1

(
2−

(
1 + ηsi
1 + ηsk

)2
)
Ui −

(
η

1 + ηsk

)2

N>N

))
. (14)

Since Ui � 0, then using Lemma 3, we can lower bound the expression above by shrinking each of the
(

2−
(

1+ηsi
1+ηsk

)2)
terms. In particular, since si ≤ sk − λ for each i ≥ k + 1,

2−
(

1 + ηsi
1 + ηsk

)2

≥ 2− 1 + ηsi
1 + ηsk

≥ 2− 1 + η(sk − λ)

1 + ηsk
= 1 +

ηλ

1 + ηsk
,
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which by the assumption that η ≤ 1/4 and sk ≤ s1 ≤ 1, is at least 1 + 4
5ηλ. Plugging this back into Eq. (14), and recalling

that
∑d
i=1 Ui = I , we get the lower bound

Tr

((
k∑
i=1

Ui

)(
k∑
i=1

Ui +

d∑
i=k+1

(
1 +

4

5
ηλ

)
Ui −

(
η

1 + ηsk

)2

N>N

))

= Tr

((
k∑
i=1

Ui

)(
I +

4

5
ηλ

(
I −

k∑
i=1

Ui

)
−
(

η

1 + ηsk

)2

N>N

))
.

Again using Lemma 2, this is at least

Tr

((
k∑
i=1

Ui

)(
I +

4

5
ηλ

(
I −

k∑
i=1

Ui

)))
−
(

η

1 + ηsk

)2

Tr

((
k∑
i=1

Ui

)
N>N

)

≥ Tr

((
k∑
i=1

Ui

)(
I +

4

5
ηλ

(
I −

k∑
i=1

Ui

)))
−
(

η

1 + ηsk

)2

Tr
(
N>N

)
≥ Tr

((
k∑
i=1

Ui

)(
I +

4

5
ηλ

(
I −

k∑
i=1

Ui

)))
− η2

(
σFN
)2
.

Recall that this is a lower bound on the trace term in Eq. (13). Plugging it back and slightly simplifying, we get

E
[
‖V >k W ′′‖2F

]
≥ Tr

((
k∑
i=1

Ui

)(
I +

4

5
ηλ

(
I −

k∑
i=1

Ui

)))
− η2rN ,

where

rN = 46 (σFN )2

(
1 +

8

3

(
1

4
σspN + 2

)2
)
.

The trace term above can be re-written (using the definition of Ui and the fact that Tr(B>B) = ‖B‖2F ) as

Tr

((
W>

k∑
i=1

viv
>
i W

)(
I +

4

5
ηλ

(
I −W>

k∑
i=1

viv
>
i W

)))

=

(
1 +

4

5
ηλ

)
Tr
(
W>VkV

>
k W

)
− 4

5
ηλTr

((
W>VkV

>
k W

) (
W>VkV

>
k W

))
=

(
1 +

4

5
ηλ

)
‖V >k W‖2F −

4

5
ηλ‖W>VkV >k W‖2F

= ‖V >k W‖2F
(

1 +
4

5
ηλ

(
1− ‖W

>VkV
>
k W‖2F

‖V >k W‖2F

))
.

Applying Lemma 7, and letting δ denote the minimal singular value of V >k W , this is lower bounded by

‖V >k W‖2F
(

1 +
4

5
ηλmax

{
1− ‖V >k W‖2F ,

δ2

k

(
k − ‖V >k W‖2F

)})
.

Overall, we get that

E
[
‖V >k W ′′‖2F

]
≥ ‖V >k W‖2F

(
1 +

4

5
ηλmax

{
1− ‖V >k W‖2F ,

δ2

k

(
k − ‖V >k W‖2F

)})
− η2rN . (15)

We now consider two options:
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• Taking the first argument of the max term in Eq. (15), we get

E
[
‖V >k W ′′‖2F

]
≥ ‖V >k W‖2F

(
1 +

4

5
ηλ
(
1− ‖V >k W‖2F

))
− η2rN .

Subtracting 1 from both sides and simplifying, we get

E
[
1− ‖V >k W ′′‖2F

]
≤
(

1− 4

5
ηλ‖V >k W‖2F

)(
1− ‖V >k W‖2F

)
+ η2rN .

• Suppose that ‖V >k W‖2F ≥ k − 1
2 . Taking the second argument of the max term in Eq. (15), we get

E
[
‖V >k W ′′‖2F

]
≥ ‖V >k W‖2F

(
1 +

4ηλδ2

5k

(
k − ‖V >k W‖2F

))
− η2rN .

Subtracting both sides from k, , we get

E
[
k − ‖V >k W ′′‖2F

]
≤
(
k − ‖V >k W‖2F

)
− 4ηλδ2

5k
‖V >k W‖2F

(
k − ‖V >k W‖2F

)
+ η2rN

=
(
k − ‖V >k W‖2F

)(
1− 4ηλδ2

5k
‖V >k W‖2F

)
+ η2rN

≤
(
k − ‖V >k W‖2F

)(
1− 4ηλδ2

5k

(
k − 1

2

))
+ η2rN

Since k ≥ 1, we can lower bound the
(
k − 1

2

)
term by k

2 . Moreover, the condition k − ‖V >k W‖2F ≤ 1
2 implies that

the singular values σ1, . . . , σk of V >k W satisfy k−
∑k
i=1 σ

2
i ≤ 1

2 . But each σi is in [0, 1] (as Vk,W have orthonormal
columns), so no σi can be less than 1

2 . This implies that δ ≥ 1
2 . Plugging the lower bounds k− 1

2 ≥
k
2 and δ ≥ 1

2 into
the above, we get

E
[
k − ‖V >k W ′′‖2F

]
≤
(
k − ‖V >k W‖2F

)(
1− 1

10
ηλ

)
+ η2rN .

Lemma 11. Let A,Wt be as defined in Algorithm 2, and suppose that η ∈
[
0, 1

23
√
k

]
. Then the following holds for some

positive numerical constants c1, c2, c3:

• E
[
1− ‖V >k W ′′‖2F

]
≤
(
1− c1ηλ‖V >k W‖2F

) (
1− ‖V >k W‖2F

)
+ c2kη

2

• If ‖V >k Wt‖2F ≥ k − 1
2 , then

E
[
k − ‖V >k Wt+1‖2F

]
≤
(
k − ‖V >k Wt‖2F

)
(1− c1η (λ− c2η)) + c3η

2(k − ‖V >k W̃s−1‖2F ).

In the above, the expectation is over the random draw of the index it, conditioned on Wt and W̃s−1.

Proof. To apply Lemma 10, we need to compute upper bounds σFN and σspN on the Frobenius and spectral norms of N ,
which in our case equals (xitx

>
it
−A)(Wt − W̃s−1Bt). Since ‖A‖2, ‖xitx>it‖2 ≤ 1, and Wt, W̃s−1, Bt have orthonormal

columns, the spectral norm of N is at most

‖(xitx>it −A)(Wt − W̃s−1Bt)‖2 ≤
(
‖xitx>it‖2 + ‖A‖2

) (
‖Wt‖2 + ‖W̃s−1‖2‖Bt‖2

)
≤ 4,

so we may take σspN = 4. As to the Frobenius norm, using Lemma 4 and a similar calculation, we have

‖N‖2F ≤ 4‖Wt − W̃s−1Bt‖2F .
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To upper bound this, define
VWt = arg min

VkB:(VkB)>(VkB)=I
‖Wt − VkB‖2F

to be the nearest orthonormal-columns matrix to Wt in the column space of Vk, and

W̃V = arg min
W̃s−1B:(W̃s−1B)>(W̃s−1B)=I

‖VWt − W̃s−1B‖2F

to be the nearest orthonormal-columns matrix to VWt in the column space of W̃s−1. Also, recall that by definition,

W̃s−1Bt = arg min
W̃s−1B:(W̃s−1B)>(W̃s−1B)=I

‖Wt − W̃s−1B‖2F

is the nearest orthonormal-columns matrix to Wt in the column space of W̃s−1. Therefore, we must have ‖Wt −
W̃s−1Bt‖2F ≤ ‖Wt − W̃V ‖2F . Using this and Lemma 8, we have

‖Wt − W̃s−1Bt‖2F ≤ ‖Wt − W̃V ‖2F
= ‖(Wt − VWt)− (W̃V − VWt)‖2F
≤ 2‖Wt − VWt

‖2F + 2‖W̃V − VWt
‖2F

= 4
(
k − ‖V >k Wt‖2F

)
+ 4

(
k − ‖V >Wt

W̃s−1‖2F
)
.

By definition of VWt
, we have VWt

= VkB where B>B = B>V >k VkB = (VkB)>(VkB) = I . Therefore B is an
orthogonal k×k matrix, and ‖V >Wt

W̃s−1‖2F = ‖B>V >k W̃s−1‖2F = ‖V >k W̃s−1‖2F , so the above equals 4(k−‖V >k Wt‖2F )+

4(k − ‖V >k W̃s−1‖2F ). Overall, we get that the squared Frobenius norm of N can be upper bounded by

(σFN )2 = 16
(

(k − ‖V >k Wt‖2F ) + (k − ‖V >k W̃s−1‖2F )
)
.

Plugging σspN and (σFN )2 into the rN as defined in Lemma 10, and picking any η ∈ [0, 1
23
√
k

] (which satisfies the condition

in Lemma 10 that η ∈
[
0, 1

4max{1,σFN}

]
, since 4 max{1, σFn } ≤ 4 max{1,

√
16 ∗ 2k} < 23

√
k), we get

rN = 736
(

(k − ‖V >k Wt‖2F ) + (k − ‖V >k W̃s−1‖2F )
)(

1 +
8

3

(
1

4
4 + 2

)2
)

≤ 18400
(

(k − ‖V >k Wt‖2F ) + (k − ‖V >k W̃s−1‖2F )
)
.

This implies that rN ≤ 36800k always, which by application of Lemma 10, gives the first part of our lemma. As to the
second part, assuming ‖V >k Wt‖2F ≥ k − 1

2 and applying Lemma 10, we get that

E
[
k − ‖V >k Wt+1‖2F

]
≤
(
k − ‖V >k Wt‖2F

)(
1− 1

10
ηλ

)
+ 18400 η2

(
(k − ‖V >k Wt‖2F ) + (k − ‖V >k W̃s−1‖2F )

)
=
(
k − ‖V >k Wt‖2F

)(
1− η

(
1

10
λ− 18400η

))
+ 18400 η2(k − ‖V >k W̃s−1‖2F ).

This corresponds to the lemma statement.

PART II: SOLVING THE RECURRENCE RELATION FOR A SINGLE EPOCH

Since we focus on a single epoch, we drop the subscript from W̃s−1 and denote it simply as W̃ .

Suppose that η = αλ, where α is a sufficiently small constant to be chosen later. Also, let

bt = k − ‖V >k Wt‖2F and b̃ = k − ‖V >k W̃‖2F .
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Then Lemma 11 tells us that if α is a sufficiently small constant, bt ≤ 1
2 , then

E [bt+1|Wt] ≤
(
1− cαλ2

)
bt + c′α2λ2b̃ (16)

for some numerical constants c, c′.

Lemma 12. Let B be the event that bt ≤ 1
2 for all t = 0, 1, 2, . . . ,m. Then for certain positive numerical constants

c1, c2, c3, if α ≤ c1, then
E[bm|B] ≤

((
1− c2αλ2

)m
+ c3α

)
b̃,

where the expectation is over the randomness in the current epoch.

Proof. Recall that bt is a deterministic function of the random variableWt, which depends in turn onWt−1 and the random
instance chosen at round t. We assume that W0 (and hence b̃) are fixed, and consider how bt evolves as a function of t.
Using Eq. (16), we have

E[bt+1|Wt, B] = E
[
bt+1|Wt, bt+1 ≤

1

2

]
≤ E[bt+1|Wt] ≤

(
1− cαλ2

)
bt + c′α2λ2b̃.

Note that the first equality holds, since conditioned on Wt, bt+1 is independent of b1, . . . , bt, so the event B is equivalent
to just requiring bt+1 ≤ 1/2.

Taking expectation over Wt (conditioned on B), we get that

E[bt+1|B] ≤ E
[(

1− cαλ2
)
bt + c′α2λ2b̃

∣∣∣B]
=
(
1− cαλ2

)
E [bt|B] + c′α2λ2b̃.

Unwinding the recursion, and using that b0 = b̃, we therefore get that

E[bm|B] ≤
(
1− cαλ2

)m
b̃+ c′α2λ2b̃

m−1∑
i=0

(
1− cαλ2

)i
≤
(
1− cαλ2

)m
b̃+ c′α2λ2b̃

∞∑
i=0

(
1− cαλ2

)i
=
(
1− cαλ2

)m
b̃+ c′α2λ2b̃

1

cαλ2

=

((
1− cαλ2

)m
+
c′

c
α

)
b̃.

as required.

We now turn to prove that the event B assumed in Lemma 12 indeed holds with high probability:

Lemma 13. The following holds for certain positive numerical constants c1, c2, c3: If α ≤ c1, then for any β ∈ (0, 1) and
m, if

b̃+ c2kmα
2λ2 + c3k

√
mα2λ2 log(1/β) ≤ 1

2
, (17)

then it holds with probability at least 1− β that

bt ≤ b̃+ c2kmα
2λ2 + c3k

√
mα2λ2 log(1/β) ≤ 1

2

for all t = 0, 1, 2, . . . ,m.

Proof. To prove the lemma, we analyze the stochastic process b0(= b̃), b1, b2, . . . , bm, and use a concentration of measure
argument. First, we collect the following facts:
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• b̃ = b0 ≤ 1
2 : This directly follows from the assumption stated in the lemma.

• As long as bt ≤ 1
2 , E [bt+1|Wt] ≤ bt + c2α

2λ2b̃ for some constant c2: Supposing α is sufficiently small, then by
Eq. (16),

E [bt+1|Wt] ≤
(
1− cαλ2

)
bt + c′α2λ2b̃ ≤ bt + c′α2λ2b̃.

• |bt+1 − bt| is bounded by c′3kαλ for some constant c′3: Applying Lemma 9, and assuming that α is at most some
sufficiently small constant c1 (e.g. α ≤ 1

12 , so η = αλ ≤ 1
12 ),

|bt+1 − bt| =
∣∣‖V >k Wt+1‖2F − ‖V >k Wt‖2F

∣∣ ≤ 12kη

1− 3η
≤ 12kαλ

3/4
= 16kαλ.

Armed with these facts, and using the maximal version of the Hoeffding-Azuma inequality (Hoeffding, 1963), it follows
that with probability at least 1− β, it holds simultaneously for all t = 1, . . . ,m (and for t = 0 by assumption) that

bt ≤ b̃+ c2mα
2λ2b̃+ c3k

√
mα2λ2 log(1/β)

for some constants c2, c3, as long as the expression above is less than 1
2 . If the expression is indeed less than 1

2 , then we
get that bt ≤ 1

2 for all t. Upper bounding b̃ by k and slightly simplifying, we get the statement in the lemma.

Combining Lemma 12 and Lemma 13, and using Markov’s inequality, we get the following corollary:

Lemma 14. Let confidence parameters β, γ ∈ (0, 1) be fixed. Suppose that m,α are chosen such that α ≤ c1 and

b̃+ c2kmα
2λ2 + c3k

√
mα2λ2 log(1/β) ≤ 1

2
,

where c1, c2, c3 are certain positive numerical constants. Then with probability at least 1− (β + γ), it holds that

bm ≤
1

γ

((
1− cαλ2

)m
+ c′α

)
b̃.

for some positive numerical constants c, c′.

PART III: ANALYZING THE ENTIRE ALGORITHM’S RUN

Given the analysis in Lemma 14 for a single epoch, we are now ready to prove our theorem. Let

b̃s = k − ‖V >k W̃s‖2F .

By assumption, at the beginning of the first epoch, we have b̃0 = k − ‖V >k W̃0‖2F ≤ 1
2 . Therefore, by Lemma 14, for any

β, γ ∈
(
0, 12
)
, if we pick any

α ≤ min

{
c1,

1

2c′
γ2
}

and m ≥ 3 log(1/γ)

cαλ2
such that

1

2
+ c2kmα

2λ2 + c3k
√
mα2λ2 log(1/β) ≤ 1

2
, (18)

then we get with probability at least 1− (β + γ) that

bm ≤
1

γ

((
1− cαλ2

) 3 log(1/γ)

cαλ2 +
1

2
γ2
)
b̃0

Using the inequality (1 − (1/x))ax ≤ exp(−a), which holds for any x > 1 and any a, and taking x = 1/(cαλ2) and
a = 3 log(1/γ), we can upper bound the above by

1

γ

(
exp

(
−3 log

(
1

γ

))
+

1

2
γ2
)
b̃0

=
1

γ

(
γ3 +

1

2
γ2
)
b̃0 ≤ γb̃0.
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Since bm equals the starting point b̃1 for the next epoch, we get that b̃1 ≤ γb̃0 ≤ γ 1
2 . Again applying Lemma 14, and

performing the same calculation we have that with probability at least 1−(β+γ) over the next epoch, b̃2 ≤ γb̃1 ≤ γ2b̃0.
Repeatedly applying Lemma 14 and using a union bound, we get that after T epochs, with probability at least 1−T (β+γ),

k − ‖V >k W̃T ‖2F = b̃T ≤ γT b̃0 < γT .

Therefore, for any desired accuracy parameter ε, we simply need to use T =
⌈

log(1/ε)
log(1/γ)

⌉
epochs, and get k−‖V >k W̃s‖2F ≤ ε

with probability at least 1− T (β + γ) = 1−
⌈

log(1/ε)
log(1/γ)

⌉
(β + γ).

Using a confidence parameter δ, we pick β = γ = δ
2 , which ensures that the accuracy bound above holds with probability

at least

1−
⌈

log(1/ε)

log(2/δ)

⌉
δ ≥ 1−

⌈
log(1/ε)

log(2)

⌉
δ = 1−

⌈
log2

(
1

ε

)⌉
δ.

Substituting this choice of β, γ into Eq. (18), and recalling that the step size η equals αλ, we get that k − ‖V >k W̃T ‖2F ≤ ε
with probability at least 1− dlog2(1/ε)eδ, provided that

η ≤ cδ2λ , m ≥ c′ log(2/δ)

ηλ
, kmη2 + k

√
mη2 log(2/δ) ≤ c′′

for suitable positive constants c, c′, c′′.

To get the theorem statement, recall that the analysis we performed pertains to data whose squared norm is bounded by 1.
By the reduction discussed at the beginning of the proof, we can apply it to data with squared norm at most r, by replacing
λ with λ/r, and η with ηr, leading to the condition

η ≤ cδ2

r2
λ , m ≥ c′ log(2/δ)

ηλ
, kmη2r2 + rk

√
mη2 log(2/δ) ≤ c′′

and establishing the theorem.

A.2. Proof of Theorem 2

The proof relies mainly on the techniques and lemmas of Section A.1, used to prove Theorem 1. As done in Section A.1,
we will assume without loss of generality that r = maxi ‖xi‖2 is at most 1, and then transform the bound to a bound for
general r (see the discussion at the beginning of Subsection A.1.2)

First, we extract the following result, which is essentially the first part of Lemma 11 (for k = 1):

Lemma 15. Let A,wt be as defined in Algorithm 1, and suppose that η ∈
[
0, 1

23

]
. Then

Eit
[
1− 〈v1,wt+1〉2

∣∣wt, w̃s−1
]
≤
(
1− cηλ〈v1,wt〉2

) (
1− 〈v1,wt〉2

)
+ c′η2,

for some positive numerical constants c, c′.

Note that this bound holds regardless of what is w̃s−1, and in particular holds across different epochs of Algorithm 1.
Therefore, it is enough to show that starting from some initial point w0, after sufficiently many stochastic updates as
specified in line 6-10 of the algorithm (or in terms of the analysis, sufficiently many applications of Lemma 15), we end
up with a point wT for which 1− 〈v1,wT 〉 ≤ 1

2 , as required. Note that to simplify the notation, we will use here a single
running index w0,w1,w2, . . . ,wT (whereas in the algorithm we restarted the indexing after every epoch).

The proof is based on martingale arguments, quite similar to the ones in Subsection A.1.2 but with slight changes. First,
we let

bt = 1− 〈v1,wt〉2

to simplify notation. We note that b0 = 1− 〈v1,w0〉2 is assumed fixed, whereas b1, b2, . . . are random variables based on
the sampling process. Lemma 11 tells us that if η is sufficiently small, and bt ≤ 1− ξ for some ξ ∈ (0, 1), then

E [bt+1|bt] ≤ (1− cηλξ) bt + c′η2. (19)

for some numerical constants c, c′.
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Lemma 16. Let B be the event that bt ≤ 1 − ξ for all t = 0, 1, . . . , T . Then for certain positive numerical constants
c1, c2, c3, if η ≤ c1λ, then

E[bT |B] ≤
(

(1− c2ηλξ)T + c3
η

λξ

)
.

Proof. Using Eq. (19), we have for any bt satisfying event B that

E[bt+1|bt, B] = E [bt+1|bt, bt+1 ≤ 1− ξ] ≤ E[bt+1|bt] ≤ (1− cηλξ) bt + c′η2.

Taking expectation over bt (conditioned on B), we get that

E[bt+1|B] ≤ E
[
(1− cηλξ) bt + c′η2

∣∣B]
= (1− cηλξ)E [bt|B] + c′η2.

Unwinding the recursion, we get

E[bT |B] ≤ (1− cηλξ)T b0 + c′η2
T−1∑
i=0

(1− cηλξ)i

≤ (1− cηλξ)T + c′η2
∞∑
i=0

(1− cηλξ)i

= (1− cηλξ)T + c′η2
1

cηλξ
≤ (1− cηλξ)T +

c′

c

η

λξ
.

We now turn to prove that the event B assumed in Lemma 12 indeed holds with high probability:

Lemma 17. The following holds for certain positive numerical constants c1, c2, c3: If η ≤ c1λ, then for any β ∈ (0, 1), if

b0 + c2Tη
2 + c3

√
Tη2 log(1/β) ≤ 1− ξ, (20)

then it holds with probability at least 1− β that

bt ≤ b0 + c2Tη
2 + c3

√
Tη2 log(1/β) ≤ 1− ξ

for all t = 0, 1, . . . , T .

Proof. To prove the lemma, we analyze the stochastic process b1, b2, . . . , bT , and use a concentration of measure argument.
First, we collect the following facts:

• b0 ≤ 1− ξ: This directly follows from the assumption stated in the lemma.

• E [bt+1|bt] ≤ bt + c′η2 for some constant c′: By Eq. (19),

E [bt+1|Wt] ≤ (1− cηλξ) bt + c′η2 ≤ bt + c′η2.

• |bt+1 − bt| is bounded by cη for some constant c: Applying Lemma 9 for the case k = 1, and assuming η ≤ 1/12,

|bt+1 − bt| =
∣∣〈v1,wt+1〉2 − 〈v,wt〉2

∣∣ ≤ 12η

1− 3η
≤ 12η

3/4
= 16η.
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Armed with these facts, and using the maximal version of the Hoeffding-Azuma inequality (Hoeffding, 1963), it follows
that with probability at least 1− β, it holds simultaneously for all t = 0, 1, . . . , T that

bt ≤ b0 + c2Tη
2 + c3

√
Tη2 log(1/β)

for some constants c2, c3. If the expression is indeed less than 1− ξ, then we get that bt ≤ 1− ξ for all t, from which the
lemma follows.

Combining Lemma 16 and Lemma 17, and using Markov’s inequality, we get the following corollary:

Lemma 18. Let confidence parameters β, γ ∈ (0, 1) be fixed. Then for some positive numerical constants c1, c2, c3, c, c′,
if η ≤ c1λ and

b0 + c2Tη
2 + c3

√
Tη2 log(1/β) ≤ 1− ξ,

then with probability at least 1− (β + γ), it holds that

bT ≤
1

γ

(
(1− cηλξ)T + c′

η

λξ

)
.

We are now ready to prove our theorem. By Lemma 18, for any β, γ ∈
(
0, 12
)

and any

η ≤ min

{
c1,

1

2c′
γ2
}
λξ and T ≥ 3 log(1/γ)

cηλξ

such that b0 + c2Tη
2 + c3

√
Tη2 log(1/β) ≤ 1− ξ, (21)

we get with probability at least 1− (β + γ) that

bT ≤
1

γ

(
(1− cηλξ)

3 log(1/γ)
cηλξ +

1

2
γ2
)
.

Using the inequality (1 − (1/x))ax ≤ exp(−a), which holds for any x > 1 and any a, and taking x = 1/(cηλξ) and
a = 3 log(1/γ), we can upper bound the above by

1

γ

(
exp

(
−3 log

(
1

γ

))
+

1

2
γ2
)

=
1

γ

(
γ3 +

1

2
γ2
)
,

and since we assume γ < 1
2 , this is at most 1

2 . Overall, we got that with probability at least 1 − β − γ, bT ≤ 1
2 , and

therefore 1− 〈v1,wT 〉2 ≤ 1
2 as required.

It remains to show that the parameter choices in Eq. (21) can indeed be satisfied. First, we fix ξ = 1
2ζ (where we recall that

0 < ζ ≤ 〈v1,w0〉2), which trivially ensures that b0 = 1− 〈v1,w0〉2 is at most 1− 2ξ. Moreover, suppose we pick β = γ
in (0, exp(−1)), and η, T so that

η ≤ c∗γ
2λξ3

log2(1/γ)
, T =

⌊
3 log(1/γ)

c′∗ηλξ

⌋
, (22)

where c∗, c′∗ are sufficiently small constants so that the bounds on η, T in Eq. (21) are satisfied. This implies that the
third bound in Eq. (21) is also satisfied, since by plugging in the values / bounds of T and η, and using the assumptions
γ = β ≤ exp(−1) and ξ ≤ 1, we have

b0 + c2Tη
2 + c3

√
Tη2 log(1/γ)

≤ 1− 2ξ + c2
3 log(1/γ)

c′∗λξ
η + c3

√
3 log(1/γ)

c′∗λξ
η log(1/γ)

≤ 1− 2ξ + c2
3c∗γ

2ξ2

c′∗ log(1/γ)
+ c3

√
3c∗γ2ξ2

c′∗

≤ 1− 2ξ +

(
3c2c∗
c′∗

+ c3

√
3c∗
c′∗

)
ξ,
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which is less than 1− ξ if we pick c∗ sufficiently small compared to c′∗.

To summarize, we get that for any γ ∈ (0, exp(−1)), by picking η as in Eq. (22), we have that after T iterations (where T
is specified in Eq. (22)), with probability at least 1− 2γ, we get wT such that 1− 〈v1,wT 〉 ≤ 1

2 . Substituting δ = 2γ and
ζ = 2ξ, we get that if

〈v1, w̃0〉2 ≥ ζ > 0,

and η satisfies

η ≤ c1δ
2λζ3

log2(2/δ)

(for some universal constant c1), then with probability at least 1− δ, after

T =

⌊
c2 log(2/δ)

ηλζ

⌋
.

stochastic iterations, we get a satisfactory point wT .

As discussed at the beginning of the proof, this analysis is valid assuming r = maxi ‖xi‖2 ≤ 1. By the reduction discussed
at the beginning of Subsection A.1.2, we can get an analysis for any r by substituting λ → λ/r and η → ηr. This means
that we should pick η satisfying

ηr ≤ c1δ
2(λ/r)ζ3

log2(2/δ)
⇒ η ≤ c1δ

2λζ3

r2 log2(2/δ)
,

and getting the required point after

T =

⌊
c2 log(2/δ)

(ηr)(λ/r)ζ

⌋
=

⌊
c2 log(2/δ)

ηλζ

⌋
iterations.

A.3. Proof of Theorem 4

For simplicity of notation, we drop the A subscript from FA, and refer simply to F .

We first prove the following two auxiliary lemmas:

Lemma 19. If A is a symmetric matrix, then the gradient of the function F (w) = −w>Aw
‖w‖2 at some w equals

− 2

‖w‖2
(F (w)I +A)w,

and its Hessian equals

− 1

‖w‖2

((
I − 4

‖w‖2
ww>

)(
F (w)I +A

))⊥
,

where B⊥ = B +B> (i.e., a matrix B plus its transpose).

Proof. By the product and chain rules (using the fact that 1
‖w‖2 is a composition of w 7→ ‖w‖2 and z 7→ 1

z ), the gradient
of F (w) = − 1

‖w‖2
(
w>Aw

)
equals

w
2

‖w‖4
(
w>Aw

)
− (Aw)

2

‖w‖2
, (23)

giving the gradient bound in the lemma statement after a few simplifications.

Differentiating the vector-valued Eq. (23) with respect to w (using the product and chain rules, and the fact that 1
‖w‖4 is a
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composition of w 7→ ‖w‖2, z 7→ z2, and z 7→ 1
z ), we get that the Hessian of F equals

I
2

‖w‖4
(w>Aw) + w

(
− 2

‖w‖8
∗ 2‖w‖2 ∗ 2w

)> (
w>Aw

)
+ w

2

‖w4‖
(2Aw)

>

−A 2

‖w‖2
− (Aw)

(
− 2

‖w‖4
∗ 2w

)>
= − 2F (w)

‖w‖2
I +

8F (w)

‖w‖4
ww> +

4

‖w‖4
ww>A − 2

‖w‖2
A +

4

‖w‖4
Aww>

= − 1

‖w‖2

(
2F (w)I − 8F (w)

‖w‖2
ww> − 4

‖w‖2
ww>A+ 2A− 4

‖w‖2
Aww>

)
,

which can be verified to equal the expression in the lemma statement (using the fact that A,ww> and I are all symmetric
matrices, hence equal their transpose).

Lemma 20. Let w0,v1 be two unit vectors such that ‖w0 − v1‖ ≤ ε < 1
2 (which implies 〈w0,v1〉 > 0). Let v′1 be the

intersection of the ray {av1 : a ≥ 0} with the hyperplane Hw0 = {w : 〈w,w0〉 = 1}. Then ‖v′1 −w0‖ ≤ 5
4ε.

Proof. See Figure 2 in the main text for a graphical illustration.

Letting v′1 = av, a must satisfy 〈av1,w0〉 = 1. Since v1,w0 are unit vectors, this implies

a =
1

〈v1,w0〉
=

2

2− ‖v1 −w0‖2
,

and since ‖v1 −w0‖ ≤ ε, this means that

a ∈
[
1,

2

2− ε2

]
.

Therefore,

‖v′1 −w0‖ ≤ ‖v1 −w0‖+ ‖v′1 − v1‖ ≤ ε+ ‖av1 − v1‖ ≤ ε+ |a− 1| ≤ ε+
2

2− ε2
− 1 = ε+

ε2

2 + ε2
,

and since ε < 1
2 , this is at most 5

4ε.

We now turn to prove the theorem. Let ∇2(w) denote the Hessian at some point w. To show smoothness and strong
convexity as stated in the theorem, it is enough to fix some unit w0 which is ε-close to the leading eigenvector v1 (where
ε is assumed to be sufficiently small), and show that for any point w on Hw0 which is O(ε) close to w0, and any direction
g along Hw0 (i.e. any unit g such that 〈g,w0〉 = 0), it holds that g>∇2(w)g ∈ [λ, 20]. This implies that the second
derivative in anO(ε) neighborhood of w0 on Hw0

is always in [λ, 20], hence the function is both λ-strongly convex in that
neighborhood.

More formally, letting ε ∈ (0, 1) be a small parameter to be chosen later, consider any w0 such that

‖w0‖ = 1 , ‖w0 − v1‖ ≤ ε,

any w such that
〈w −w0,w0〉 = 0 , ‖w −w0‖ ≤ 2ε,

and any g such that
‖g‖ = 1 , 〈g,w0〉 = 0.

Our goal is to show that for an appropriate ε, we have g>∇2(w)g ∈ [λ, 20]. Moreover, by Lemma 20, the neighborhood
set Hw0 ∩Bw0(2ε) would also contain a point av1 for some a, which is a global optimum of F due to its scale-invariance.
This would establish the theorem.
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The easier part is to show the upper bound on g>∇2(w)g. Since g is a unit vector, it is enough to bound the spectral norm
of ∇2(w), which equals ∥∥∥∥∥ 1

‖w‖2

((
I − 4

‖w‖2
ww>

)(
F (w)I +A

))⊥∥∥∥∥∥
2

≤ 2

‖w‖2

∥∥∥∥(I − 4

‖w‖2
ww>

)(
F (w)I +A

)∥∥∥∥
2

≤ 2

‖w‖2

∥∥∥∥I − 4

‖w‖2
ww>

∥∥∥∥
2

‖F (w)I +A‖2

≤ 2

‖w‖2

(
‖I‖2 +

∥∥∥∥ 4

‖w‖2
ww>

∥∥∥∥
2

)
(‖F (w)I‖2 + ‖A‖2) .

Since the spectral norm of A is 1, and ‖w‖2 ≥ 1 (as w lies on a hyperplane Hw0 tangent to a unit vector w0), it is easy to
verify that this is at most 2(1 + 4)(1 + 1) = 20 as required.

We now turn to lower bound g>∇2(w)g, which by Lemma 19 equals

− 1

‖w‖2
g>
((

I − 4

‖w‖2
ww>

)(
F (w)I +A

))⊥
g.

Since g>B⊥g = g>Bg + g>B>g = 2g>Bg, the above equals

− 2

‖w‖2
g>
(
I − 4

‖w‖2
ww>

)(
F (w)I +A

)
g. (24)

Using the fact that w = w0 + (w − w0), and 〈g,w0〉 = 0, we get that 〈g,w〉 = 〈g,w − w0〉. Moreover, since A is
positive semidefinite and has spectral norm of 1, F (w) = −w>Aw

‖w‖2 ∈ [−1, 0]. Expanding Eq. (24) and plugging these in,
we get

− 2

‖w‖2

(
F (w)g>

(
I − 4

‖w‖2
ww>

)
g + g>

(
I − 4

‖w‖2
ww>

)
Ag

)
=

2

‖w‖2

(
−F (w)‖g‖2 +

4F (w)

‖w‖2
〈g,w −w0〉2 − g>Ag +

4

‖w‖2
〈g,w −w0〉w>Ag

)
≥ 2

‖w‖2

(
−F (w)‖g‖2 − 4

‖w‖2
‖g‖2‖w −w0‖2 − g>Ag − 4

‖w‖2
‖g‖‖w −w0‖‖w‖‖A‖2‖g‖

)
.

Since ‖g‖ = 1, ‖A‖2 = 1, ‖w −w0‖ ≤ 2ε, and ‖w‖2 = ‖w0‖2 + ‖w −w0‖2 is between 1 and 1 + 4ε2, this is at least

2

‖w‖2
(

(−F (w))− 16ε2 − g>Ag − 8ε
√

1 + 4ε2
)

=
2

‖w‖2
(
−F (w)− g>Ag − 8ε

(
2ε+

√
1 + 4ε2

))
. (25)

Let us now analyze −F (w) and g>Ag more carefully. The idea will be to show that since we are close to the optimum,
−F (w) is very close to 1, and g (which is orthogonal to the near-optimal w0) is such that g>Ag is strictly smaller than 1.
This would give us a positive lower bound on Eq. (25).

• By the triangle inequality and the assumptions ‖w0 − v1‖ ≤ ε, ‖w − w0‖ ≤ 2ε, we have ‖w − v1‖ ≤ 3ε. Also,
we claim that F (·) is 4-Lipschitz outside the unit Euclidean ball (since the gradient of F at any point with norm ≥ 1,
according to Lemma 19, has norm at most 4). Therefore, |F (w) + 1| = |F (w) − F (v1)| ≤ 4‖w − v1‖ ≤ 12ε, so
overall,

F (w) ≤ −1 + 12ε. (26)

• Since 〈w0,g〉 = 0, and ‖w0 − v1‖ ≤ ε, it follows that

|〈v1,g〉| ≤ |〈v1 −w0,g〉|+ |〈w0,g〉| ≤ ‖v1 −w0‖‖g‖+ 0 ≤ ε.



Fast SVD and PCA Algorithms: Convergence Properties and Convexity

Letting v1, . . . ,vd and 1 = s1 > s2 ≥ .. ≥ sd ≥ 0 be the eigenvectors and eigenvalues of A in decreasing order (and
recalling that s2 ≤ s1 − λ = 1− λ for some eigengap λ > 0), we get

g>Ag =

d∑
i=1

si〈vi,g〉2 ≤ 〈v1,g〉2 + (1− λ)

d∑
i=1

〈vi,g〉2

= 〈v1,g〉2 + (1− λ)(1− 〈v1,g〉2) = λ〈v1,g〉2 + (1− λ)

≤ λε2 + (1− λ) = 1− (1− ε2)λ. (27)

Plugging Eq. (26) and Eq. (27) back into Eq. (25), we get a lower bound of

2

‖w‖2
(

1− 12ε−
(
1− (1− ε2)λ

)
− 8ε

(
2ε+

√
1 + 4ε2

))
=

2

‖w‖2
(

(1− ε2)λ− 8ε
(

1.5 + 2ε+
√

1 + 4ε2
))

=
2

‖w‖2

(
1− ε2 −

8ε
(
1.5 + 2ε+

√
1 + 4ε2

)
λ

)
λ.

Using the fact that
√

1 + z2 ≤ 1 + z, this can be loosely lower bounded by

2

‖w‖2

(
1− ε− 8ε (2.5 + 4ε)

λ

)
λ.

Recalling that ‖w‖2 = ‖w0‖2 + ‖w − w0‖2 is at most 1 + 4ε2, and picking ε sufficiently small compared to λ, (say
ε = λ/44), we get that the above is at least λ, which implies the required strong convexity condition.

To summarize, by picking ε = λ/44, we have shown that the function F (w) is λ-strongly convex and 20-smooth in a
neighborhood of size 2ε = λ

22 around w0 on the hyperplane Hw0
, provided that ‖w0 − v1‖ ≤ ε = λ

44 . By Lemma 20,
we are guaranteed that this neighborhood contains v1 up to some rescaling (which is immaterial for our scale-invariant
function F ), hence by optimizing F in that neighborhood, we will get a globally optimal solution.


