
Learning to Filter with Predictive State Inference Machines

A. Proof of Theorem. 4.1

Proof. We prove the theorem by induction. We start from t = 1. Under the assumption of infinite many training trajectories, m̂
1

is
exactly equal to m

1

, which is E
⌧

(�(f
1

)) (no observations yet, conditioning on nothing).

Now let us assume at time step t, we have all computed m̂⌧

j

equals to m⌧

j

for 1 j t on any trajectory ⌧ . Under the assumption of
infinite training trajectories, minimizing the empirical risk over D

t

is equivalent to minimizing the true risk E
⌧

[d(F (m⌧

t

, x⌧

t

), f⌧

t+1

)].
Since we use sufficient features for distribution P (f

t

|h
t�1

) and we assume the system is k-observable, there exists a underlying deter-
ministic map, which we denote as F ⇤

t

here, that maps m⌧

t

and x⌧

t

to m⌧

t+1

(Eq. 4 represents F ⇤
t

). Without loss of generality, for any ⌧ ,
conditioned on the history h⌧

t

, we have that for a noisy observation f⌧

t

:

�(f⌧

t+1

)|h⌧

t

= E[�(f⌧

t+1

)|h⌧

t

] + ✏ (13)
= m⌧

t+1

+ ✏ (14)
= F ⇤

t

(m⌧

t

, x⌧

t

) + ✏, (15)

where E[✏] = 0. Hence we have that F ⇤
t

is the operator of conditional expectation E[
�
�(f

t+1

)|h
t

�|m
t

, x
t

], which exactly computes the
predictive state m

t+1

= E[�(f⌧

t+1

)|h⌧

t

], given m⌧

t

and x⌧

t

on any trajectory ⌧ .

Since the loss d is a squared loss (or any other loss that can be represented by Bregman divergence), the minimizer of the true risk will
be the operator of conditional expectation E[

�
�(f

t+1

)|h
t

�|m
t

, x
t

]. Since it is equal to F ⇤ and we have F ⇤ 2 F due to the realizable
assumption, the risk minimization at step t exactly finds F ⇤

t

. Using m̂⌧

t

(equals to m⌧

t

based on the induction assumption for step t),
and x⌧

t

, the risk minimizer F ⇤ then computes the exact m⌧

t+1

for time step t + 1. Hence by the induction hypothesis, we prove the
theorem.

B. Proof of Theorem. 4.2

Under the assumption of infinitely many training trajectories, we can represent the objective as follows:

E
⌧⇠D

1

T

TX

t=1

d(F
t

(m̂⌧

t

, x⌧

t

), f⌧

t+1

) =

1

T

TX

t=1

E
(z,f)⇠!t

⇥
d(F

t

(z), f)
⇤

(16)

Note that each F
t

is trained by minimizing the risk:

F
t

= arg min

F⇠F
E
(z,f)⇠!t

⇥
d(F (z), f)

⇤
. (17)

Since we define ✏
t

= min

F⇠F E
(z,f)⇠!t

⇥
d(F (z), f)

⇤
, we have:

E
⌧⇠D

1

T

TX

t=1

d(F
t

(m̂⌧

t

, x⌧

t

), f⌧

t+1

) =

1

T

TX

t=1

E
(z,f)⇠!t

⇥
d(F

t

(z), f)
⇤ 1

T

X

t

✏
t

. (18)

Defining ✏
max

= max

t

{✏
t

}, we prove the theorem.

C. Proof of Theorem. 4.3

Proof. Without loss of generality, let us assume the loss d(F (z), f) 2 [0, 1]. To derive generalization bound using Rademacher
complexity, we assume that kF (z)k

2

and kfk
2

are bounded for any z, f, F 2 F , which makes sure that d(F (z), f) will be Lipschitz
continuous with respect to the first term F (z)6.

Given M samples, we further assume that we split M samples into T disjoint sets S
1

, ..., S
T

, one for each training process of F
i

, for
1 i T . The above assumption promises that the data S

t

for training each filter F
t

is i.i.d. Note that each S
i

now contains M/T i.i.d
trajectories.

Since we assume that at time step t, we use S
t

(rolling out F
1

, ..., F
t�1

on trajectories in S
t

) for training F
t

, we can essentially treat
each training step independently: when learning F

t

, the training data z, f are sampled from !
t

and are i.i.d.

Now let us consider time step t. With the learned F
1

, ..., F
t�1

, we roll out them on the trajectories in S
t

to get M

T

i.i.d samples of
(z, f) ⇠ !

t

. Hence, training F
t

on these M

T

i.i.d samples becomes classic empirical risk minimization problem. Let us define loss
class as L = {l

F

: (z, f) ! d(F (z), f) : F 2 F}, which is determined by F and d. Without loss of generality, we assume
l(z, f) 2 [0, 1], 8l 2 L. Using the uniform bound from Rademacher theorem (Mohri et al., 2012), we have for any F 2 F , with

6Note that in fact for the squared loss, d is 1-smooth with respect to its first item. In fact we can remove the boundness assumption
here by utilizing the existing Rademacher complexity analysis for smooth loss functions (Srebro et al., 2010).

Learning to Filter with Predictive State Inference Machines

probability at least 1� �0:

E
z,f⇠!t [d(F (z), f)]� T

M

X

i

d(F (zi), f i

)| (19)

 2R
t

(L) +
r

T ln(1/�0)

2M
, (20)

where R
t

(L) is Rademacher complexity of the loss class L with respect to distribution !
t

. Since we have F
t

is the empirical risk
minimizer, for any F ⇤

t

2 F , we have with probability at least 1� �0:

E
z,f⇠!t [d(Ft

(z), f)] E
z,f⇠!t [d(F

⇤
t

(zi), f i

)] + 4R
t

(L) + 2

r
T ln(1/�0)

2M
. (21)

Now let us combine all time steps together. For any F ⇤
t

2 F , 8t, with probability at least (1� �0)T , we have:

E
⌧⇠D⌧

h
1

T

TX

t=1

d(F
t

(m̂⌧

t

, x⌧

t

), f⌧

t+1

)

i
=

1

T

TX

t=1

E
z,f⇠dt

⇥
d(F

t

(z), f)
⇤

 1

T

TX

t=1

E
z,f⇠!t [d(F

⇤
t

(z), f)] + 4

¯R(L) + 2

r
T ln(1/�0)

2M

= E
⌧⇠D⌧

⇥
1

T

TX

t=1

d(F ⇤
t

(m̂⌧

t

, x⌧

t

), f⌧

t+1

)

⇤
+ 4

¯R(L) + 2

r
T ln(1/�0)

2M
, (22)

where ¯R(L) = (1/T)
P

T

t=1

R
t

(L) is the average Rademacher complexity. Inequality. 22 is derived from the fact the event that the
above inequality holds can be implied by the event that Inequality. 21 holds for every time step t (1 t T) independently. The
probability of Inequality. 21 holds for all t is at least (1� �0)T .

Note that in our setting d(F (z), f) = kF (z)�fk2
2

, and under our assumptions that kF (z)k
2

and kfk
2

are bounded for any z, f, F 2 F ,
d(F (z), f) is Lipschitz continuous with respect to its first item with Lipschitz constant equal to ⌫, which is sup

F,z,f

2kF (z) � fk
2

.
Hence, from the composition property of Rademacher number (Mohri et al., 2012), we have:

R
t

(L) ⌫R
t

(F), 8t. (23)

It is easy to verify that for T � 1, �0 2 (0, 1), we have (1� �0)T � 1� T �0. Let 1� T �0 = 1� �, and solve for �0, we get �0 = �/T .
Substitute Eq. 23 and �0 = �/T into Eq. 22, we prove the theorem.

Note that the above theorem shows that for fixed number training examples, the generalization error increase as ˜O(

p
T) (sublinear with

respect to T).

D. Case Study: Stationary Kalman Filter

To better illustrate PSIM, we consider a special dynamical system in this section. More specifically, we focus on the stationary Kalman
filter (Boots, 2012; Hefny et al., 2015) 7:

s
t+1

= As
t

+ ✏
s

, ✏
s

⇠ N (0, Q),

x
t

= Cs
t

+ ✏
x

, ✏
x

⇠ N (0, R). (24)

As we will show, the Stationary Kalman Filter allows us to explicitly represent the predictive states (sufficient statistics of the distributions
of future observations are simple). We will also show that we can explicitly construct a bijective map between the predictive state space
and the latent state space, which further enables us to explicitly construct the predictive state filter. We will show that the predictive state
filter is closely related to the original filter in the latent state space.

The k-observable assumption here essentially means that the observability matrix: O =

⇥
C CA CA2 ... CAk�1

⇤> is full
(column) rank. Now let us define P (s

t

|h
t�1

) = N (ŝ
t

,⌃
s

), and P (f
t

|h
t�1

) = N (

ˆf
t

,⌃
f

). Note that ⌃
s

is a constant for a stationary
Kalman filter (the Kalman gain is converged). Since ⌃

f

is purely determined by ⌃

s

, A, C, R, Q, it is also a constant. It is clear now

7For a well behaved system, the filter will become stationary (Kalman gain converges) after running for some period of time. Our
definition here is slightly different from the classic Kalman filter: we focus on filtering from P (s

t

|h
t�1

) (without conditioning on the
observation x

t

generated from s
t

) to P (s
t+1

|h
t

), while traditional Kalman filter usually filters from P (s
t

|h
t

) to P (s
t+1

|h
t+1

).

Learning to Filter with Predictive State Inference Machines

that ˆf
t

= Oŝ
t

. When the Kalman filter becomes stationary, it is enough to keep tracking ŝ
t

. Note that here, given ŝ
t

, we can compute
ˆf
t

; and given ˆf
t

, we can reveal ŝ
t

as O†
ˆf
t

, where O† is the pseudo-inverse of O. This map is bijective since O is full column rank due
to the k-observability.

Now let us take a look at the update of the stationary Kalman filter:

ŝ
t+1

= Aŝ
t

�A⌃

s

CT

(C⌃

s

CT

+R)

�1

(Cŝ
t

� x
t

) = Aŝ
t

� L(Cŝ
t

� x
t

), (25)

where we define L = A⌃

s

CT

(C⌃

s

CT

+R)

�1. Here due to the stationary assumption, ⌃
s

keeps constant across time steps. Multiple
O on both sides and plug in O†O, which is an identity, at proper positions, we have:

ˆf
t+1

= Oŝ
t+1

= OA(O†O)ŝ
t

�OL(CO†Oŝ
t

� x
t

)

= OAO†
ˆf
t

�OL(CO†
ˆf
t

� x
t

) =

˜A ˆf
t

� ˜L(˜C ˆf
t

� x
t

) (26)

=

⇥
˜A� ˜L ˜C ˜L

⇤
ˆf
t

x
t

�
, (27)

where we define ˜A = OAO†, ˜C = CO† and ˜L = OL. The above equation represents the stationary filter update step in predictive
state space. Note that the deterministic map from (

ˆf
t

,⌃
f

) and x
t

to (

ˆf
t+1

,⌃
f

) is a linear map (F defined in Sec. 4 is a linear function
with respect to ˆf

t

and x
t

). The filter update in predictive state space is very similar to the filter update in the original latent state space
except that predictive state filter uses operators (˜A, ˜C, ˜Q) that are linear transformations of the original operators (A,C,Q).

We can do similar linear algebra operations (e.g., multiply O and plug in O†O in proper positions) to recover the stationary filter in the
original latent state space from the stationary predictive state filter. The above analysis leads to the following proposition:
Proposition D.1. For a linear dynamical system with k-observability, there exists a filter in predictive state space (Eq. 27) that is
equivalent to the stationary Kalman filter in the original latent state space (Eq. 25).

We just showed a concrete bijective map between the filter with predictive states and the filter with the original latent states by utilizing
the observability matrix O. Though we cannot explicitly construct the bijective map unless we know the parameters of the LDS
(A,B,C,Q,R), we can see that learning the linear filter shown in Eq. 27 is equivalent to learning the original linear filter in Eq. 25 in a
sense that the predictive beliefs filtered from Eq. 27 encodes as much information as the beliefs filtered from Eq. 25 due to the existence
of a bijective map between predictive states and the beliefs for latent states.

D.1. Collection of Synthetic Data

We created a linear dynamical system with A 2 R3⇥3, C 2 R2⇥3, Q 2 R3⇥3, R 2 R2⇥2. The matrix A is full rank and its largest
eigenvalue is less than 1. The LDS is 2-observable. We computed the constance covariance matrix ⌃

s

, which is a fixed point of
the covariance update step in the Kalman filter. The initial distribution of s

0

is set to N (1,⌃
s

). We then randomly sampled 50000
observation trajectories from the LDS. We use half of the trajectories for training and the left half for testing.

E. Additional Experiments

With linear regression as the underlying filter model: m̂
t+1

= W [m̂T

t

, xT

t

]

T , where W is a 2-d matrix, we compare PSIM with back-
propagation using the solutions from DAgger as initialization to PSIM with DAgger, and PSIM with back-propagation with random
initialization. We implemented PSIM with Back-propagation in Theano (Bastien et al., 2012). For random initialization, we uniformly
sample non-zero small matrices to avoid gradient blowing up. For training, we use mini-batch gradient descent where each trajectory is
treated as a batch. We tested several different gradient descent approaches: regular gradient descent with step decay, AdaGrad (Duchi
et al., 2011), AdaDelta (Zeiler, 2012), RMSProp (Tieleman & Hinton, 2012). We report the best performance from the above approaches.
When using the solutions from PSIM with DAgger as an initialization for back-propagation, we use the same setup. We empirically
find that RMSProp works best across all our datasets for the inference machine framework, while regular gradient descent generally
performs the worst.

PSIM-Linear (DAgger) PSIM-Linear (Bp) PSIM-Linear (DAgger + Bp)
Robot Drill Assembly 2.15 2.54 2.09

Motion Capture 5.75 9.94 5.66

Beach Video Texture 164.23 268.73 164.08

Table 2. Comparison between PSIM with DAgger, PSIM with back-propagation using random initialization, and PSIM with back-
propagation using DAgger as initialization with ridge linear regression.

Tab. 2 shows the results of using different training methods with ridge linear regression as the underlying model.

Additionally, we test back-propagation for PSIM with Kernel Ridge regression as the underlying model: m̂
t+1

= W⌘(m̂
t

, x
t

), where
⌘ is a pre-defined, deterministic feature function that maps (m̂

t

, x
t

) to a reproducing kernel Hilbert space approximated with Random

Learning to Filter with Predictive State Inference Machines

Fourier Features (RFF). Essentially, we lift the inputs (m̂
t

, x
t

) into a much richer feature space (a scaled, and transition invariant
feature space) before feeding it to the next module. The results are shown in Table. 3. As we can see, with RFF, back-propagation
achieves better performance than back-propagation with simple linear regression (PSIM-Linear (Bp)). This is expected since using
RFF potentially captures the non-linearity in the underlying dynamical systems. On the other hand, PSIM with DAgger achieves better
results than back-propagation across all the datasets. This result is consistent with the one from PSIM with ridge linear regression.

PSIM-RFF (Bp) PSIM-RFF (DAgger) RNN

Robot Drill Assembly 2.54 1.80 1.99
Motion Capture 9.26 5.41 9.6
Beach Video Texture 202.10 130.53 346.0

Table 3. Comparison between PSIM with DAgger, PSIM with back-propagation using random initialization with kernel ridge linear
regression, and Recurrent Neural Network. For RNN, we use 100 hidden states for Robot Drill Assembly, 200 hidden states for motion
capture, and 2500 hidden states for Beach Video Texture.

Overall, several interesting observations are: (1) back-propagation with random initialization achieves reasonable performance (e.g.,
good performance on flag video compared to baselines), but worse than the performance of PSIM with DAgger. PSIM back-propagation
is likely stuck at locally optimal solutions in some of our datasets; (2) PSIM with DAgger and Back-propagation can be symbiotically
beneficial: using back-propagation to refine the solutions from PSIM with DAgger improves the performance. Though the improvement
seems not significant over the 400 epochs we ran, we do observe that running more epochs continues to improve the results; (3)
this actually shows that PSIM with DAgger itself finds good filters already, which is not surprising because of the strong theoretical
guarantees that it has.

