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Abstract
We consider the problem of principal component
analysis (PCA) in a streaming stochastic setting,
where our goal is to find a direction of approx-
imate maximal variance, based on a stream of
i.i.d. data points in Rd. A simple and compu-
tationally cheap algorithm for this is stochastic
gradient descent (SGD), which incrementally up-
dates its estimate based on each new data point.
However, due to the non-convex nature of the
problem, analyzing its performance has been a
challenge. In particular, existing guarantees rely
on a non-trivial eigengap assumption on the co-
variance matrix, which is intuitively unnecessary.
In this paper, we provide (to the best of our
knowledge) the first eigengap-free convergence
guarantees for SGD in the context of PCA. This
also partially resolves an open problem posed
in (Hardt & Price, 2014). Moreover, under an
eigengap assumption, we show that the same
techniques lead to new SGD convergence guar-
antees with better dependence on the eigengap.

1. Introduction
Principal component analysis (PCA) (Pearson, 1901;
Hotelling, 1933) is a fundamental tool in data analysis and
visualization, designed to find the subspace of largest vari-
ance in a given dataset (a set of points in Euclidean space).
We focus on a simple stochastic setting, where the data
x1,x2, . . . ∈ Rd is assumed to be drawn i.i.d. from an
unknown underlying distribution, and our goal is to find a
direction of approximately maximal variance. This can be
written as the optimization problem

min
w:‖w‖=1

−w>E[xx>]w, (1)

or equivalently, finding an approximate leading eigenvector
of the covariance matrix E[xx>].
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The conceptually simplest method for this task, given m
sampled points x1, . . . ,xm, is to construct the empirical
covariance matrix 1

m

∑m
i=1 xix

>
i , and compute its leading

eigenvector by an eigendecomposition. Based on concen-
tration of measure arguments, it is not difficult to show
that this would result in an O(

√
1/m)-optimal solution

to Eq. (1). Unfortunately, the runtime of this method is
O(md2 + d3). In large-scale applications, both m and d
might be huge, and even forming the d× d covariance ma-
trix, let alone performing an eigendecomposition, can be
computationally prohibitive. A standard alternative to ex-
act eigendecomposition is iterative methods, such as power
iterations or the Lanczos method, which require perform-
ing multiple products of a vector with the empirical covari-
ance matrix. Although this doesn’t require computing and
storing the matrix explicitly, it still requires multiple passes
over the data, whose number may scale with eigengap pa-
rameters of the matrix or the target accuracy (Kuczynski &
Wozniakowski, 1992; Musco & Musco, 2015). Recently,
new randomized algorithms for this problem were able to
significantly reduce the required number of passes, while
maintaining the ability to compute high-accuracy solutions
(Shamir, 2015b;a; Garber & Hazan, 2015; Jin et al., 2015).

In this work, we consider the efficacy of algorithms which
perform a single pass over the data, and in particular,
stochastic gradient descent (SGD). For solving Eq. (1),
SGD corresponds to initializing at some unit vector w0,
and then at each iteration t perform a stochastic gradient
step with respect to xtx

>
t (which is an unbiased estimate

of E[xx>]), followed by a projection to the unit sphere:

wt := (I + ηxtx
>
t )wt−1 , wt := wt/‖wt‖.

Here, η is a step size parameter. In the context of PCA,
this is also known as Oja’s method (Oja, 1982; Oja &
Karhunen, 1985). The algorithm is highly efficient in terms
of memory and runtime per iteration, requiring storage of
a single d-dimensional vector, and performing only vector-
vector and a vector-scalar products in each iteration.

In the world of convex stochastic optimization and learn-
ing, SGD has another remarkable property: Despite it being
a simple, one-pass algorithm, it is essentially (worst-case)
statistically optimal, attaining the same statistical estima-
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tion error rate as exact empirical risk minimization (Bous-
quet & Bottou, 2008; Shalev-Shwartz et al., 2009; Shalev-
Shwartz & Ben-David, 2014). Thus, it is quite natural to
ask whether SGD also performs well for the PCA problem
in Eq. (1), compared to statistically optimal but computa-
tionally heavier methods.

The study of SGD (or variants thereof) for PCA has gained
interest in recent years, with some notable examples includ-
ing (Arora et al., 2012; Balsubramani et al., 2013; Arora
et al., 2013; Mitliagkas et al., 2013; Hardt & Price, 2014;
De Sa et al., 2015; Jin et al., 2015; Jain et al., 2016). While
experimentally SGD appears to perform quite well, its the-
oretical analysis has proven difficult, due to the non-convex
nature of the objective function in Eq. (1). Remarkably,
despite this non-convexity, finite-time convergence guaran-
tees have been obtained under an eigengap assumption –
namely, that the difference between the largest and 2nd-
largest eigenvalues of E[xx>] are separated by some fixed
value λ > 0. For example, (De Sa et al., 2015) requires
O(d/λ2ε) iterations to ensure with high probability that
one of the iterates is ε-optimal. Very recently, (Jain et al.,
2016) improved this to O(1/λ2ε) with constant probabil-
ity. (Jin et al., 2015) requires O(1/λ2 + 1/λε) iterations,
provided we begin close enough to an optimal solution.

Nevertheless, one may ask whether such eigengap depen-
dencies are indeed necessary, if our goal is simply to find
an approximately optimal solution of Eq. (1). Intuitively, if
E[xx>] has two equal (or near equal) top eigenvalues, then
we may still expect to get a solution which lies close to the
subspace of these two top eigenvalues, and approximately
minimizes Eq. (1), with the runtime not dependent on any
eigengap. Unfortunately, existing results tell us nothing
about this regime, and not just for minor technical reasons:
These results are based on tracking the geometric conver-
gence of the SGD iterates wt to a leading eigenvector of the
covariance matrix. When there is no eigengap, there is also
no single eigenvector to converge to, and such a geometric
approach does not seem to work. Getting an eigengap-free
analysis has also been posed as an open problem in (Hardt
& Price, 2014). We note that while there are quite a few
other single-pass, eigengap-free methods for this problem,
such as (Warmuth & Kuzmin, 2006; 2008; Nie et al., 2013;
Boutsidis et al., 2015; Garber et al., 2015; Kotłowski &
Warmuth, 2015), their memory and runtime-per iteration
requirements are much higher than SGD, often O(d2) or
worse.

In this work, we study the convergence of SGD for PCA,
using a different technique than those employed in previous
works, with the following main results:

• We provide the first (to the best of our knowledge)
SGD convergence guarantee which does not pose an
eigengap assumption. Roughly speaking, we prove

that if the step size is chosen appropriately, then af-
ter T iterations starting from random initialization,
with positive probability, SGD returns an Õ(

√
p/T )-

optimal1 solution of Eq. (1), where p is a parameter
depending on how the algorithm is initialized:

– If the algorithm is initialized from a warm-start
point w0 such that 1

〈v,w0〉2 ≤ O(1) for some
leading eigenvector v of the covariance matrix,
then p = O(1).

– Under uniform random initialization on the unit
Euclidean sphere, p = O(d), where d is the di-
mension.

– Using a more sophisticated initialization (requir-
ing the usage of the first O(d) iterations, but no
warm-start point), p = Õ(nA), where nA is the
numerical rank of the covariance matrix. The nu-
merical rank is a relaxation of the standard notion
of rank, is always at most d and can be consid-
ered a constant under some mild assumptions.

• In the scenario of a positive eigengap λ > 0, and us-
ing a similar proof technique, we prove an SGD con-
vergence guarantee ofO(p/λT ) (where p is as above)
with positive probability. This guarantee is optimal
in terms of dependence on T, λ, and in particular,
has better dependence on λ compared to all previous
works on SGD-like methods we are aware of (1/λ as
opposed to 1/λ2).

Unfortunately, a drawback of our guarantees is that they
only hold with rather low probability: Ω(1/p), which can
be small if p is large. Formally, this can be overcome by re-
peating the algorithm Õ(p) times, which ensures that with
high probability, at least one of the outputs will be close to
optimal. However, we suspect that these low probabilities
are an artifact of our proof technique, and resolving it is left
to future work.

2. Setting
We use bold-faced letters to denote vectors, and capital let-
ters to denote matrices. Given a matrix M , we let ‖M‖
denote its spectral norm, and ‖M‖F its Frobenius norm.

We now present the formal problem setting, in a somewhat
more general way than the PCA problem considered earlier.
Specifically, we study the problem of solving

min
w∈Rd:‖w‖=1

−w>Aw, (2)

where d > 1 and A is a positive semidefinite matrix, given
access to a stream of i.i.d. positive semidefinite matrices Ãt

1Throughout, we use O, Ω to hide constants, and Õ, Ω̃ to hide
constants and logarithmic factors.
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where E[Ãt] = A (e.g. xtx>t in the PCA case). Notice that
the gradient of Eq. (2) at a point w equals 2Aw, with an
unbiased stochastic estimate being 2Ãtw. Therefore, ap-
plying SGD to Eq. (2) reduces to the following: Initialize at
some unit-norm vector w0, and for t = 1, . . . , T , perform
wt = (I + ηÃt)wt−1,wt = wt/‖wt‖, returning wT . In
fact, for the purpose of the analysis, it is sufficient to con-
sider a formally equivalent algorithm, which only performs
the projection to the unit sphere at the end:

• Initialize by picking a unit norm vector w0

• For t = 1, . . . , T , perform wt = (I + ηÃt)wt−1

• Return wT
‖wT ‖

It is easy to verify that the output of this algorithm is math-
ematically equivalent to the original SGD algorithm, since
the stochastic gradient step amounts to multiplying wt−1
by a matrix independent of wt−1, and the projection just
amounts to re-scaling. In both cases, we can write the al-
gorithm’s output in closed form as(∏1

t=T (I + ηÃt)
)
w0∥∥∥(∏1

t=T (I + ηÃt)
)
w0

∥∥∥ .
3. Convergence Without an Eigengap

Assumption
Our main result is the following theorem, which analyzes
the performance of SGD for solving Eq. (2).
Theorem 1. Suppose that

• For some leading eigenvector v of A, 1
〈v,w0〉2 ≤ p for

some p (assumed to be ≥ 8 for simplicity).

• For some b ≥ 1, both ‖Ãt‖‖A‖ and ‖Ãt−A‖‖A‖ are at most b
with probability 1.

If we run the algorithm above for T iterations with η =
1

b
√
pT

(assumed to be ≤ 1), then with probability at least
1
cp , the returned w satisfies

1− w>Aw

‖A‖
≤ c′

log(T )b
√
p

√
T

,

where c, c′ are positive numerical constants.

The proof appears in Subsection 5.1. Note that this is a
multiplicative guarantee on the suboptimality of Eq. (2),
since we normalize by ‖A‖, which is the largest magnitude
Eq. (2) can attain. By multiplying both sides by ‖A‖, we
can convert this to an additive bound of the form

‖A‖ −w>Aw ≤ c′
log(T )b′

√
p

√
T

,

where b′ is a bound on max
{
‖Ãt‖, ‖Ãt −A‖

}
. Also,

note that the choice of η in the theorem is not crucial, and
similar bounds (with different c, c′) can be shown for other
η = Θ(1/b

√
pT ).

The value of p in the theorem depends on how the initial
point w0 is chosen. One possibility, of course, is if we can
initialize the algorithm from a “warm-start” point w0 such
that 1

〈v,w0〉2 ≤ O(1), in which case the bound in the theo-

rem becomes O(log(T )/
√
T ) with probability Ω(1). Such

a w0 may be given by some other algorithm, or alterna-
tively, if we are interested in analyzing SGD in the regime
where it is close to one of the leading eigenvectors.

Of course, such an assumption is not always relevant, so let
us turn to consider the performance without such a “warm-
start”. For example, the simplest and most common way to
initialize w0 is by picking it uniformly at random from the
unit sphere. In that case, for any v, 〈v,w0〉2 = Θ(1/d)
with high constant probability2, so the theorem above ap-
plies with p = O(d):
Corollary 1. If w0 is chosen uniformly at random from the
unit sphere in Rd, then Thm. 1 applies with p = O(d), and
the returned w satisfies, with probability at least Ω(1/d),

1− w>Aw

‖A‖
≤ O

(
log(T )b

√
d√

T

)
,

While providing some convergence guarantee, note that the
probability of success is low, scaling down linearly with
d. One way to formally solve this is to repeat the algo-
rithm Ω(d) times, which ensures that with high probabil-
ity, at least one output will succeed (and finding it can be
done empirically by testing the outputs on a validation set).
However, it turns out that by picking w0 in a smarter way,
we can substantially improve those factors (at least in the
analysis).

Specifically, we consider the following method, parameter-
ized by number of iterations T0, which are implemented
before the main algorithm above:

• Sample w from a standard Gaussian distribution on
Rd

• Let w0 = 0.

• For t = 1, . . . , T0, let w0 := w0 + 1
T0
Ãtw

• Return w0 := w0

‖w0‖ .

2One way to see this is by assuming w.l.o.g. that v = e1

and noting that the distribution of w0 is the same as w/‖w‖
where w has a standard Gaussian distribution, hence 〈v,w0〉2 =
w2

1/
∑

j w
2
j , and by using standard concentration tools it can be

shown that the numerator is Θ(1) and the denominator is Θ(d)
with high probability.
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Essentially, instead of initializing from a random point w,
we initialize from

Ãw

‖Ãw‖
, where Ã =

1

T0

T0∑
t=1

Ãt.

Since Ã is a mean of T0 random matrices with mean A,
this amounts to performing a single approximate power it-
eration. Recently, it was shown that a single exact power
iteration can improve the starting point of stochastic meth-
ods for PCA (Shamir, 2015a). The method above extends
this idea to a purely streaming setting, where we only have
access to stochastic approximations of A.

The improved theoretical properties of w0 with this initial-
ization is formalized in the following lemma (where ‖A‖F
denotes the Frobenius norm of A):

Lemma 1. The following holds for some numerical con-
stants c, c′ > 0: For w0 as defined above, if T0 ≥
cdb2 log(d), then with probability at least 7

10 −
2
d −

exp(−d/8),

1

〈v,w0〉2
≤ c′ log(d)nA,

where nA =
‖A‖2F
‖A‖2 is the numerical rank of A.

The proof is provided in Subsection 5.2. Combining this
with Thm. 1, we immediately get the following corollary:

Corollary 2. If w0 is initialized as described above, then
Thm. 1 applies with p = O(log(d)nA), and the returned w
satisfies, with probability at least Ω(1/nA log(d)),

1− w>Aw

‖A‖
≤ O

(
log(T )b

√
log(d)nA√
T

)
,

The improvement of Corollary 2 compared to Corollary 1
depends on how much smaller is nA, the numerical rank
of A, compared to d. We argue that in most cases, nA is
much smaller, and often can be thought of as a moderate
constant, in which case Corollary 2 provides an Õ

(
b√
T

)
error bound with probability Ω̃(1), at the cost of Õ(db2)
additional iterations at the beginning. Specifically:

• nA is always in [1, d], and in particular, can never be
larger than d.

• nA is always upper bounded by the rank of A, and is
small even if A is only approximately low rank. For
example, if the spectrum of A has polynomial decay
i−α where α > 1, then nA will be a constant inde-
pendent of d. Moreover, to begin with, PCA is usually
applied in situations where we hope A is close to be-
ing low rank.

• When Ãt is of rank 1 (which is the case, for instance,
in PCA, where Ãt equals the outer product of the t-
th datapoint xt), we have nA ≤ b2, where we recall
that b upper bounds the scaled spectral norm of Ãt. In
machine learning application, the data norm is often
assumed to be bounded, hence b is not too large. To
see why this holds, note that for rank 1 matrices, the
spectral and Frobenius norms coincide, hence

nA =

(
‖A‖F
‖A‖

)2

=

(
‖E[Ã1]‖F
‖A‖

)2

≤

(
E

[
‖Ã1‖F
‖A‖

])2

=

(
E

[
‖Ã1‖
‖A‖

])2

≤ b2,

where we used Jensen’s inequality.

Similar to Corollary 1, we can also convert the bound of
Corollary 2 into a high-probability bound, by repeating the
algorithm Õ(nA) times.

4. Convergence under an Eigengap
Assumption

Although our main interest so far has been the convergence
of SGD without any eigengap assumptions, we show in this
section that our techniques also imply new bounds for PCA
with an eigengap assumptions, which in certain aspects are
stronger than what was previously known.

Specifically, we consider the same setting as before, but
where the ratio s1−s2

s1
, where s1, s2 are the leading singular

values of the covariance matrix A is assumed to be strictly
positive and lower bounded by some fixed λ > 0. Us-
ing this assumption and a proof largely similar to that of
Thm. 1, we have the following theorem:

Theorem 2. Under the same conditions as Thm. 1, suppose
furthermore that

• The top two eigenvalues of A have a gap λ‖A‖ > 0

• log2(T )b2p
λT ≤ log(T )b

√
p√

T

If we run the algorithm above for T > 1 iterations with
η = log(T )

λT (assumed to be ≤ 1), then with probability at
least 1

cp , the returned w satisfies

1− w>Aw

‖A‖
≤ c′

log2(T )b2p

λT
,

where c, c′ are positive numerical constants.

The proof (which uses techniques similar to the proof of
Thm. 1) appears in the supplementary material. Consider-
ing first the technical conditions of the theorem, we note



Convergence of SGD for PCA

that assuming log2(T )b2p
λT ≤ log(T )b

√
p√

T
simply amounts to

saying that T is sufficiently large so that theO
(

log2(T )b2p
λT

)
bound provided by Thm. 2 is better than theO

(
log(T )b

√
p√

T

)
bound provided by Thm. 1, by more than a constant. This
is the interesting regime, since otherwise we might as well
choose η as in Thm. 1 and get a better bound without
any eigengap assumptions. Moreover, as in Thm. 1, a
similar proof would hold if the step size is replaced by
c log(T )/λT for some constant c ≥ 1.

As in Thm. 1, we note that p can be as large as d under
random initialization, but this can be improved to the nu-
merical rank of A using an approximate power iteration, or
by analyzing the algorithm starting from a warm-start point
w0 for which 1

〈v,w0〉2 ≤ O(1) for a leading eigenvector
v of A. Also, note that under an eigengap assumption, if
1−w>Aw

‖A‖ goes to 0 with the number of iterations T , it must
hold that 〈v,w〉2 goes to 1 for a leading eigenvector of A,
so the analysis with p = O(1) is also relevant for analyzing
SGD for sufficiently large T , once we’re sufficiently close
to the optimum.

Comparing the bound to previous bounds in the literature
for SGD-like methods (which all assume an eigengap, e.g.
(Balsubramani et al., 2013; Hardt & Price, 2014; De Sa
et al., 2015; Jin et al., 2015)), an interesting difference is
that the dependence on the eigengap λ is only 1/λ, as op-
posed to 1/λ2 or worse. Intuitively, we are able to im-
prove this dependence since we track the suboptimality di-
rectly, as opposed to tracking how wT converges to a lead-
ing eigenvector, say in terms of the Euclidean norm. This
has an interesting parallel in the analysis of SGD for λ-
strongly convex functions, where the suboptimality of wT

decays as Õ(1/λT ), although E[‖wT −w∗‖2] can only be
bounded by O(1/λ2T ) (compare for instance Lemma 1 in
(Rakhlin et al., 2012) and Theorem 1 in (Shamir & Zhang,
2013)). Quite recently, Jin et al. ((Jin et al., 2015)) pro-
posed another streaming algorithm which does have only
1/λ dependence (at least for sufficiently large T ), and a
high probability convergence rate which is even asymptoti-
cally optimal in some cases. However, their formal analysis
is from a warm-start point (which implies p = O(1) in our
notation), whereas the analysis here applies to any starting
point. Moreover, the algorithm in (Jin et al., 2015) is dif-
ferent and more complex, whereas our focus here is on the
simple and practical SGD algorithm. Finally, we remark
that although an O(1/λT ) convergence rate is generally
optimal (using any algorithm), we do not know whether the
dependence on b and p in the convergence bound of Thm. 2
for SGD is optimal, or whether it can be improved.

5. Proofs
5.1. Proof of Thm. 1

The proof is based on a combination of several lemmas,
whose proofs are rather technical. Due to lack of space,
these proofs are deferred to the supplementary material.

To simplify things, we will assume that we work in a coor-
dinate system where A is diagonal, A = diag(s1, . . . , sd),
where s1 ≥ s2 ≥ . . . ≥ sd ≥ 0, and s1 is the eigenvalue
corresponding to v. This is without loss of generality, since
the algorithm and the theorem conditions are invariant to
the choice of coordinate system. Moreover, since the ob-
jective function in the theorem is invariant to ‖A‖, we shall
assume that ‖A‖ = s1 = 1. Under these assumptions, the
theorem’s conditions reduce to:

• 1
w2

0,1
≤ p, for some p ≥ 8

• b ≥ 1 is an upper bound on ‖Ãt‖, ‖Ãt −A‖

Let ε ∈ (0, 1) be a parameter to be determined later. The
proof works by lower bounding the probability of the ob-
jective function (which under the assumption ‖A‖ = 1,
equals 1 − w>Aw) being suboptimal by at most ε. This
can be written as

Pr

(
w>T (I −A)wT

‖wT ‖2
≤ ε
)
,

or equivalently,

Pr
(
w>T ((1− ε)I −A)wT ≤ 0

)
.

Letting
VT = w>T ((1− ε)I −A)wT ,

we need to lower bound Pr(VT ≤ 0).

In analyzing the convergence of stochastic gradient de-
scent, a standard technique to bound such probabilities is
via a martingale analysis, showing that after every itera-
tion, the objective function decreases by a certain amount.
Unfortunately, due to the non-convexity of the objective
function here, the amount of decrease at iteration t criti-
cally depends on the current iterate wt, and in the worst
case may even be 0 (e.g. if wt is orthogonal to the leading
eigenvector, and there is no noise). Moreover, analyzing
the evolution of wt is difficult, especially without eigen-
gap assumptions, where there isn’t necessarily some fixed
direction which wt converges to. Hence, we are forced to
take a more circuitous route.

In a nutshell, the proof is composed of three parts. First, we
prove that if ε and the step size η are chosen appropriately,
then E[VT ] ≤ −Ω̃

(
(1 + η)2T εp

)
. If we could also prove
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a concentration result, namely that VT is not much larger
than its expectation, this would imply that Pr(VT ≤ 0) is
indeed large. Unfortunately, we do not know how to prove
such concentration. However, it turns out that it is possi-
ble to prove that VT is not much smaller than its expected
value: More precisely, that VT ≥ −Õ

(
(1 + η)2T ε

)
with

high probability. We then show that given such a high-
probability lower bound on VT , and a bound on its expec-
tation, we can produce an upper bound on VT which holds
with probability Ω̃(1/p), hence leading to the result stated
in the theorem.

We begin with a preliminary technical lemma:

Lemma 2. For any ε, η ∈ (0, 1), and integer k ≥ 0,

max
s∈[0,1]

(1 + ηs)k(1− ε− s) ≤ 1 + 2
(1 + η(1− ε))k

η(k + 1)
.

Using this lemma, we now prove that VT = w>T ((1−ε)I−
A)wT has a large negative expected value. To explain the
intuition, note that if we could have used the exact A in-
stead of the stochastic approximations Ãt in deriving wT ,
then we would have

w>T ((1− ε)I −A)wT

= w>0 (I + ηA)T ((1− ε)I −A)(I + ηA)Tw0

=

d∑
j=1

(1 + ηsj)
2T (1− ε− sj)w2

0,j

≤ 1

p
(1 + ηs1)2T (1− ε− s1)

+

d∑
j=2

(1 + ηsj)
2T (1− ε− sj)w2

0,j

≤ 1

p
(1 + ηs1)2T (1− ε− s1)

+

 d∑
j=2

w2
0,j

 max
s∈[0,1]

(1 + ηs)2T (1− ε− s),

which by the assumptions s1 = 1 and 1 = ‖w0‖2 =∑d
j=1 w

2
0,j is at most

− ε
p

(1 + η)2T + max
s∈[0,1]

(1 + ηs)2T (1− ε− s).

Applying Lemma 2 and picking η, ε appropriately, it can be
shown that the above is at most −Ω

(
ε
p (1 + η)

2T
)

.

Unfortunately, this calculation doesn’t apply in practice,
since we use the stochastic approximations Ãt instead of
A. However, using more involved calculations, we prove
in the lemma below that the expectation is still essentially
the same, provided ε, η are chosen appropriately.

Lemma 3. If η = 1
b

√
1
pT ≤ 1 and ε = c

log(T )b
√
p√

T
≤ 1 for

some sufficiently large constant c, then it holds that

E[VT ] ≤ − (1 + η)2T
ε

4p
.

Having proved an upper bound on E[VT ], we now turn to
prove a high-probability lower bound on VT . The proof
is based on relating VT to ‖wT ‖2, and then performing a
rather straightforward martingale analysis of log(‖wT ‖2).

Lemma 4. Suppose that Ãt is positive semidefinite for all
t, and Pr(‖Ãt‖ ≤ b) = 1. Then for any δ ∈ (0, 1), we
have with probability at least 1− δ that

VT > − exp
(
ηb
√
T log(1/δ) + (b2 + 3)Tη2

)
(1+η)2T ε.

We now have most of the required components to prove
Thm. 1. First, we showed in Lemma 3 that if η = 1

b

√
1
pT ,

then
E[VT ] ≤ −(1 + η)2T

ε

4p
. (3)

for ε = O(b log(T )
√
p/T ). Using the same step size η,

Lemma 4 implies that

Pr

(
VT ≤ − exp

(√
log(1/δ)

p
+

1 + 3/b2

p

)
(1 + η)2T ε

)

is at most δ, and since we assume b ≥ 1 (hence 1 + 3/b2 ≤
4), this implies that

Pr

(
− VT

exp(4/p)(1 + η)2T ε
≥ exp

(√
log(1/δ)

p

))
≤ δ.

(4)
Now, define the non-negative random variable

RT = max

{
0,− VT

exp(4/p)(1 + η)2T ε

}
,

and note that by its definition,

E[RT ] ≥ E
[
− VT

exp(4/p)(1 + η)2T ε

]
and

Pr

(
RT ≥ exp

(√
log(1/δ)

p

))

= Pr

(
− VT

exp(4/p)(1 + η)2T ε
≥ exp

(√
log(1/δ)

p

))
.

Using Eq. (3) and Eq. (4), this implies that

E[RT ] ≥ 1/ (4p exp(4/p))
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and

Pr

(
RT ≥ exp

(√
log(1/δ)

p

))
≤ δ.

To summarize the development so far, we defined a non-
negative random variable RT , which is bounded with high
probability, yet its expectation is at least Ω(1/p). The fol-
lowing lemma shows that for a bounded non-negative ran-
dom variable with “large” expectation, the probability of it
being on the same order as its expectation cannot be too
small:

Lemma 5. Let X be a non-negative random variable such
that for some α, β ∈ [0, 1], we have E[X] ≥ α, and for any
δ ∈ (0, 1],

Pr
(
X ≥ exp

(
β
√

log(1/δ)
))
≤ δ.

Then

Pr
(
X >

α

2

)
≥

α− exp
(
− 2
β2

)
15

.

Before sketching the proof of the lemma, let us show to use
it to prove Thm. 1. Applying it on the random variable RT ,
which satisfies the lemma conditions with α = 1

4p exp(4/p) ,

β =
√

1
p , we have

1

15

(
1

4p exp(4/p)
− exp (−2p)

)
≤ Pr

(
RT >

1

8p exp(4/p)

)
= Pr

(
max

{
0,

−VT
exp(4/p)(1 + η)2T ε

}
>

1

8p exp(4/p)

)
= Pr

(
− VT

exp(4/p)(1 + η)2T ε
>

1

8p exp(4/p)

)
= Pr

(
VT ≤ −

(1 + η)2T ε

8p

)
≤ Pr (VT ≤ 0)

The term 1
15

(
1

4p exp(4/p) − exp (−2p)
)

can be verified to

be at least 1
100p for any p ≥ 8, hence we obtained

Pr(VT ≤ 0) ≥ 1

100p
.

As discussed at the beginning of the proof, VT ≤ 0 implies
that wT (I−A)wT

‖wT ‖2 ≤ ε, where ε = c
log(T )b

√
p√

T
is the value

chosen in Lemma 3, and the theorem is established.

We now turn to sketch the proof of Lemma 5 (like all lem-
mas in this subsection, the formal proof appears in the sup-
plementary material). To explain the intuition, suppose that
X in the lemma was actually at most 1 with probability 1,

rather than just bounded with high probability. Then we
would have

α ≤ E[X]

= Pr
(
X ≥ α

2

)
E
[
X|X ≥ α

2

]
+ Pr

(
X <

α

2

)
E
[
X|X ≤ α

2

]
≤ Pr

(
X ≥ α

2

)
· 1 + Pr

(
X <

α

2

)
· α

2

= Pr
(
X ≥ α

2

)
+
(

1− Pr
(
X ≥ α

2

)) α
2
,

which implies that α ≤
(
1− α

2

)
Pr
(
X ≥ α

2

)
+ α

2 , and
therefore Pr

(
X ≥ α

2

)
≥ α/2

1−α/2 ≥ α
2 . As a result,

X is at least one-half its expectation lower bound (α) with
probability at least α/2. The proof of Lemma 5, presented
below, follows the same intuition, but uses a more delicate
analysis since X is actually only upper bounded with high
probability.

5.2. Proof of Lemma 1

Define ∆ = ‖Ã − A‖. Also, let s1 ≥ s2 ≥ . . . ≥ sd ≥ 0
be the d eigenvalues of A, with eigenvectors v1, . . . ,vd,
where we assume that v = v1. Using the facts (x+ y)2 ≤
2x2 + 2y2 and ‖v1‖ = 1, we have

1

〈v1,w0〉2
=
‖Ãw‖2

〈v1, Ãw〉2

=
‖Aw + (Ã−A)w‖2(

〈v1, Aw〉+ 〈v1, (Ã−A)w〉
)2

≤ 2‖Aw‖2 + 2‖(Ã−A)w‖2

〈v1, Aw〉2 + 2〈v1, Aw〉〈v1, (Ã−A)w〉

≤ 2‖Aw‖2 + 2‖w‖2∆2

〈v1, Aw〉2 − 2|〈v1, Aw〉|‖w‖∆
,

where we implicitly assume that ∆ is sufficiently small for
the denominator to be positive (eventually, we will pick T0
large enough to ensure this).

Recall that v1, . . . ,vd forms an orthonormal basis for Rd,
so w =

∑d
i=1 vi〈vi,w〉. Therefore, we can write the

above as

2
(∑d

i=1 sivi〈vi,w〉
)2

+ 2‖w‖2∆2

(s1〈v1,w〉)2 − 2|s1〈v1,w〉|‖w‖∆

=
2
∑d
i=1 s

2
i 〈vi,w〉2 + 2‖w‖2∆2

s21〈v1,w〉2 − 2|s1〈v1,w〉|‖w‖∆

≤
2
(∑d

i=1 s
2
i

) (
maxi〈vi,w〉2

)
+ 2‖w‖2∆2

s21〈v1,w〉2 − 2|s1〈v1,w〉|‖w‖∆
.
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To simplify notation, since w is drawn from a standard
Gaussian distribution, which is rotationally invariant, we
can assume without loss of generality that (v1, . . . ,vd) =
(e1, . . . , ed), the standard basis, so the above reduces to

2
(∑d

i=1 s
2
i

)
maxi w

2
i + 2‖w‖2∆2

s21w
2
1 − 2|s1w1|‖w‖∆

.

Recall that ∆ = ‖Ã − A‖, where Ã is the average of T0
independent random matrices with mean A, and spectral
norm at most ‖A‖b. Using a Hoeffding matrix bound (e.g.
(Tropp, 2012)), and the fact that ‖A‖ = s1, it follows that
with probability at least 1− δ,

∆ ≤ ‖A‖b

√
8 log(d/δ)

T0
= s1

√
8b2 log(d/δ)

T0
.

Plugging into the above, we get an upper bound of

2
(∑d

i=1 s
2
i

)
maxi w

2
i + ‖w‖2s21

16b2 log(d/δ)
T0

s21w
2
1 − 2s21|w1|‖w‖

√
8b2 log(d/δ)

T0

,

holding with probability at least 1 − δ. Dividing both nu-
merator and denominator by s21, and recalling that nA =
‖A‖2F
‖A‖2 =

∑d
i=1 s

2
i

s21
, the above equals

2nA maxi w
2
i + ‖w‖2 16b2 log(d/δ)

T0

w2
1 − 2|w1|‖w‖

√
8b2 log(d/δ)

T0

=
2nA maxi w

2
i + ‖w‖2 16b2 log(d/δ)

T0

|w1|
(
|w1| − 2‖w‖

√
8b2 log(d/δ)

T0

) . (5)

Based on standard Gaussian concentration ar-
guments, it holds that Pr

(
w2

1 ≤ 1
8

)
≤ 3

10 ,

Pr
(
maxi w

2
i ≥ 18 log(d)

)
≤ 1

d , and Pr
(
‖w‖ ≥

√
2d
)
≤

exp
(
−d8
)

(see for instance the proof of Lemma 1 in
(Shamir, 2015a), and Corollary 2.3 in (Barvinok, 2005)).
Combining the above with a union bound, it holds that
with probability at least 1 − δ − 3

10 −
1
d − exp(−d/8),

Eq. (5) is at most

36 log(d)nA + 32db2 log(d/δ)
T0

1
8

(
1
8 − 2

√
2
√

8db2 log(d/δ)
T0

) .
Recalling that this is an upper bound on 1

〈v1,w0〉2 , pick-
ing δ = 1/d for simplicity, and slightly simplifying, we
showed that with probability at least 7

10 −
2
d − exp(−d/8),

1

〈v1,w0〉2
≤

36 log(d)nA + 64b2 log(d)
T0

1
8

(
1
8 − 8

√
2
√

db2 log(d)
T0

) .

Since nA ≥ 1, then by picking T0 ≥ cdb2 log(d) for a suffi-
ciently large constant c, we get that 1

〈v1,w0〉2 ≤ c
′ log(d)nA

for a numerical constant c′, as required.

6. Discussion
In this paper, we studied the convergence of plain-vanilla
stochastic gradient descent (SGD) for the PCA optimiza-
tion problem (Eq. (1)) in Rd. We proved anO(

√
p/T ) con-

vergence rate after T iterations, with probability Ω(1/p),
where p is a parameter depending on the quality of the ini-
tialization point. To the best of our knowledge, this is the
first eigengap-free bound for SGD in the context of PCA.
Moreover, the proof technique is quite different than stan-
dard SGD convergence proofs, and instead directly anal-
yses the probability of convergence after a given number
of iterations. In the case of a fixed eigengap λ > 0, the
same techniques yield a newO(p/λT ) convergence bound,
which has better dependence on λ compared to previous
works. Although p can be as large as O(d) with random
initialization, we showed how a more sophisticated initial-
ization strategy can improve it to O(nA) where nA is the
numerical rank of the covariance matrix.

The paper leaves open several questions. First, the prob-
abilities at which the bounds above hold are rather small,
and depend on the initialization point. We conjecture that it
is possible to improve these to at least a universal constant
(without the need to repeat the algorithm several times),
possibly using a tighter large deviation analysis. A second
question is whether SGD is worst-case optimal for PCA in
a streaming setting, or whether there is an inherent price to
pay for using such anO(d)-memory method (e.g. the p fac-
tors in our bounds). In a very recent and elegant work, (Jain
et al., 2016) showed that standard SGD is indeed essentially
optimal, but for a different performance metric than ours,
and under an eigengap assumption. Whether this can be ex-
tended to our setting remains to be seen. Finally, it would
be interesting to extend the analysis here to block methods,
where k > 1 eigenvectors are to be extracted simultane-
ously.
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