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Abstract
Supervised training of deep neural nets typically
relies on minimizing cross-entropy. However, in
many domains, we are interested in performing
well on metrics specific to the application. In
this paper we propose a direct loss minimization
approach to train deep neural networks, which
provably minimizes the application-specific loss
function. This is often non-trivial, since these
functions are neither smooth nor decomposable
and thus are not amenable to optimization with
standard gradient-based methods. We demon-
strate the effectiveness of our approach in the
context of maximizing average precision for
ranking problems. Towards this goal, we develop
a novel dynamic programming algorithm that can
efficiently compute the weight updates. Our ap-
proach proves superior to a variety of baselines in
the context of action classification and object de-
tection, especially in the presence of label noise.

1. Introduction
Standard supervised neural network training involves com-
puting the gradient of the loss function with respect to the
parameters of the model, and therefore requires the loss
function to be differentiable. Many interesting loss func-
tions are, however, non-differentiable with respect to the
output of the network. Notable examples are functions
based on discrete outputs, as is common in labeling and
ranking problems. In many cases these losses are also non-
decomposable, in that they cannot be expressed as simple
sums over the output units of the network.

In the context of structured prediction problems, in which
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the output is multi-dimensional, researchers have devel-
oped max-margin training methods that are capable of min-
imizing an upper bound on non-decomposable loss func-
tions. Standard learning in this paradigm involves chang-
ing the parameters such that the model assigns a higher
score to the groundtruth output than to any other output.
This is typically encoded by a constraint, enforcing that the
groundtruth score should be higher than that of a selected,
contrastive output. The latter is defined as the result of in-
ference performed using a modified score function which
combines the model score and the task loss, representing
the metric that we care about for the application. This
modified scoring function encodes the fact that we should
penalize higher scoring configurations that are inferior in
terms of the task loss. Various efficient methods have been
proposed for incorporating complex discrete loss functions
into this max-margin approach (Yue et al., 2007; Volkovs
& Zemel, 2009; Tarlow & Zemel, 2012; Mohapatra et al.,
2014). Importantly, however, this form of learning does not
directly optimize the task loss, but rather an upper bound.

An alternative approach, frequently used in deep neural
networks, is to train with a surrogate loss that can be eas-
ily optimized, e.g., cross-entropy (LeCun & Huang, 2005;
Bengio et al., 2015). The problem of this procedure is that
for many application domains the task loss differs signifi-
cantly from the surrogate loss.

The seminal work of McAllester et al. (2010) showed how
to compute the gradient of complex non-differentiable loss
functions when dealing with linear models. In this paper
we extend their theorem to the non-linear case. This is im-
portant in practice as it provides us with a new learning
algorithm to train deep neural networks end-to-end to min-
imize the application specific loss function. As shown in
our experiments on action classification and object detec-
tion, this is very beneficial, particularly when dealing with
noisy labels.
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2. Direct Loss Minimization for Neural
Networks

In this section we present a novel formulation for learning
neural networks by minimizing the task loss. Towards this
goal, our first main result is a theorem extending the direct
loss minimization framework of (McAllester et al., 2010)
to non-linear models.

A neural network can be viewed as defining a composite
scoring function F (x, y, w), which depends on the input
data x ∈ X , some parameters w ∈ RA, and the output
y ∈ Y . Inference is then performed by picking the output
with maximal score, i.e.:

yw = argmax
ŷ∈Y

F (x, ŷ, w).

Given a dataset of input-output pairs D = {(x, y)}, a stan-
dard machine learning approach is to optimize the param-
eters w of the scoring function F by optimizing cross-
entropy. This is equivalent to maximizing the likelihood
of the data, where the probability over each output configu-
ration is given by the output of a softmax function, attached
to the last layer of the network.

However, in many practical applications, we want predic-
tion to succeed in an application-specific metric. This met-
ric is typically referred to as the task loss, L(y, yw) ≥ 0,
which measures the compatibility between the annotated
configuration y and the prediction yw. For learning, in this
paper, we are thus interested in minimizing the task loss

w∗ = argmin
w

E [L(y, yw)] , (1)

where E [·] denotes an expectation taken over the underly-
ing distribution behind the given dataset.

Solving this program is non-trivial, as many loss functions
of interest are non-decomposable and non-smooth, and thus
are not amenable to gradient-based methods. Examples of
such metrics include average precision (AP) from informa-
tion retrieval, intersection-over-union which is used in im-
age labeling, and normalized discounted cumulative gain
(NDCG) which is popular in ranking. In general many met-
rics are discrete, are not simple sums over the network out-
puts, and are not readily differentiable.

During training of a classifier it is hence common to em-
ploy a surrogate error metric, such as cross-entropy or
hinge-loss, where one can directly compute the gradients
with respect to the parameters. In the context of structured
prediction models, several approaches have been developed
to effectively optimize the structured hinge loss with non-
decomposable task losses. While these methods include the
task loss in the objective, they are not directly minimizing

it, and hence these surrogate losses are at best highly corre-
lated with the desired metric. Finding efficient techniques
to directly minimize the metric of choice is therefore desir-
able.

McAllester et al. (2010) showed that it is possible to
asymptotically optimize the task-loss when the function F
is linear in the parameters i.e., F (x, y, w) = w⊤ϕ(x, y).
This work has produced encouraging results. For example,
McAllester et al. (2010) used this technique for phoneme-
to-speech alignment on the TIMIT dataset optimizing the
τ -alignment loss and the τ -insensitive loss, while Keshet
et al. (2011) illustrated applicability of the method to hid-
den Markov models for speech. Direct loss minimization
was also shown to work well for inverse optimal control by
Doerr et al. (2015).

The first contribution of our work is to generalize this theo-
rem to arbitrary scoring functions, i.e., non-linear and non-
convex functions. This allows us to derive a new training
algorithm for deep neural networks which directly mini-
mizes the task loss.

Theorem 1 (General Loss Gradient Theorem). When given
a finite set Y , a scoring function F (x, y, w), a data distri-
bution, as well as a task-loss L(y, ŷ), then, under some
mild regularity conditions (see the supplementary material
for details), the direct loss gradient has the following form:

∇wE [L(y, yw)]

=± lim
ϵ→0

1

ϵ
E [∇wF (x, ydirect, w)−∇wF (x, yw, w)] ,

(2)

with

yw = argmax
ŷ∈Y

F (x, ŷ, w),

ydirect = argmax
ŷ∈Y

F (x, ŷ, w)± ϵL(y, ŷ). (3)

Proof. We refer the reader to the supplementary material
for a formal proof of the theorem.

According to Theorem 1, to obtain the gradient we need
to find the solution of two inference problems. The first
computes yw, which is a standard inference task, solved by
employing the forward propagation algorithm. The second
inference problem is prediction using a scoring function
which is perturbed by the task loss L(y, ŷ). This is typi-
cally non-trivial to solve, particularly when the task loss is
not decomposable. We borrow terminology from the struc-
tured prediction literature, where this perturbed inference
problem is commonly referred to as loss-augmented infer-
ence (Tsochantaridis et al., 2005; Chen et al., 2015). In the
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Algorithm: Direct Loss Minimization for Deep Networks
Repeat until stopping criteria

1. Forward pass to compute F (x, ŷ;w)

2. Obtain yw and ydirect via inference and loss-augmented inference

3. Single backward pass via chain rule to obtain gradient ∇wE [L(y, yw)]

4. Update parameters using stepsize η: w ← w − η∇wE [L(y, yw)]

Figure 1. Our algorithm for direct loss minimization.

following section we derive an efficient dynamic program-
ming algorithm to perform loss-augmented inference when
the task loss is average precision.

Note that loss-augmented inference, as specified in Eq. (3),
can take the task loss into account in a positive or a neg-
ative way. Depending on the sign, the gradient direction
changes. McAllester et al. (2010) provides a nice intu-
ition for the two different directions. The positive update
performs a step away from a worse configuration, while
the negative direct loss gradient encourages moves towards
better outputs. This can be seen when considering that
maximization of the loss returns the worst output config-
uration, while maximization of its negation returns the la-
bel with the lowest loss. It is however an empirical ques-
tion, whether the positive update or the negative version
performs better. McAllester et al. (2010) reports better re-
sults with the negative update, while we find in our exper-
iments that the positive update is better when applied to
deep neural networks. We will provide intuition for this
phenomenon in Sec. 4.

Note the relation between direct loss minimization and op-
timization of the structured hinge-loss. While we compute
the gradient via the difference between the loss-augmented
inference result and the prediction, structured hinge-loss
requires computation of the difference between the loss-
augmented inference solution and the ground truth. In
addition, for any finite ϵ, direct loss minimization is sub-
gradient descent of some corresponding ramp loss (Keshet
& McAllester, 2011).

In Fig. 1 we summarize the resulting learning algorithm,
which consists of the following four steps. First we use
a standard forward pass to evaluate F . We then per-
form inference and loss-augmented inference as specified
in Eq. (3) to obtain the prediction yw and ydirect. We com-
bine the predictions to obtain the gradient ∇wE [L(y, yw)]
via a single backward pass which is then used to update
the parameters. For notational simplicity we omit details
like momentum-based gradient updates, the use of mini-
batches, etc., which are easily included.

3. Direct Loss Minimization for Average
Precision

In order to directly optimize the task-loss we are required
to compute the gradient defined in Eq. (2). As mentioned
above, we need to solve both the standard inference task
as well as the loss-augmented inference problem given in
Eq. (3). While the former is typically assumed to be solv-
able, the latter depends on L and might be very complex to
solve, e.g., when the loss is not decomposable.

In this paper we consider ranking problems, where the de-
sired task loss L is average precision (AP), a concrete ex-
ample of a non-decomposable and non-smooth target loss
function. For the linear setting, efficient algorithms for pos-
itive loss-augmented inference with AP loss were proposed
by Yue et al. (2007) and Mohapatra et al. (2014). Their re-
sults can be extended to the non-linear setting only in the
positive case, where ydirect = argmaxŷ∈Y F (x, ŷ, w) +
ϵL(y, ŷ). For the negative setting inequalities required in
their proof do not hold and thus their method is not appli-
cable. In this section we propose a more general algorithm
that can handle both cases with the same time complexity
as (Yue et al., 2007), while being more intuitive to prove
and understand.

Alternatives to optimizing average precision are meth-
ods such as RankNet (Burges et al., 2005), LambdaRank
(Burges et al., 2007) and LambdaMART (Burges, 2010).
For an overview, we refer the reader to Burges (2010) and
references therein. Our goal here is simply to show di-
rect loss minimization of AP as an example of our general
framework.

To compute the AP loss we are given a set of positive, i.e.,
relevant, and negative samples. The sample xi belongs to
the positive class if i ∈ P = {1, . . . , |P|}, and xi is part of
the negative class if i ∈ N = {|P|+ 1, . . . , |P|+ |N |}.

We define the output to be composed of pairwise compar-
isons, with yi,j = 1 if sample i is ranked higher than sam-
ple j, yi,i = 0, and yi,j = −1 otherwise. We subsumed all
these pairwise comparisons in y = (. . . , yi,j , . . .). Sim-
ilarly x = (x1, . . . , xN ) contains all inputs, and N =
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Algorithm: AP loss-augmented inference

1. Set h(1, 0) = ∓ϵ 1
|P| and h(0, 1) = 0

2. For i = 1, . . . , |P|, j = 1, . . . , |N |, recursively fill the matrix

h(i, j) = max

{
h(i− 1, j)∓ ϵ 1

|P|
i

i+j +B(i, j), i ≥ 1, j ≥ 0

h(i, j − 1) +G(i, j), i ≥ 0, j ≥ 1

3. Backtrack to obtain configuration ŷ∗

Figure 2. Our algorithm for AP loss-augmented maximization or minimization.

|P| + |N | refers to the total number of data points in the
training set. In addition, we assume the ranking across all
samples y to be complete, i.e., consistent. During infer-
ence we obtain a ranking by predicting scores ϕ(xi, w) for
all data samples xi which are easily sorted afterwards.

For learning we generalize the feature function defined by
Yue et al. (2007) and Mohapatra et al. (2014) to a non-linear
scoring function, using

F (x, y, w) =
1

|P||N |
∑

i∈P,j∈N

yi,j (ϕ(xi, w)− ϕ(xj , w)) .

where ϕ(xi, w) is the output of the deep neural network
when using the i-th example as input.

AP is unfortunately a non-decomposable loss function, i.e.,
it does not decompose into functions dependent only on
the individual yi,j . To define the non-decomposable AP
loss formally, we construct a vector p̂ = rank(ŷ) ∈
{0, 1}|P|+|N | by sorting the data points according to the
ranking defined by the configuration ŷ. This vector con-
tains a 1 for each positive sample and a value 0 for each
negative element. In applications such as object detec-
tion, an example is said to be positive if the intersection
over union of its bounding box and the ground truth box
is bigger than a certain threshold (typically 50%). Using
the rank operator we obtain the AP loss by comparing two
vectors p = rank(y) and p̂ = rank(ŷ) via

LAP(p, p̂) = 1− 1

|P|
∑

j:p̂j=1

Prec@j, (4)

where Prec@j is the percentage of relevant samples in the
prediction p̂ that are ranked above position j.

To solve the loss-augmented inference task we have to
solve the following program

argmax
ŷ

F (x, ŷ, w)± ϵLAP(rank(y), rank(ŷ)). (5)

In the following we derive a dynamic programming algo-
rithm that can handle both the positive and negative case

and has the same complexity as (Yue et al., 2007). To-
wards this goal, we first note that Observation 1 of Yue
et al. (2007) holds for both the positive and the negative
case. For completeness, we repeat their observation here
and adapt it to our notation.

Observation 1 (Yue et al. (2007)). Consider rankings
which are constrained by fixing the relevance at each po-
sition in the ranking (e.g., the 3rd sample in the ranking
must be relevant). Every ranking satisfying the same set of
constraints will have the same LAP . If the positive sam-
ples are sorted by their scores in descending order, and the
irrelevant samples are likewise sorted by their scores, then
the interleaving of the two sorted lists satisfying the con-
straints will maximize Eq. (5) for that constrained set of
rankings.

Observation 1 means that we only need to consider the in-
terleaving of two sorted lists of P and N to solve the pro-
gram given in Eq. (5). From now on we therefore assume
that the elements of P and N are sorted in descending or-
der of their predicted score.

We next assert the optimal substructure property of our
problem. Let the restriction to subsets of i positive and
j negative examples be given by Pi = {1, . . . , i} and
Nj = {|P| + 1, . . . , |P| + j}. The cost function value
obtained when restricting loss-augmented inference to the
subsets can be computed as:

h(i, j)

=max
ŷ

1

|P||N |
∑
m∈Pi

∑
n∈Nj

ŷm,n(ϕ(xm, w)− ϕ(xn, w))

± ϵLi,j
AP (rank(y), rank(ŷ)),

(6)

where Li,j
AP refers to the AP loss restricted to subsets of i

positive and j negative elements.

Lemma 1. Suppose that rank(ŷ∗) is the optimal ranking
for Eq. (6) when restricted to i positive and j negative sam-
ples. Any of its sub-sequences starting at position 1 is then
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also an optimal ranking for the corresponding restricted
sub-problem.

We provide the proof of this lemma in the supplementary
material. Based on Lemma 1 we can construct Bellman
equations to recursively fill in a matrix of size P × N , re-
sulting in an overall time complexity of O(|P||N |). We can
then obtain the optimal loss-augmented predicted ranking
via back-tracking.

The Bellman recursion computes the optimal cost function
value of the sub-sequence containing data from Pi andNj ,
based on previously computed values as follows:

h(i, j) =

max

{
h(i− 1, j)∓ ϵ 1

|P|
i

i+j +B(i, j) i ≥ 1, j ≥ 0

h(i, j − 1) +G(i, j) i ≥ 0, j ≥ 1
,

with initial conditions h(1, 0) = ∓ϵ 1
|P| and h(0, 1) = 0.

Note that we used the pre-computed matrices of scores

B(i, j) = − 1

|P||N |
∑
k∈Nj

(ϕ(xi, w)− ϕ(xk, w))

G(i, j) =
1

|P||N |
∑
k∈Pi

(ϕ(xk, w)− ϕ(xj , w)).

Intuitively, the Bellman recursion considers two cases: (i)
how does the maximum score h(i, j) for the solution re-
stricted to sequences Pi and Nj change if we add a new
positive sample; (ii) how does the maximum score h(i, j)
change when adding a new negative sample. In both cases
we need to add the respective scores B(i, j) or G(i, j).
When adding a positive sample we additionally need to
consider a contribution from the precision which contains i
positive elements from a total of i+ j elements.

The matrices B(i, j) and G(i, j) store the additional con-
tribution to Eq. (6) obtained when adding a positive or a
negative sample respectively. They can be efficiently com-
puted ahead of time using the recursion

B(i, j) = B(i, j − 1)− 1

|P||N |
(ϕ(xi, w)− ϕ(xj , w))

G(i, j) = G(i− 1, j) +
1

|P||N |
(ϕ(xi, w)− ϕ(xj , w)),

with initial conditions B(i, 0) = 0, G(0, j) = 0.

We summarize our dynamic programming algorithm for
AP loss-augmented inference in Fig. 2. Note that after
having completed the matrix h(i, j) we can backtrack to
obtain the best loss-augmented ranking. We hence pre-
sented a general solution to solve positive and negative
loss-augmented inference defined in Eq. (3) for the AP loss
given in Eq. (4).

4. Experimental Evaluation
To evaluate the performance of our approach we perform
experiments on both synthetic and real datasets. We com-
pare the positive and negative version of our direct loss
minimization approach to a diverse set of baselines.

4.1. Synthetic data

Dataset: We generate synthetic data via a neural network
which assigns scalar scores to input vectors. The neural
network consists of four layers of rectified linear units with
parameters randomly drawn from independent Gaussians
with zero mean and unit variance. The input for a training
example is drawn from a 10 dimensional Gaussian, and the
output produced by the network is its score. We generate
20,000 examples, and sort them in descending order based
on their scores. The top 20% of the samples are assigned
to the positive set P and the remaining examples to the
negative set. We then randomly divide the generated data
into a training set containing 10,000 elements and a test
set containing the rest. We compare various loss functions
in terms of their ability to train the network to effectively
reproduce the original scoring function. To ensure that we
do not suffer from model mis-specification we employ the
same network structure when training the parameters from
random initializations. This synthetic experiment provides
a good test environment to compare these training methods,
as the mapping from input to scores is fairly complex yet
deterministic.

Algorithms: We evaluate the positive and negative ver-
sions of our direct loss minimization when using two dif-
ferent task losses: AP and 0-1 loss. For the latter we predict
for each sample xi whether it is a member of the set P or
whether it is part of the setN . We named these algorithms,
“pos-AP,” “neg-AP,” “pos-01,” and “neg-01.” We also eval-
uate training the network using hinge loss, when employ-
ing AP and 0-1 loss as the task losses. We called these
baselines “hinge-AP” and “hinge-01.” Note that “hinge-
AP” is equivalent to the approach of Yue et al. Yue et al.
(2007). We use the perceptron updates as additional base-
lines, which we call “per-AP” and “per-01.” Finally, the
last baseline uses maximum-likelihood (i.e., cross entropy)
to train the network. We call this approach “x-ent.” The pa-
rameters of all algorithms are individually determined via
grid search to produce the best AP on the training set.

Results: Fig. 3 shows AP results on the test set. We ob-
serve that the perceptron update does not perform well,
since it does not take the task loss into account and has
convergence issues. Contrary to the claim in (McAllester
et al., 2010) for linear models, the negative update for di-
rect loss is not competitive in our setting (i.e., non-linear
models). This might be due to the fact that it tends to
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(a) (b)

Figure 3. Experiments on synthetic data: (a) Average Precision (AP) on the test set as a function of the number of iterations (best view
in color). (b) The robustness of pos-AP compared to hinge-AP.

overly correct the classifier in noisy situations. Note the
resemblance of the perceptron method and the negative di-
rect loss minimization update: they are both trying to move
“towards better.” Therefore we expect the negative update
to behave similarly to the perceptron, i.e., more vulnerable
to noisy data. This resemblance also explains their strong
performance on the TIMIT dataset (Cheng et al., 2009;
McAllester et al., 2010), which is relatively easy and can
be handled well with linear models. For the same reason,
we expect the negative update to lead to better performance
in less noisy situations, e.g., if the data is nearly linearly
separable. To further examine this hypothesis we provide
additional experimental results in the supplementary mate-
rial.

The direct loss minimization of 0-1 loss does not work well.
It is likely that the sharp changes of the 0-1 loss result in
a ragged energy landscape that is hard to optimize, while
smoothing as performed by AP loss or surrogate costs helps
in this setting.

The hinge-AP algorithm of Yue et al. (2007) performs
slightly better than other algorithms based on 0-1 loss. This
shows that taking the AP loss into consideration helps im-
prove the performance measured by AP. It is also impor-
tant to note that when employing positive updates our di-
rect loss minimization outperforms all baselines by a large
margin. Note the resemblance between the structural SVM
update and positive direct loss minimization: they are both
moving “away from worse.” We believe that hinge loss
does not deal with label noise well as the update depends
on the ground truth more than the direct loss update. An-
other possible reason is that the hinge loss upper bound is

looser in this case. Taking the 0-1 loss as an example, the
hinge loss of each outlier is much larger than the cost mea-
sured by the 0-1 loss (which is at most 1) in noisy case.
This illustrates why the gap between hinge loss and target
loss is large in noisy situations in general.

To further examine the performance of pos-AP and hinge-
AP, we performed another small scale synthetic experi-
ment. We hypothesize that when the data contains outliers,
and more generally the labels are noisy, hinge loss will be-
come a worse approximation. We control the noise level in
the data as a way of testing this hypothesis. We randomly
generate 1000 10-dimensional data from N (0, 10). Datum
sample x is assigned to be positive when ∥x∥22 > 1200 and
negative when ∥x∥22 < 1000. The noise is incorporated
by randomly flipping a fixed percentage of labels. We use
the same neural network structure for this task, tune the pa-
rameters on the training set, and report their results on the
independent test set. As shown in Fig. 3(b) our method,
pos-AP, is more robust to noise.

Based on the results obtained from the synthetic experi-
ments, during the experimental evaluation on real datasets
we focus on comparing the positive non-linear direct loss
minimization (pos-AP) to the strong baseline of hinge-AP
Yue et al. (2007), as well as the standard approach of train-
ing based on cross-entropy.

4.2. Action classification task

Dataset: In the next experiment we use the PASCAL
VOC2012 action classification dataset provided by Ever-
ingham et al. (2014). The dataset contains 4588 images
and 6278 “trainval” person bounding boxes. For each of the
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noise level 0 10% 20% 30% 40%

method x-ent hinge-AP pos-AP x-ent hinge-AP pos-AP x-ent hinge-AP pos-AP x-ent hinge-AP pos-AP x-ent hinge-AP pos-AP

jumping 76.6 77.0 77.3 68.7 64.0 74.0 51.6 44.9 65.1 42.3 42.4 36.3 22.8 27.2 52.0
phoning 45.4 46.2 44.8 36.3 31.2 39.2 25.7 22.1 35.4 11.8 10.8 15.4 9.5 10.2 16.8

playing instrument 72.6 74.0 74.0 67.9 67.6 71.4 60.6 57.3 69.9 38.3 40.0 62.8 25.1 15.9 60.6
reading 50.3 50.6 50.6 40.1 36.8 43.4 27.0 22.1 40.1 17.9 15.9 17.3 13.8 15.8 9.6

riding bike 92.3 92.9 93.1 84.9 88.2 90.1 72.9 73.3 88.2 54.1 40.6 79.3 32.9 18.3 22.3
riding horse 89.1 92.0 92.4 78.4 82.8 84.9 70.2 77.8 79.4 45.7 48.0 69.7 25.1 28.4 53.2

running 82.3 84.0 84.8 77.9 76.9 76.2 64.6 57.3 75.8 40.5 44.0 71.3 17.7 9.3 29.8
taking photo 41.2 45.8 43.2 33.0 40.7 33.0 19.0 21.7 22.4 15.9 12.1 19.5 11.0 11.3 8.4

using computer 68.7 68.3 66.5 57.6 59.3 60.2 42.3 45.1 56.0 21.7 21.5 41.4 13.2 15.1 11.1
walking 61.3 68.0 68.2 51.9 53.3 52.2 39.0 35.1 46.1 29.1 24.6 46.3 11.2 16.2 32.6

mean 68.0 69.9 69.5 59.7 60.1 62.5 47.3 45.7 57.8 31.7 30.0 45.9 18.2 16.8 29.6

Table 1. Comparison of our direct AP loss minimization approach to two strong baselines, which utilize surrogate loss functions, on the
action classification task. Each method is evaluated for various amounts of label noise in the test dataset.

10 target classes, we divide the trainval dataset into equal-
sized training, validation and test sets. We tuned the learn-
ing rate, regularization weight, and ϵ for all the algorithms
based on their performance on the validation dataset, and
report the results on the test set. For all algorithms we used
the entire available training set in a single batch and per-
formed 300 iterations.

Algorithms: We train our non-linear direct loss mini-
mization as well as all the baselines individually for each
class. As baselines we again use a deep network trained
with cross entropy and also consider the structured SVM
method proposed by Yue et al. (2007). The deep net-
work used in these experiments follows the architecture
of Krizhevsky et al. (2012), with the top dimension ad-
justed to a single output. We initialize the parameters using
the weights trained on ILSVRC2012 (Russakovsky et al.,
2015). Inspired by the RCNN (Girshick et al., 2014), we
cropped the regions of each image with a padding of 16
pixels and interpolated them to a size of 227 × 227 × 3
to fit the input data dimension of the network. All the al-
gorithms we compare to as well as our approach use raw
pixels as input.

Results: Intuitively we expect direct loss minimization
to outperform surrogate loss functions whenever there is
a significant number of outliers in the data. To evaluate
this hypothesis, we conduct experiments by randomly flip-
ping a fixed number of labels. Our experiments shown in
Tab. 1 and Fig. 4 confirm our intuitions, and direct loss
works much better than hinge loss in the presence of la-
bel noise. When there is no noise, both algorithms perform
similarly.

4.3. Object detection task

Dataset: For object detection we use the PASCAL
VOC2012 object detection dataset collected by Evering-
ham et al. (2014). The dataset contains 5717 images for

Figure 4. This figure summarizes the effect of label noise in the
action classification task, by showing the mean AP on the test set
for different proportions of flipped labels. We compare the per-
formance of the strongest baseline method, the hinge-loss trained
network which uses AP as the task loss, versus our direct loss
method, pos-AP.

training, 5823 images for validation and 10991 images for
test. For each image, we use the fast mode of selective
search by Uijlings et al. (2013) to produce around 2000
bounding boxes. We train algorithms on the training set
and report results on the validation set.

Algorithms: On this dataset we follow the RCNN
paradigm (Girshick et al., 2014). We adjust the dimen-
sion of the top layer of the network (Krizhevsky et al.,
2012) to be one and fine-tune using weights pre-trained
on ILSVRC2012 (Russakovsky et al., 2015). We train di-
rect loss minimization for all 20 classes separately. In con-
trast to the action classification task, we cannot calculate
the overall AP in each iteration, due to the large number of
bounding boxes. Instead, we use the AP on each mini-batch
to approximate the overall AP. We find that using a batch



Training Deep Neural Networks via Direct Loss Minimization

ae
ro

pl
an

e

bi
cy

cl
e

bi
rd

bo
at

bo
ttl

e

bu
s

ca
r

ca
t

ch
ai

r

co
w

di
ni

ng
ta

bl
e

do
g

ho
rs

e

m
ot

or
bi

ke

pe
rs

on

po
tte

dp
la

nt

sh
ee

p

so
fa

tr
ai

n

tv
m

on
ito

r

m
ea

n

x-ent (0 label noise) 63.8 61.0 42.6 30.7 23.5 63.2 51.7 58.5 20.1 37.0 32.0 52.8 50.8 62.5 50.1 23.5 48.3 33.1 48.5 57.4 45.6
hinge-AP (0 label noise) 67.5 60.6 43.6 30.8 25.3 64.5 54.9 64.4 21.9 34.5 34.2 57.0 48.8 63.9 56.3 25.1 49.6 37.4 54.3 57.3 47.6
pos-AP (0 label noise) 65.1 59.8 43.7 31.4 27.7 64.6 53.1 63.7 25.6 40.2 36.2 58.1 52.8 63.6 56.2 28.1 50.0 38.9 50.0 61.3 48.5

hinge-AP (20% label noise) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
pos-AP (20% label noise) 52.8 54.0 33.6 20.9 20.0 50.6 45.9 55.7 23.1 26.4 35.2 47.2 39.7 54.2 53.3 22.5 42.6 32.5 40.5 55.0 40.3

Table 2. Comparison of our direct AP loss minimization approach to surrogate loss function optimization on the object detection task.

size of 512 balances computational complexity and perfor-
mance, though using a larger batch size (such as 2048) gen-
erally results in better performance. For our final results,
we use a learning rate of 0.1, a regularization parameter of
1 · 10−7, and ϵ = 0.1 for all classes.

As baselines, we evaluate a network which uses cross-
entropy and is trained separately for each class. Again, the
network structure was chosen to be identical and we use the
parameters provided by Krizhevsky et al. (2012) for initial-
ization. In addition, we consider the structured SVM al-
gorithm, which optimizes a surrogate of the AP loss. This
structured SVM was trained using the same batch size as
our direct loss minimization. We use a learning rate of 1,
and a regularization parameter of 1·10−7 for all classes. As
usual, we compare hinge-AP and pos-AP in the presence of
20% label noise.

Results: Tab. 2 shows competitive results of stochastic
direct loss minimization, outperforming the strongest base-
line by 0.9. Our direct loss minimization performs better
than hinge loss in this case. This is because the data for
training detectors are slightly noisier compared to the ac-
tion classification task, which is likely due to the common
method of data augmentation based on intersection-over-
union thresholds. To our astonishment, it becomes so hard
for hinge-AP to learn well with noise in this detection task
that it barely learns anything, while pos-AP only suffers
from a reasonable decrease.

5. Conclusion
In this paper we have proposed a direct loss minimization
approach to train deep neural networks. We have demon-
strated the effectiveness of our approach in the context of
maximizing average precision for ranking problems. This
involves minimizing a non-smooth and non-decomposable
loss. Towards this goal we have proposed a dynamic
programming algorithm that can efficiently compute the
weight updates. Our experiments showed that this is bene-
ficial when compared to a large variety of baselines in the
context of action classification and object detection, par-
ticularly in the presence of noisy labels. In the future, we
plan to investigate direct loss minimization in the context of

other non-decomposable losses, such as intersection over
union for semantic segmentation and shortest-path predic-
tions in graphs.
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