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1. The L-BFGS Algorithm
In this section, we illustrate the two-loop recursion of the L-BFGS algorithm in Algorithm 1. The pseudo-code is based on
(Nocedal & Wright, 2006).

Algorithm 1: L-BFGS two loop recursion.

1 input : gt = ∇ŨΩt(θt), M , H1
t = γI

2 output: ξ = Htgt
3 ξt ← gt
4 for i = t− 1, · · · , t−M + 1 do
5 ρi ← 1

y>i si

6 αi ← ρis
>
i ξ

7 ξ ← ξ − αiyi
8 ξ ← γξ
9 for i = t−M + 1, · · · , t− 1 do

10 β ← ρiy
>
i ξ

11 ξ ← ξ + si(αi − β)

12 return ξ

2. Proof of the Main Theorem
In this section, we provide the proof of the main theorem. For completeness, let us first introduce certain definitions and
theorems that will be used in our proof. Note that we have translated the following theorems to our notation and framework.

2.1. Preliminaries

Definition 1 (Hölder Continuity, (Duan, 2015)(p. 22)).
A real valued function f on RD is called uniformly Hölder continuous, if there exist K,α > 0 such that

|f(x)− f(y)| ≤ K|x− y|α (1)
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for x, y ∈ B = dom(f). We use Cα(B) for denoting the space of functions that are locally Hölder continuous in B with
exponent α. We also use Ck,α(B) for denoting the space of continuous functions in B whose kth-order derivatives are
locally Hölder continuous in B with exponent α.

Theorem 1 (Fokker-Planck Equation, (Duan, 2015)(p. 105)).
Let us consider an Itō diffusion that is described by the following stochastic differential equation (SDE):

dθt = b(θt)dt+ σ(θt)dWt (2)

where θ ∈ RD, b(·) is a D dimensional vector function, σ(·) is a D × D dimensional matrix function, and Wt is a D
dimensional Brownian motion. Assume that θt has the conditional probability density p(θ, t). Then, the time evolution of
p(θ, t) is described by the following partial differential equation:

∂tp(θ, t) = A∗p(θ, t) (3)

where A∗ is the adjoint of the generator of the SDE given in Equation 2 and known as the Fokker-Planck operator, defined
as follows:

A∗h = −∇ · (bh) +
1

2
tr[∇2(σσ>h)]. (4)

Here x · y denotes x>y and∇2 denotes the Hessian matrix.

Theorem 2 (Existence and Uniqueness for Fokker-Planck Equation, (Duan, 2015) Theorem 5.8).
Consider the SDE in Equation 2 and the following system:

∂tp(θ, t) = A∗p(θ, t), p(θ, 0) = p0(θ) (5)

where A∗ is the Fokker-Planck operator defined in Equation 4, B ⊂ RD. Assume that A∗ is uniformly elliptic on B, i.e.
there is a positive constant κ such that

D∑

i,j=1

[σ(θ)σ>(θ)]ijξiξj ≥ κ|ξ|2 (6)

for θ ∈ B and all ξ ∈ RD. If b(·) and σ(·), the first-order derivatives of b(·), the second-order derivatives of σ(·), and
p0(·) are all uniformly Hölder continuous with exponent α in B and are all bounded in Cα(B), then the unique solution
p(·) to Equation 5 exists and is in C2,α(B).

Theorem 3 (Stationary Distribution of SDEs, (Ma et al., 2015) Theorem 1).
Assume θ ∈ RD is a random variable and x ≡ {xn}Nn=1 denotes observed data points where xn ∈ RP . We have
p(θ|x) ∝ exp

(
−U(θ)

)
, where U(θ) = −[log p(x|θ) + log p(θ)]. Let us consider the SDE given in Equation 2 with the

following form:

b(θ) = −[H(θ) +Q(θ)]∇U(θ) + Γ(θ), σ(θ) =
√

2H(θ) (7)

where Γi(θ) =
∑D
j=1 ∂θj [Hij(θ) +Qij(θ)], H(θ) is a positive semi-definite matrix and Q(θ) is a skew-symmetric matrix.

Then p(θ|x) is a stationary distribution of the dynamics given in Equations 2 and 7. If H(θ) is positive definite, then the
stationary distribution is unique.

Remark 1. Positive definiteness of H(θ) implies uniform ellipticity of the Fokker-Planck operator A∗. However, we also
need Hölder continuity for uniqueness as described in Theorem 2.

Theorem 4 (Bias and MSE of SG-MCMC, (Chen et al., 2015) Theorem 5).
Consider the SDE given in Equation 2 with the following form:

b(θt) = −Ht∇U(θt), σ(θt) =
√

2Ht (8)
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whereHt is a positive definite matrix that does not depend on θt. Let {θt}Tt=1 be a sequence that is obtained by discretizing
this SDE via the Euler-Maruyama integrator:

θt = θt−1 − εtHt∇Ũ(θt−1) + ηt, ηt ∼ N (0, 2εtHt) (9)

where the full gradients are replaced with stochastic gradients, that are defined as follows:

∇Ũ(θt) = −[∇ log p(θt) +
N

NΩ

∑

n∈Ω

∇ log p(xn|θt)]. (10)

Here, Ω ⊂ {1, 2, . . . , N}, and NΩ = |Ω| ≥ 1. Also consider an ergodic Itō diffusion with invariant measure π and a
smooth test function h(θ). The posterior expectation is defined as

h̄ =

∫
h(θ)π(θ)dθ. (11)

Assume that {θt}t is generated by using Equation 9, where the step-sizes satisfy the following conditions: (i) {εt}t is

decreasing, (ii)
∑∞
t=1 εt =∞, and (iii) limT→∞

∑T
t=1 ε

2
T∑T

t=1 εt
= 0. Then, the sample average is defined as:

ĥ =
1

WT

T∑

t=1

εth(θt), (12)

where WT =
∑T
t=1 εt. Let us define the function ψ that solves the following Poisson equation:

Lψ(θt) = h(θt)− h̄, (13)

where L is the generator of the SDE given in Equations 2 and 8. Assume that ψ and its up to third-order derivatives Dkψ
are bounded by a function V , i.e., ‖Dkψ‖ ≤ CkVpk for k = (0, 1, 2, 3), Ck, pk > 0. Furthermore, suptEVp(θt) < ∞
and sups∈(0,1) Vp

(
sx + (1 − s)y

)
≤ C

(
Vp(x) + Vp(y)

)
,∀x, y, p ≤ 2 maxk pk for some C > 0. Then, the bias and the

mean squared-error (MSE) of an SG-MCMC algorithm can be bounded as follows:

∣∣∣E[ĥ]− h̄
∣∣∣ = O

( 1

WT
+

∑T
t=1 ε

2
t

WT

)
(Bias) (14)

E[(ĥ− h̄)2] = O
( T∑

t=1

ε2t
W 2
T

‖∆Vt‖2 +
1

WT
+

(
∑T
t=1 ε

2
t )

2

W 2
T

)
(MSE) (15)

where ∆Vt is defined as ∆Vt , (∇Ũ(θt)−∇U(θt))
>Ht∇, and ‖∆Vt‖ denotes the operator norm.

Remark 2. The original version of Theorem 4 is more general in the sense that it also covers Hamiltonian dynamics
and other integrators besides the Euler-Maruyama scheme. Moreover, in the original theorem, Ht is taken as the identity
matrix. However, it is straightforward to extend this theorem to positive definite Ht, as exemplified in (Li et al., 2016).

2.2. The Main Result

In this section we provide a formal proof for our theorem. Before proceeding to the theorem, let us first state our assump-
tions.

Condition 1.
The step-sizes satisfy the following properties:

∑∞
t=1 εt = ∞,

∑∞
t=1 ε

2
t < ∞ and εt = εt′ for t and t′ such that b t−1

M c =

b t′−1
M c.

Condition 2.
The trust region parameter is chosen such that λ > max{0,−1/λmin

t } for all t, where λmin
t is the smallest eigenvalue of the

L-BFGS approximation to (∇2U(θt))
−1.
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Condition 3.
∇U(θ) is Lipschitz continuous, so that |∇U(θ)−∇U(θ′)| ≤ L|θ − θ′|, ∀θ, θ′ ∈ RD.

Condition 4.
Let L be an operator defined as follows: Lf(θt) , −[Ht∇U(θt)]

>∇f(θt) + tr[H>t ∇2f(θt)]. Consider the functional ψ
that solves the following Poisson equation: Lψ(θt) = h(θt)− h̄. Assume that ψ and its up to third-order derivatives Dkψ
are bounded by a function V , i.e. |Dkψ| ≤ CkVpk , for Ck, pk > 0 and k = 0, 1, 2, 3 where Dk denotes the derivative of
order k. Also assume suptEVp(θt) <∞ and sups∈(0,1) Vp

(
sx+ (1− s)y

)
≤ C

(
Vp(x) + Vp(y)

)
,∀x, y, p ≤ 2 maxk pk

for some C > 0.

Theorem 5 (Convergence of HAMCMC).
Assume the number of iterations is chosen as T = KM where K ∈ N+, M is the memory size, and {θt}Tt=1 are obtained
by HAMCMC that has the following update equation:

θt = θt−M − εtHt(θ
¬(t−M)
t−2M+1:t−1)∇Ũ(θt−M ) + ηt, ηt ∼ N (0, 2εtHt(θ

¬(t−M)
t−2M+1:t−1)), (16)

where θ¬(t−M)
t−2M+1:t−1 ≡ {θt−2M+1, . . . , θt−M−1, θt−M+1, . . . , θt−1} and Ht(·) is computed via stochastic L-BFGS. Then,

under Conditions 1– 4, the following holds:

(a)
∣∣E[ĥ]− h̄

∣∣ = O
(

1
LK

+ YK

LK

)

(b) E
[
(ĥ− h̄)2

]
= O

( K∑
k=1

ε2kM

L2
K
E‖∆Vk∗‖2 + 1

LK
+

Y 2
K

L2
K

)

where h̄, and ĥ are defined in Equations 11, and 12, respectively, for a smooth function h(·). Furthermore, we define LK ,∑K
k=1 εkM , YK ,

∑K
k=1 ε

2
kM , and the operator ∆Vk? = ∆Vm∗k+kM , where m∗k = arg max1≤m≤M E‖∆Vm+kM‖2,

∆Vt , (∇Ũ(θt)−∇U(θt))
>Ht∇, and ‖∆Vt‖ denotes the operator norm.

Proof. The usual way of analyzing Langevin and Hamiltonian MC algorithms is to first analyze the underlying continuous
dynamics, then consider the algorithm as a discrete-time approximation. This approach is not directly applicable in our
case. Therefore, we follow a different approach by exploiting the conditional independence structure of HAMCMC given
in Figure 1.

· · · θt−1 θt θt+1 θt+2 · · ·

· · · Ht−1 Ht Ht+1 Ht+2 · · ·

Figure 1. Illustration of HAMCMC with M = 2. The circle nodes represent the generated samples and the diamond nodes represent a
deterministic function of the particular samples. The arrows illustrates the conditional independence structure.

An important property that is revealed by Figure 1 is that Ht is conditionally independent of θt−M , given θ¬(t−M)
t−2M+1:t−1.

This property will be useful in the analysis. By using this structure, we can convert Equation 16 to a first-order Markov
chain on a product space, such that

Θt ≡ {θt−2M+2, . . . , θt} (17)

where Θt ∈ RD(2M−1). With this construction, we can see that Equation 16 is a Markov chain that uses one ofM different
transition kernels at each iteration, where the kernels have the following structure:

Tm(Θt,Θ
′) =

(M−1∏

m′=1

δ(Θ̃t,m′ ,Θ
′
m′)
)
K(Θt,m+M−1,Θ

′
t,m+M−1|Θt,−(m+M−1))

∏

m′∈{M...,2M−1}
m′ 6=m

δ(Θt,m′ ,Θ
′
m′) (18)
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|{z} |{z}

| {z }
T

Figure 2. First-order Markov chain representation of HAMCMC. The memory variable is selected as M = 2. The shaded nodes
represent the variables that are used in L-BFGS computations.

for m = 1, . . . ,M . Here, Θt,m denotes the mth element of Θt, Θt,−m denotes Θt \Θt,m, and Θ̃t,m denotes the (m+ 1)th
oldest element of Θt (i.e. Θ̃t,m ≡ θt−2M+2+m). At each iteration, the kernel Tm modifies Θt,m+M−1 by using a base
kernel K that is conditioned on Θt,−(m+M−1), and rearranges the samples that will be used in the L-BFGS computations.
By using the intermediate kernels Tm, we can represent the kernel of the whole HAMCMC algorithm as the composition
of these kernels, given as follows:

T (Θt,Θ
′) = [T1 ◦ · · · ◦ TM ](Θt,Θ

′). (19)

Therefore, if K targets the correct distribution, so does T . We illustrate this construction in Figure 2.

Now, let us investigate the base kernel K, that has the following form:

K(Θt,m,Θ
′
t,m|Θt,−m) = N (Θ′t,m;µ,Σ), (20)

where µ = εH(Θt,−m)∇Ũ(Θt,m), and Σ = 2εH(Θt,−m). The key property of K is that, since the L-BFGS computations
only involve Θt,−m,H(·) is independent of Θt,m. Therefore, perhaps not surprisingly,K appears to be the transition kernel
of the SGLD algorithm with a preconditioning matrix H(Θt,−m). Henceforth, we can analyze K as an approximation to
the continuous-time diffusion, with the following form:

dθt = −Ht∇U(θt)dt+
√

2HdWt. (21)

Firstly, we need to show that there exists a unique stationary distribution for this SDE and this distribution is the posterior
distribution that we are interested in. By Condition 2, we know that the lowest eigenvalue of Ht is strictly greater than
0, hence, Ht is positive definite. Therefore, the Fokker-Planck operator of this SDE is uniformly elliptic. Then, by
Condition 3, we know that ∇U is Hölder continuous with exponent α = 1. Under these conditions, Theorem 2 states that
the unique stationary distribution for this SDE exists.

Next, we investigate the stationary distribution of this SDE. Since Ht is independent of θt, we have ∂
∂θi
Ht = 0 for

i = 1, . . . , D, therefore the correction term Γ(θ) = 0 (see Equation 7). After choosing Q(θ) = 0, we observe that
Equation 21 is in the same form as Equation 7. Therefore, by Theorem 3, the unique stationary distribution of Equation 21
is the Bayesian posterior.

The rest of the proof is built on the fact that HAMCMC can be decomposed into M different but related SGLD algorithms
whose (state independent) preconditioning matrices are computed via stochastic L-BFGS. More formally, we can group
the samples {θt}Tt=1 into M different series as {θm+kM}K−1

k=0 for m = 1, . . . ,M , where each {θm+kM}K−1
k=0 can be

considered as being obtained from a different SGLD algorithm.
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Part (a):

By Condition 1, we can rewrite the sample average as the average of M different sample averages that are obtained via
different SGLD algorithms, given as follows:

ĥ =
1

WT

T∑

t=1

εth(θt) =
1

M

M∑

m=1

ĥm (22)

where

ĥm ,
1

LK

K−1∑

k=0

εm+kMh(θm+kM ). (23)

Then, we can bound the bias as follows:

∣∣E[ĥ]− h̄
∣∣ =

∣∣∣
( 1

M

M∑

m=1

E[ĥm]
)
− h̄
∣∣∣ (24)

=
1

M

∣∣∣
M∑

m=1

(
E[ĥm]− h̄

)∣∣∣ (25)

≤ 1

M

M∑

m=1

∣∣∣E[ĥm]− h̄
∣∣∣ (26)

≤ 1

M

M∑

m=1

Cm

( 1

LK
+
YK
LK

)
(27)

for some Cm > 0 for all m. Equation 27 uses Conditions 1, 4, and the first part of Theorem 4. Define C∗ , maxm Cm,
then we obtain the desired bound as:

∣∣E[ĥ]− h̄
∣∣ ≤ C∗

( 1

LK
+
YK
LK

)
=⇒

∣∣E[ĥ]− h̄
∣∣ = O

( 1

LK
+
YK
LK

)
. (28)

This completes part (a).

Part (b):

For bounding the MSE, we follow a similar strategy to the one presented for part (b). We start by bounding (ĥ − h̄)2, as
follows:

(ĥ− h̄)2 =
(

(
1

M

M∑

m=1

ĥm)− h̄
)2

(29)

=
1

M2

( M∑

m=1

(ĥm − h̄)
)2

(30)

≤ 1

M

M∑

m=1

(ĥm − h̄)2 (31)

Taking the expectation of both sides results in:

E
[
(ĥ− h̄)2

]
≤ 1

M
E
[ M∑

m=1

(ĥm − h̄)2
]

(32)

=
1

M

M∑

m=1

E
[
(ĥm − h̄)2

]
(33)
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Then, by using Conditions 1, 4, and the second part of Theorem 4 we obtain

E
[
(ĥ− h̄)2

]
≤ 1

M

M∑

m=1

Cm

( K∑

k=1

ε2kM
L2
K

E‖∆Vm+kM‖2 +
1

LK
+
Y 2
K

L2
K

)
(34)

for some Cm > 0, ∀m. Define C∗ = maxm Cm, m∗k = arg maxmE‖∆Vm+kM‖2, and ∆Vk? = ∆Vm∗k+kM , and we
obtain the desired bound as:

E
[
(ĥ− h̄)2

]
≤ C∗

( K∑

k=1

ε2kM
L2
K

E‖∆Vk?‖2 +
1

LK
+
Y 2
K

L2
K

)
=⇒ E

[
(ĥ− h̄)2

]
= O

( K∑

k=1

ε2kM
L2
K

E‖∆Vk?‖2 +
1

LK
+
Y 2
K

L2
K

)

This completes part (b) and concludes the proof.

Remark 3. Condition 4 is a special case of the assumption given in Theorem 4. Here, we have customized this condition
within HAMCMC framework.

Remark 4. Note that a similar construction that uses Markov chains on product spaces has been presented in (Zhang
& Sutton, 2011), where the authors consider a different context in which they aim to obtain separable Hamiltonians, that
would avoid costly numerical integration steps. Also note that PSGLD cannot be redefined by using Markov chains on
product spaces, since the volatility in PSGLD depends on the full history of the samples.

3. Algorithm Parameters Used in the Experiments
Linear Gaussian Model:

Table 1. The list of algorithm parameters that are used in the experiments on the linear Gaussian model.
SGLD PSGLD SGRLD HAMCMC

aε aε α λ aε aε γ λ

D = 2 1× 10−5 5× 10−2 0.9 1× 10−3 5× 10−2 1× 10−6 50 1
D = 10 1× 10−6 1× 10−1 0.9 1× 10−3 5× 10−1 1× 10−8 50 1
D = 100 8× 10−6 1× 10−1 0.9 1× 10−3 5× 10−1 1× 10−8 50 1

Alpha-Stable Matrix Factorization:

Table 2. The list of algorithm parameters that are used in the experiments on αMF.
SGLD PSGLD HAMCMC

aε aε α λ aε γ λ

1× 10−6 2× 10−5 0.9 1× 10−3 1× 10−8 0.01 1000

Distributed Matrix Factorization:

Table 3. The list of algorithm parameters that are used in the experiments on the distributed matrix factorization problem.
SGLD PSGLD HAMCMC

ε ε α λ ε γ λ

1× 10−4 2× 10−4 0.99 2 5× 10−4 0.1 0.5
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