
Convergence of SGD for PCA

A. Additional Proofs
A.1. Proof of Lemma 2

The result trivially holds for k = 0, so we will assume k > 0 from now. Let

f(s) = (1 + ηs)k(1− ε− s).

Differentiating f and setting to zero, we have

kη(1 + ηs)k−1(1− ε− s)− (1 + ηs)k = 0

⇔ kη(1− ε− s) = 1 + ηs

⇔ kη(1− ε)− 1

kη + η
= s

⇔ s =
k(1− ε)− 1/η

k + 1
.

Let sc = k(1−ε)−1/η
k+1 denote this critical point, and consider two cases:

• sc /∈ [0, 1]: In that case, f has no critical points in the domain, hence is maximized at one of the domain endpoints,
with a value of at most

max{f(0), f(1)} = max{1− ε,−ε(1 + η)k} ≤ 1.

• sc ∈ [0, 1]: In that case, we must have k(1− ε)− 1
η ≥ 0, and the value of f at sc is

(
1 +

ηk(1− ε)− 1

k + 1

)k (
1− ε− k(1− ε)− 1/η

k + 1

)
=

(
1 +

ηk(1− ε)− 1

k + 1

)k(1− ε+ 1
η

k + 1

)

≤ (1 + η(1− ε))k
(

1 + 1
η

k + 1

)

≤ 2 (1 + η(1− ε))k

η(k + 1)
.

The maximal value of f is either the value above, or the maximal value of f at the domain endpoints, which we
already showed to be most 1. Overall, the maximal value f can attain is at most

max

{
1,

2 (1 + η(1− ε))k

η(k + 1)

}
≤ 1 +

2 (1 + η(1− ε))k

η(k + 1)
.

Combining the two cases, the result follows.

A.2. Proof of Lemma 3

To simplify notation, define for all t = 1, . . . , T the matrices

Ct0 = I + ηA , Ct1 = η(Ãt −A).

Note that Ct0 is deterministic whereas Ct1 is random and zero-mean. Moreover, ‖Ct0‖ ≤ 1 + η and ‖Ct1‖ ≤ ηb.
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By definition of the algorithm, we have the following:

VT = w>T ((1− ε)I −A)wT

= w>0

(
T∏
t=1

(
I + ηÃt

))
((1− ε)I −A)

(
1∏

t=T

(
I + ηÃt

))
w0

= w>0

(
T∏
t=1

(
Ct0 + Ct1

))
((1− ε)I −A)

(
1∏

t=T

(
Ct0 + Ct1

))
w0

=
∑

(i1,...,iT )∈{0,1}T

∑
(j1,...,jT )∈{0,1}T

w>0

(
T∏
t=1

Ctit

)
((1− ε)I −A)

(
1∏

t=T

Ctjt

)
w0.

Since C1
1 , . . . , C

T
1 are independent and zero-mean, the expectation of each summand in the expression above is non-zero

only if it = jt for all t. Therefore,

E
[
w>T ((1− ε)I −A)wT

]
=

∑
(i1,...,iT )∈{0,1}T

E

[
w>0

(
T∏
t=1

Ctit

)
((1− ε)I −A)

(
1∏

t=T

Ctit

)
w0

]
.

We now decompose this sum according to what is the largest value of t for which it = 1 (hence Ctit = Ct1). The intuition
for this, as will be seen shortly, is that Lemma 2 allows us to attain tighter bounds on the summands when t is much smaller
than T . Formally, we can rewrite the expression above as

E

[
w>0

(
T∏
t=1

Ct0

)
((1− ε)I −A)

(
1∏

t=T

Ct0

)
w0

]

+

T−1∑
k=0

∑
(i1,...,ik)∈{0,1}k

E

[
w>0

(
k∏
t=1

Ctit

)
Ck+1

1

(
T∏

t=k+2

Ct0

)
((1− ε)I −A)

(
k+2∏
t=T

Ct0

)
Ck+1

1

(
1∏
t=k

Ctit

)
w0

]
.

Since Ct0 = I + ηA is diagonal and the same for all t, and ((1− ε)I −A) is diagonal as well, we can simplify the above to

w>0 (C1
0 )2T ((1− ε)I −A)w0

+

T−1∑
k=0

∑
(i1,...,ik)∈{0,1}k

E

[
w>0

(
k∏
t=1

Ctit

)
Ck+1

1 (C1
0 )2(T−k−1)((1− ε)I −A)Ck+1

1

(
1∏
t=k

Ctit

)
w0

]
.

Using the fact that the spectral norm is sub-multiplicative, and that for any symmetric matrix B, v>Bv ≤ ‖v2‖λmax(B),
where λmax(B) denotes the largest eigenvalue of B, we can upper bound the above by

≤ w>0 (C1
0 )2T ((1− ε)I −A)w0

+

T−1∑
k=0

∑
(i1,...,ik)∈{0,1}k

E

[
‖w0‖2

(
k∏
t=1

‖Ctit‖
2

)
‖Ck+1

1 ‖2λmax

(
(C1

0 )2(T−k−1)((1− ε)I −A)
)]

.
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Since ‖w0‖ = 1, and ‖Ct0‖ ≤ (1 + η), ‖Ct1‖ ≤ ηb, this is at most

w>0 (C1
0 )2T ((1− ε)I −A)w0

+

T−1∑
k=0

∑
(i1,...,ik)∈{0,1}k

(
(1 + η)2(k−

∑k
t=1 it)(ηb)2

∑k
t=1 it

)
(ηb)2λmax

(
(C1

0 )2(T−k−1)((1− ε)I −A)
)

= w>0 (C1
0 )2T ((1− ε)I −A)w0

+

T−1∑
k=0

(
(1 + η)2 + (ηb)2

)k
(ηb)2λmax

(
(C1

0 )2(T−k−1)((1− ε)I −A)
)

= w>0 (I + ηA)2T ((1− ε)I −A)w0

+ (ηb)2
T−1∑
k=0

(
(1 + η)2 + (ηb)2

)k
λmax

(
(I + ηA)2(T−k−1)((1− ε)I −A)

)
(6)

Recalling that A = diag(s1, . . . , sd) with s1 = 1, that ‖w0‖2 =
∑d
j=1 w

2
0,j = 1, and that w2

0,1 ≥ 1
p , the first term in

Eq. (6) equals

w>0 (I + ηA)2T ((1− ε)I −A)w0 =

d∑
j=1

(1 + ηsj)
2T (1− ε− sj)w2

0,j

= (1 + η)(−ε)w2
0,1 +

d∑
j=2

(1 + ηsj)
2T (1− ε− sj)w2

0,j

≤ −(1 + η)2T
ε

p
+ max
s∈[0,1]

(1 + ηs)2T (1− ε− s).

Applying Lemma 2, and recalling that η ≤ 1, we can upper bound the above by

− (1 + η)2T
ε

p
+ 1 + 2

(1 + η(1− ε))2T

η(2T + 1)

= (1 + η)2T

− ε
p

+ (1 + η)−2T + 2

(
1+η(1−ε)

1+η

)2T
η(2T + 1)


≤ (1 + η)2T

(
− ε
p

+ (1 + η)−2T +

(
1− 1

2ηε
)
)2T

ηT

)
. (7)

As to the second term in Eq. (6), again using the fact that A = diag(s1, . . . , sd), we can upper bound it by

(ηb)2
T−1∑
k=0

(
(1 + η)2 + (ηb)2

)k
max
s∈[0,1]

(1 + ηs)2(T−k−1)(1− ε− s).

Applying Lemma 2, and recalling that η ≤ 1, this is at most

(ηb)2
T−1∑
k=0

(
(1 + η)2 + (ηb)2

)k (
1 + 2

(1 + η(1− ε))2(T−k−1)

η(2(T − k)− 1)

)

= (ηb)2(1 + η)2T
T−1∑
k=0

(
1 +

(
ηb

1 + η

)2
)k(1 + η)−2(T−k) + 2

(
1+η(1−ε)

1+η

)2(T−k)
η(2(T − k)− 1)


≤ (ηb)2(1 + η)2T

T−1∑
k=0

(
1 + (ηb)2

)k(
(1 + η)−2(T−k) + 2

(
1− 1

2ηε
)2(T−k)

η(2(T − k)− 1)

)
.
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Upper bounding
(
1 + (ηb)2

)k
by
(
1 + (ηb)2

)T
, and rewriting the sum in terms of k instead of T − k, we get

(ηb)2(1 + η)2T
(
1 + (ηb)2

)T T∑
k=1

(
(1 + η)−2k + 2

(
1− 1

2ηε
)2k

η(2k − 1)

)
.

Since k ≥ 1, we have 1
2k−1 = 2k

2k−1
1
2k ≤ 2 1

2k , so the above is at most

(ηb)2(1 + η)2T
(
1 + (ηb)2

)T T∑
k=1

(
(1 + η)−2k +

4

η

(
1− 1

2ηε
)2k

2k

)

≤ (ηb)2(1 + η)2T
(
1 + (ηb)2

)T ( ∞∑
k=1

(1 + η)−2k +
4

η

∞∑
k=1

(
1− 1

2ηε
)k

k

)

= (ηb)2(1 + η)2T
(
1 + (ηb)2

)T ( 1

(1 + η)2 − 1
− 4

η
log

(
1

2
ηε

))
≤ (ηb)2(1 + η)2T

(
1 + (ηb)2

)T ( 1

2η
+

4

η
log

(
2

ηε

))
= ηb2(1 + η)2T

(
1 + (ηb)2

)T (1

2
+ 4 log

(
2

ηε

))
.

Recalling that this is an upper bound on the second term in Eq. (6), and combining with the upper bound in Eq. (7) on the
first term, we get overall a bound of

(1 + η)2T

(
− ε
p

+ (1 + η)−2T +

(
1− 1

2ηε
)2T

ηT
+ ηb2

(
1 + (ηb)2

)T (1

2
+ 4 log

(
2

ηε

)))
. (8)

We now argue that under suitable choices of η, ε, the expression above is−Ω((1+η)2T (ε/p). For example, this is satisfied
if η = 1

b
√
pT

, and we pick ε =
c log(T )b

√
p√

T
for some sufficiently large constant c. Under these choices, the expression inside

the main parentheses above becomes

−c log(T )b√
pT

+

(
1 +

1

b
√
pT

)−2T
+ b

√
p

T

(
1− c log(T )

2T

)2T

+
b√
pT

(
1 +

1

pT

)T (
1

2
+ 4 log

(
2T

c log(T )

))
.

Using the facts that (1 − a/t)t ≤ exp(−a) for all positive t, a such that a/t < 1, and that c log(T )/2T < 1 by the
assumption that ε ≤ 1, the above is at most

− c log(T )b√
pT

+
b√
pT

(
p exp(−c log(T )) + exp(1/p)

(
1

2
+ 4 log

(
2T

c log(T )

)))
+

(
1 +

1

b
√
pT

)−2T
= c

log(T )b√
pT

(
−1 +

p

c log(T )T c
+

exp(1/p)

c log(T )

(
1

2
+ 4 log

(
2T

c log(T )

)))
+

(
1 +

1

b
√
pT

)−2T
.

Note that p, b ≥ 1 by assumption, and that we can assume T ≥ p (by the assumption that ε ≤ 1). Therefore, picking c
sufficiently large ensures that the above is at most

c
log(T )b√

pT

(
−1

2

)
+

(
1 +

1

b
√
pT

)−2T
.

The second term is exponentially small in T , and in particular can be verified to be less than 1
4c

log(T )b√
pT

in the regime where

ε = c
log(T )b

√
p√

T
is at most 1 (assuming c is large enough). Overall, we get a bound of −c log(T )b√

pT
· 14 = − ε

4p . Plugging this
back into Eq. (8), the result follows.
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A.3. Proof of Lemma 4

Since I −A is a positive semidefinite matrix, we have

VT = w>T ((1− ε)I −A)wT ≥ −ε‖wT ‖2.

Thus, it is sufficient to prove that

‖wT ‖2 < exp
(
ηb
√
T log(1/δ) + (b2 + 3)Tη2

)
(1 + η)2T . (9)

The proof goes through a martingale argument. We have

log(‖wT ‖2) = log

(
T−1∏
t=0

‖wt+1‖2

‖wt‖2

)

=

T−1∑
t=0

log

(
‖wt+1‖2

‖wt‖2

)

=

T−1∑
t=0

log

(
‖(I + ηÃt)wt‖2

‖wt‖2

)

=

T−1∑
t=0

log

(
1 +

(
‖(I + ηÃt)wt‖2

‖wt‖2
− 1

))
.

Note that since Ãt is positive semidefinite, we always have (1 + ηb)‖wt‖2 ≥ ‖(I + ηÃt)wt‖2 ≥ ‖wt‖2, and therefore
each summand is of the form log(1 + at) where at ∈ [0, ηb]. Using the identity log(1 + a) ≤ a for any non-negative a, we
can upper bound the above by

T−1∑
t=0

(
‖(I + ηÃt)wt‖2

‖wt‖2
− 1

)
. (10)

Based on the preceding discussion, this is a sum of random variables bounded in [0, ηb], and the expectation of the t-th
summand over Ãt, conditioned on Ã1, . . . , Ãt−1, equals

w>t E
[
(I + ηÃt)

>(I + ηÃt)
]
wt

‖wt‖2
− 1

=
w>t

(
(I + ηA)2 + η2

(
Ã>t Ãt −A2

))
wt

‖wt‖2
− 1

≤ w>t (I + ηA)2wt

‖wt‖2
+ η2

w>t Ã
>
t Ãtwt

‖wt‖2
− 1

≤ ‖(I + ηA)2‖+ η2‖Ã>t Ãt‖ − 1

≤ (1 + η)2 + η2‖Ãt‖2 − 1

≤ 2η + (b2 + 1)η2.

Using Azuma’s inequality, it follows that with probability at least 1− δ, Eq. (10) is at most

T
(
2η + (b2 + 1)η2

)
+ ηb

√
T log(1/δ).

Combining the observations above, and the fact that log(1 + z) ≥ z − z2 for any z ≥ 0, we get that with probability at
least 1− δ,

log(‖wT ‖2) < 2Tη + (b2 + 1)Tη2 + ηb
√
T log(1/δ)

= ηb
√
T log(1/δ) + (b2 + 3)Tη2 + 2T (η − η2)

≤ ηb
√
T log(1/δ) + (b2 + 3)Tη2 + 2T log(1 + η),
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and therefore
‖wT ‖2 < exp

(
ηb
√
T log(1/δ) + (b2 + 3)Tη2

)
(1 + η)2T ,

which establishes Eq. (9) and proves the lemma.

A.4. Proof of Lemma 5

Inverting the bound in the lemma, we have that for any z ∈ [1,∞),

Pr(X ≥ z) ≤ exp(−(log(z)/β)2).

Now, let r2 > r1 > 0, be parameters to be chosen later. We have

E[X] =

∫ ∞
z=0

Pr(X > z)dz =

∫ r1

z=0

Pr(X > z)dz +

∫ r2

z=r1

Pr(X > z)dz +

∫ ∞
z=r2

Pr(X > z)dz

≤ r1 + (r2 − r1) Pr(X > r1) +

∫ ∞
z=r2

exp(−(log(z)/β)2)dz (11)

Performing the variable change y = (log(z)/β)2 (which implies z = exp(β
√
y) and dy =

2
√
y

exp(β
√
y)dz), we get∫ ∞

z=r2

exp(−(log(z)/β)2)dz =

∫ ∞
y=
(

log(r2)
β

)2

1

2
√
y

exp(β
√
y − y)dy

≤ β

2 log(r2)

∫ ∞
y=
(

log(r2)
β

)2
exp(β

√
y − y)dy.

Suppose that we choose r2 ≥ exp(2β2). Then log(r2)
2β ≥ β, which implies that for any y in the integral above, 1

2

√
y ≥ β,

and therefore β
√
y − y ≤ 1

2y − y = − 1
2y. As a result, we can upper bound the above by

β

2 log(r2)

∫ ∞
y=
(

log(r2)
β

)2
exp

(
−1

2
y

)
dy =

β

log(r2)
exp

(
− log2(r2)

2β2

)
.

Plugging this upper bound back into Eq. (11), extracting Pr(X > r1), and using the assumption E[X] ≥ α, we get that

Pr(X > r1) ≥
α− r1 − β

log(r2)
exp

(
− log2(r2)

2β2

)
r2 − r1

.

Choosing r1 = α/2 and r2 = exp(2) (which ensures r2 ≥ exp(2β2) as assumed earlier, since β ≤ 1), we get

Pr
(
X >

α

2

)
≥

α− β exp
(
− 2
β2

)
2 exp(2)− α

.

Since β, α ≤ 1, and 2 exp(2) < 15, this can be simplified to

Pr
(
X >

α

2

)
≥

α− exp
(
− 2
β2

)
15

.

A.5. Proof of Thm. 2

The proof is very similar to that of Thm. 1, using some of the same lemmas, and other lemmas having slight differences to
take advantage of the eigengap assumption. Below, we focus on the differences, referring to parts of the proof of Thm. 1
where necessary.

First, as in the proof of Thm. 1, we assume that we work in a coordinate system whereA is diagonal,A = diag(s1, . . . , sd),
where s1 ≥ s2 ≥ . . . ≥ sd ≥ 0, and s1 is the eigenvalue corresponding to v. By the eigengap assumption, we can assume
that s2, . . . , sd are all at most 1−λ for some strictly positive λ ∈ (0, 1]. Under these assumptions, the theorem’s conditions
reduce to:
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• 1
w2

0,1
≤ p, for some p ≥ 8

• b ≥ 1 is an upper bound on ‖Ãt‖, ‖Ãt −A‖,

and as in the proof of Thm. 1, it is enough to lower bound Pr(VT ≤ 0) where

VT = w>T ((1− ε)I −A)wT .

We begin by a technical lemma, which bounds a certain quantity appearing later in the proofs:

Lemma 6. Under the conditions of Thm. 2,
log2(T )b2

λ2T
≤ 1

p
≤ 1.

Proof. By the assumption log2(T )b2p
λT ≤ log(T )b

√
p√

T
, it follows that log(T )b

λ
√
T
≤ 1√

p , and the result follows by squaring both
sides.

We now continue by presenting the following variant of Lemma 3:

Lemma 7. Under the conditions of Thm. 2, if we pick η = log(T )
λT ≤ 1 and ε = c log

2(T )b2p
λT for some sufficiently large

numerical constant c, then
E[VT ] ≤ − (1 + η)2T

ε

4p
.

Proof. By the exact same proof as in Lemma 3 (up till Eq. (6)), we have

E[VT ] = E[w>T ((1− ε)I −A)wT ]

≤ w0(I + ηA)2T ((1− ε)I −A)w0

+ (ηb)2
T−1∑
k=0

(
(1 + η)2 + (ηb)2

)k
λmax

(
(I + ηA)2(T−k−1)((1− ε)I −A)

)
(12)

Recalling that A = diag(s1, . . . , sd) with s1 = 1, that ‖w0‖2 =
∑d
j=1 w

2
0,j = 1, and that w2

0,1 ≥ 1
p , the first term in

Eq. (6) equals

w0(I + ηA)2T ((1− ε)I −A)w0 =

d∑
j=1

(1 + ηsj)
2T (1− ε− sj)w2

0,j

= (1 + η)(−ε)w2
0,1 +

d∑
j=2

(1 + ηsj)
2T (1− ε− sj)w2

0,j

≤ −(1 + η)2T
ε

p
+ max
s∈[0,1−λ]

(1 + ηs)2T (1− ε− s)

≤ −(1 + η)2T
ε

p
+ (1 + η(1− λ))2T

≤ (1 + η)2T

(
− ε
p

+

(
1− ηλ

1 + η

)2T
)

≤ (1 + η)2T

(
− ε
p

+

(
1− ηλ

2

)2T
)
, (13)

where we used the assumption that η ≤ 1. As to the second term in Eq. (12), upper bounding it in exactly the same way as
in the proof of Lemma 3 (without using the eigengap assumption), we get an upper bound of

ηb2(1 + η)2T
(
1 + (ηb)2

)T (1

2
+ 4 log

(
2

ηε

))
.
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Combining this with Eq. (13), and plugging back to Eq. (12), we get that

E[VT ] ≤ (1 + η)2T

(
− ε
p

+

(
1− ηλ

2

)2T

+ ηb2
(
1 + (ηb)2

)T (1

2
+ 4 log

(
2

ηε

)))
. (14)

Picking η = log(T )
λT , and ε = c log2(T )b2p

λT for some constant c ≥ 2, the above equals

(1 + η)2T

(
−c log2(T )b2

λT
+

(
1− log(T )

2T

)2T

+
b2 log(T )

λT

(
1 +

b2 log2(T )

λ2T 2

)T (
1

2
+ 4 log

(
2λ2T 2

c log3(T )b2p

)))
.

Using the facts that (1 + a/t)t ≤ exp(a) for all positive t, a, that c log3(T )b2p ≥ 2, and that λ ≤ 1, the above is at most

(1 + η)2T
(
−c log2(T )b2

λT
+

1

T
+
b2 log(T )

λT
exp

(
b2 log2(T )

λ2T

)(
1

2
+ 4 log

(
T 2
)))

.

By Lemma 6, b
2 log2(T )
λ2T ≤ 1, so the above is at most

(1 + η)2T
(
−c log2(T )b2

λT
+

1

T
+
b2 log(T )

λT
exp(1)

(
1

2
+ 8 log (T )

))
≤ (1 + η)2T

b2 log2(T )

λT

(
−c+

λ

b2 log2(T )
+ exp(1)

(
1

2 log(T )
+ 8

))
.

Clearly, for large enough c, the expression in the main parenthesis above is at most −c/4, so we get an upper bound of

−(1 + η)2T
cb2 log2(T )

4λT
= − (1 + η)2T

ε

4p
,

from which the result follows.

Rather similar to the proof of Thm. 1, we now define the non-negative random variable

RT = max

{
0,− VT

exp((b2 + 3)Tη2)(1 + η)2T ε

}
.

By Lemma 7,

E[RT ] ≥ E
[
− VT

exp((b2 + 3)Tη2)(1 + η)2T ε

]
≥ 1

4p exp((b2 + 3)Tη2)
,

and by Lemma 4,
Pr
(
RT ≥ exp

(
ηb
√
T log(1/δ)

))
≤ δ.

Therefore, applying Lemma 5 on RT , with α = 1
4p exp((b2+3)Tη2) (which is in [0, 1]) and with β = ηb

√
T (which can be

verified to be in [0, 1] by the fact that η = log(T )
λT and Lemma 6), we get that

Pr

(
RT >

1

8p exp((b2 + 3)Tη2)

)
≥ 1

15

(
1

4p exp((b2 + 3)Tη2)
− exp

(
− 2

η2b2T

))
. (15)

By definition of RT , the left hand side of this inequality is at most

= Pr

(
max

{
0,− VT

exp((b2 + 3)Tη2)(1 + η)2T ε

}
>

1

8p exp((b2 + 3)Tη2)

)
= Pr

(
− VT

exp((b2 + 3)Tη2)(1 + η)2T ε
>

1

8p exp((b2 + 3)Tη2)

)
= Pr

(
VT ≤ −

(1 + η)2T ε

8p

)
≤ Pr (VT ≤ 0) ,
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and the right hand side of Eq. (15) (by definition of η, the assumption b ≥ 1, and Lemma 6) equals

1

15

 1

4p exp
(

(b2+3) log2(T )
λ2T

) − exp

(
− 2λ2T

b2 log2(T )

)
≥ 1

15

 1

4p exp
(

4b2 log2(T )
λ2T

) − 1

exp
(

2 λ2T
b2 log2(T )

)


≥ 1

15

 1

4p exp
(

4
p

) − 1

exp (2p))

 ,

which can be verified to be at least 1
100p for any p ≥ 8. Plugging these bounds back to Eq. (15), we obtained

Pr(VT ≤ 0) ≥ 1

100p
.

By definition of VT , VT ≤ 0 implies that
wT (I −A)wT

‖wT ‖2
≤ ε,

where ε = c log
2(T )b2p
λT is the value chosen in Lemma 7, and the theorem is established.


