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Abstract
Latent state space models are a fundamental
and widely used tool for modeling dynamical
systems. However, they are difÞcult to learn
from data and learned models often lack perfor-
mance guarantees on inference tasks such as Þl-
tering and prediction. In this work, we present
the PREDICTIVE STATE INFERENCEMACHINE

(PSIM), a data-driven method that considers the
inference procedure on a dynamical system as
a composition of predictors. The key idea is
that rather than Þrst learning a latent state space
model, and then using the learned model for in-
ference, PSIM directly learns predictors for in-
ference in predictive state space. We provide the-
oretical guarantees for inference, in both realiz-
able and agnostic settings, and showcase prac-
tical performance on a variety of simulated and
real world robotics benchmarks.

1. Introduction

Data driven approaches to modeling dynamical systems is
important in applications ranging from time series fore-
casting for market predictions to Þltering in robotic sys-
tems. The classic generative approach is to assume that
each observation is correlated to the value of a latent
state and then model the dynamical system as a graph-
ical model, or latent state space model, such as aHid-
den Markov Model (HMM). To learn the parameters of the
model from observed data, Maximum Likelihood Estima-
tion (MLE) based methods attempt to maximize the like-
lihood of the observations with respect to the parameters.
This approach has proven to be highly successful in some
applications (Coates et al., 2008; Roweis & Ghahramani,
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1999), but has at least two shortcomings. First, it may be
difÞcult to Þnd an appropriate parametrization for the la-
tent states. If the model is parametrized incorrectly, the
learned model may exhibit poor performance on inference
tasks such as Bayesian Þltering or predicting multiple time
steps into the future. Second, learning a latent state space
model is difÞcult. The MLE objective is non-convex and
Þnding the globally optimal solution is often computation-
ally infeasible. Instead, algorithms such as Expectation-
Maximization (EM) are used to compute locally optimal
solutions. Although the maximizer of the likelihood objec-
tive can promise good performance guarantees when it is
used for inference, the locally optimal solutions returned
by EM typically do not have any performance guarantees.

Spectral Learning methods are a popular alternative to
MLE for learning models of dynamical systems (Boots,
2012; Boots et al., 2011; Hsu et al., 2009; Hefny et al.,
2015). This family of algorithms provides theoretical guar-
antees on discovering the global optimum for the model pa-
rameters under the assumptions of inÞnite training data and
realizability. However, in the non-realizable setting Ñ i.e.
model mismatch (e.g., using learned parameters of a Lin-
ear Dynamical System (LDS) model for a non-linear dy-
namical system) Ñ these algorithms lose any performance
guarantees on using the learned model for Þltering or other
inference tasks. For example, Kulesza et al. (2014) shows
when the model rank is lower than the rank of the under-
lying dynamical system, the inference performance of the
learned model may be arbitrarily bad.

Both EM and spectral learning suffer from limited theoreti-
cal guarantees: from model mismatch for spectral methods,
and from computational hardness for Þnding the global op-
timality of non-convex objectives for MLE-based methods.
In scenarios where our ultimate goal is to infer some quan-
tity from observed data, a natural solution is to skip the
step of learning a model, and instead directly optimize the
inference procedure. Toward this end, we generalize the
supervised message-passing Inference Machine approach
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of Ross et al. (2011b); Ramakrishna et al. (2014); Lin et al.
(2015). Inference machines do not parametrize the graph-
ical model (e.g., design of potential functions) and instead
directly train predictors that use incoming messages and
local features to predict outgoing messages via black-box
supervised learning algorithms. By combining the model
and inference procedure into a single object Ñ anInfer-
ence Machine Ñ we directly optimize the end-to-end qual-
ity of inference. This uniÞed perspective of learning and
inference enables stronger theoretical guarantees on the in-
ference procedure: the ultimate task that we care about.

One of the principal limitations of inference machines is
that they require supervision. If we only have access to ob-
servations during training, then there is no obvious way to
apply the inference machine framework to graphical mod-
els with latent states. To generalize Inference Machines
to dynamical systems with latent states, we leverage ideas
from Predictive State Representations (PSRs) (Littman
et al., 2001; Singh et al., 2004; Boots et al., 2011; Hefny
et al., 2015). In contrast to latent variable representations
of dynamical systems, which represent the belief state as a
probability distribution over the unobserved state space of
the model, PSRs instead maintain anequivalent belief over
sufÞcient features of future observations.

We propose PREDICTIVE STATE INFERENCEMACHINES

(PSIMs), an algorithm that treats the inference procedure
(Þltering) on a dynamical system as a composition of pre-
dictors. Our procedure takes the current predictive state
and the latest observation from the dynamical system as in-
puts and outputs the next predictive state (Fig. 1). Since
we have access to the observations at training, this imme-
diately brings the supervision back to our learning problem
Ñ we quantify the loss of the predictor by measuring the
likelihood that the actual future observations are generated
from the predictive state computed by the learner. PSIM
allows us to treat Þltering as a general supervised learning
problem handed-off to a black box learner of our choosing.
The complexity of the learner naturally controls the trade-
off between computational complexity and prediction accu-
racy. We provide two algorithms to train a PSIM. The Þrst
algorithm learns a sequence of non-stationary Þlters which
are provably consistent in the realizable case. The second
algorithm is more data efÞcient and learns a stationary Þlter
which has reduction-style performance guarantees.

The three main contributions of our work are: (1) we pro-
vide a reduction of unsupervised learning of latent state
space models to the supervised learning setting by leverag-
ing PSRs; (2) our algorithm, PSIM, directly minimizes er-
ror on the inference taskÑclosed loop Þltering; (3) PSIM
works for generalnon-linear latent state space models and
guarantees Þltering performance even in agnostic setting.

2. Related Work

In addition to the MLE-based approaches and the spectral
learning approaches mentioned in Sec. 1, there are several
supervised learning approaches related to our work. Data
as Demonstrator (DaD) (Venkatraman et al., 2015) applies
the Inference Machine idea to fully observable Markov
chains, and directly optimizes theopen-loop forward pre-
diction accuracy. In contrast, we aim to design anunsuper-
vised learning algorithm forlatent state space models (e.g.,
HMMs and LDSs) to improve the accuracy ofclosed loop
predictionÐBayesian Þltering. It is unclear how to apply
DaD to learning a Bayesian Þlter. Autoregressive models
(Wei, 1994) onk-th order fully observable Markov chains
(AR-k) use the most recentk observations to predict the
next observation. The AR model is not suitable for latent
state space models since the beliefs of latent states are con-
ditioned on theentire history. Learning mappings from en-
tire history to next observations is unreasonable and one
may need to use a largek in practice. A largek, how-
ever, increases the difÞculty of the learning problem (i.e.,
requires large computational and samples complexity).

In summary, our work is conceptually different from DaD
and AR models in that we focus on unsupervised learning
of latent state space models. Instead of simply predicting
next observation, we focus on predictive stateÑa distribu-
tion of future observations, as an alternative representation
of the beliefs of latent states.

3. Preliminaries

We consider uncontrolled discrete-time time-invariant dy-
namical systems. At every time stept, the latent state
of the dynamical system,s

t

2 Rm, stochastically gener-
ates an observation,x

t

2 Rn, from an observation model
P (x

t

|s
t

). The stochastic transition modelP (s
t+1 |s

t

) com-
putes the predictive distribution of states att + 1 given the
state at timet. We deÞne the belief of a latent states

t+1 as
the distribution ofs

t+1 given all the past observations up to
time stept: {x1, ..., xt

}, which we denote ash
t

.

3.1. Belief Propagation in Latent State Space Models

Let us deÞneb
t

as the beliefP (s
t

|h
t" 1). When the transi-

tion modelP (s
t+1 |s

t

) and observation modelP (x
t

|s
t

) are
known, the beliefb

t

can be computed by a special-case of
message passing called forward belief propagation:

b
t+1 =

1

P (x
t

|h
t" 1)

!

st

b
t

P (s
t+1 |s

t

)P (x
t

|s
t

)ds
t

. (1)

The above equation essentially maps the beliefb
t

and the
current observationx

t

to the next beliefb
t+1 .
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Consider the following linear dynamical system:

s
t+1 = As

t

+ ✏
s

, ✏
s

⇠ N (0, Q),

x
t

= Cs
t

+ ✏
x

, ✏
x

⇠ N (0, R), (2)

whereA 2 Rm# m is the transition matrix,C 2 Rn# m is
the observation matrix, andQ 2 Rm# m andR 2 Rn# n

are noise covariances. The Kalman Filter (Van Overschee
& De Moor, 2012) update implements the belief update
in Eq. 1. SinceP (s

t

|h
t" 1) is a Gaussian distribution, we

simply use the mean̂s
t

and the covariance⌃
t

to represent
P (s

t

|h
t" 1). The Kalman Filter update step can then be

viewed as a function that maps(ŝ
t

, ⌃
t

) and the observation
x

t

to (ŝ
t+1 , ⌃

t+1 ), which is a nonlinear map.

Given the sequences of observations{x
t

}
t

generated from
the linear dynamical system in Eq. 2, there are two com-
mon approaches to recover the parametersA, C, Q, R.
Expectation-Maximization (EM) attempts to maximize the
likelihood of the observations with respect to parameters
(Roweis & Ghahramani, 1999), but suffers from locally
optimal solutions. The second approach relies on Spec-
tral Learning algorithms to recoverA, C, Q, R up to a lin-
ear transformation (Van Overschee & De Moor, 2012).1

Spectral algorithms have two key characteristics: 1) they
use an observable state representation; and 2) they rely on
method-of-moments for parameter identiÞcation instead of
likelihood. Though spectral algorithms can promise global
optimality in certain cases, this desirable property does not
hold under model mismatch (Kulesza et al., 2014). In this
case, using the learned parameters for Þltering may result
in poor Þltering performance.

3.2. Predictive State Representations

Recently, predictive state representations and observable
operator models have been used to learn from, Þlter on, pre-
dict, and simulate time series data (Jaeger, 2000; Littman
et al., 2001; Singh et al., 2004; Boots et al., 2011; Boots &
Gordon, 2011; Hefny et al., 2015). These models provide
a compact and complete description of a dynamical system
that is easier to learn than latent variable models, by repre-
senting state as a set of predictions of observable quantities
such as future observations.

In this work, we follow a predictive state representation
(PSR) framework and deÞne state as the distribution of
f

t

= [xT

t

, ..., xT

t+ k" 1]
T 2 Rkn, a k-step Þxed-sized time

window of future observations{x
t

, ..., x
t+ k" 1} (Hefny

et al., 2015). PSRs assume that if we can predict everything
aboutf

t

at time-stept (e.g., the distribution off
t

), then we
also know everything there is to know about the state of a
dynamical system at time stept (Singh et al., 2004). We

1Sometimes calledsubspace identification (Van Overschee &
De Moor, 2012) in the linear time-invariant system context.

xt

E[! (f t )|ht ! 1]

xt �1

x
t+ k! 1xt +1 xt + k

Predictive 
State Filter 

x
1

E[! (f
t+1 )|h

t! 1, x
t

]

h
t�1

Figure 1. Filtering with predictive states for ak-observable sys-
tem. At time stept, the Þlter uses the beliefE[! (f

t

)|h
t�1

]
and the latest observationx

t

as feedback, outputs the next belief
E[! (f

t+1

)|h
t�1

, x
t

].

assume that systems we consider arek-observable2 for k 2
N+ : there is a bijective function that mapsP (s

t

|h
t" 1) to

P (f
t

|h
t" 1). For convenience of notation, we will present

our results in terms ofk-observable systems, where it suf-
Þces to select features from the nextk observations.

Following Hefny et al. (2015), we deÞne the predic-
tive state at time stept as E[�(f

t

)|h
t" 1] where � is

some feature function that is sufÞcient for the distri-
bution P (f

t

|h
t" 1). The expectation is taken with re-

spect to the distributionP (f
t

|h
t" 1): E[�(f

t

)|h
t" 1] ="

ft
�(f

t

)P (f
t

|h
t" 1)dft

. The conditional expectation can
be understood as a function of which the input is
the random variableh

t" 1. For example, we can set
E[�(f)|h

t" 1] = E[f, ffT |h
t" 1] if P (f

t

|h
t" 1) is a Gaus-

sian distribution (e.g., linear dynamical system in Eq. 2 );
or we can set�(f) = [x

t

⌦ ... ⌦ x
t+ k" 1] if we are work-

ing on a discrete models (discrete latent states and discrete
observations), wherex

t

is an indicator vector representa-
tion of the observation and⌦ is the tensor product. There-
fore, we assume that there exists a bijective function map-
ping P (f |h

t" 1) to E[�(f
t

)|h
t" 1]. For any testf$

t

, we can
compute the probability ofP (f$

t

|h
t" 1) by simply using the

predictive stateE[�(f
t

)|h
t" 1]. Note that the mapping from

E[�(f
t

)|h
t" 1] to P (f$

t

|h
t" 1) is not necessarily linear.

To Þlter from the current predictive stateE[�(f
t

)|h
t" 1] to

the next stateE[�(f
t+1 )|h

t

] conditioned on the most recent
observationx

t

(see Fig. 1 for an illustration), PSRs ad-
ditionally deÞne an extended stateE[⇣(f

t

, x
t+ k

)|h
t" 1] ="

(ft ,xt + k ) ⇣(f
t

, x
t+ k

)P (f
t

, x
t+ k

|h
t" 1)d(f

t

, x
t+ k

), where
⇣ is another feature function for the future observationsf

t

and one more observationx
t+ k

. PSRs explicitly assume
there exists a linear relationship betweenE[�(f

t

)|h
t" 1] and

E[⇣(f
t

, x
t+ k

)|h
t" 1], which can be learned byInstrumen-

tal Variable Regression (IVR) (Hefny et al., 2015). PSRs
then additionally assume a nonlinear conditioning operator
that can compute the next predictive state with the extended
state and the latest observation as inputs.

2This assumption allows us to avoid the cryptographic hard-
ness of the general problem (Hsu et al., 2009).
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4. Predictive State Inference Machines

The original Inference Machine framework reduces the
problem of learning graphical models to solving a set of
classiÞcation or regression problems, where the learned
classiÞers mimic message passing procedures that output
marginal distributions for the nodes in the model (Lang-
ford et al., 2009; Ross et al., 2011b; Bagnell et al., 2010).
However, Inference Machines cannot be applied to learn-
ing latent state space models (unsupervised learning) since
we do not have access to hidden statesÕ information.

We tackle this problem with predictive states. By using
an observable representation for state, observations in the
training data can be used for supervision in the inference
machine. More formally, instead of tracking the hidden
states

t

, we focus on the corresponding predictive state
E[�(f

t

)|h
t" 1]. Assuming that the given predictive state

E[�(f
t

)|h
t" 1] can reveal the probabilityP (f

t

|h
t" 1), we

use the training dataf
t

to quantify how good the predic-
tive state is by computing the likelihood off

t

. The goal is
to learn an operatorF (the green box in Fig. 1) whichde-
terministically passes the predictive states forward in time
conditioned on the latest observation:

E[�(f
t+1 )|h

t

] = F
#
E[�(f

t

)|h
t" 1], xt

$
, (3)

such that the likelihood of the observations{f
t

}
t

be-
ing generated from the sequence of predictive states
{E[�(f

t

)|h
t" 1]}t

is maximized. In the standard PSR
framework, the predictorF can be regarded as the com-
position of the linear mapping (from predictive state to
extended state) and the conditioning operator. Below we
show if we can correctly Þlter with predictive states, then
this is equivalent to Þltering with latent states as in Eq. 1.

4.1. Predictive State Propagation

The belief propagation in Eq. 1 is for latent statess
t

.
We now describe the corresponding belief propagation
for updating the predictive state fromE[�(f

t

)|h
t" 1] to

E[�(f
t+1 )|h

t

] conditioned on the new observationx
t

.
Since we assume that the mapping fromP (s

t

|h
t" 1)

to P (f
t

|h
t" 1) and the mapping fromP (f

t

|h
t" 1) to

E[�(f
t

)|h
t" 1] are both bijective, there must exist a bijec-

tive mapq and its inverseq" 1 such thatq(P (s
t

|h
t" 1)) =

E[�(f
t

)|h
t" 1] and q

" 1
(E[�(f

t

)|h
t" 1]) = P (s

t

|h
t" 1),3

then the message passing in Eq. 1 is also equivalent to:

E[�(f
t+1 )|h

t

] = q(P (s
t+1 |h

t

)) (4)

= q

%!

st

P (s
t

|h
t" 1)P (s

t+1 |s
t

)P (x
t

|s
t

)

P (x
t

|h
t" 1)

ds
t

&

= q

%!

st

q

" 1
(E[�(f

t

)|h
t" 1])P (s

t+1 |s
t

)P (x
t

|s
t

)

P (x
t

|h
t" 1)

ds
t

&

3The composition of two bijective functions is bijective.

Eq. 4 explicitly deÞnes the mapF that takes the inputs
of E[�(f

t

)|h
t" 1] andx

t

and outputsE[�(f
t+1 )|h

t

]. This
map F could be non-linear since it depends the transi-
tion modelP (s

t+1 |s
t

), observation modelP (x
t

|s
t

) and
function q, which are all often complicated, non-linear
functions in real dynamical systems. We do not place
any parametrization assumptions on the transition and ob-
servation models. Instead, we parametrize and restrict
the class of predictors to encode the underlying dynam-
ical system and aim to Þnd a predictorF from the re-
stricted class. We call this framework for inference the
PREDICTIVE STATE INFERENCEMACHINE (PSIM).

PSIM is different from PSRs in the following respects:
(1) PSIM collapses the two steps of PSRs (predict the ex-
tended state and then condition on the latest observation)
into one stepÑas an Inference MachineÑfor closed-loop
update of predictive states; (2) PSIM directly targets the
Þltering task and has theoretical guarantees on the Þlter-
ing performance; (3) unlike PSRs where one usually needs
to utilize linear PSRs for learning purposes (Boots et al.,
2011), PSIM can generalize to non-linear dynamics by
leveraging non-linear regression or classiÞcation models.

Imagine that we can perform belief propagation with PSIM
in predictive state space as shown in Eq. 4, then this is
equivalent to classic Þlter with latent states as shown in
Eq. 1. To see this, we can simply applyq

" 1 on both sides
of the above equation Eq. 4, which exactly reveals Eq. 1.
We refer readers to the Appendix for a detailed case study
of the stationary Kalman Filter, where we explicitly show
this equivalence. Thanks to this equivalence, we can learn
accurate inference machines, even for partially observable
systems. We now turn our focus on learning the mapF in
the predictive state space.

4.2. Learning Non-stationary Filters with Predictive
States

For notational simplicity, let us deÞne trajectory as⌧ ,
which is sampled from a unknown distributionD

⌧

. We
denote the predictive state asm

t

= E[�(f
t

)|h
t" 1]. We

usem̂
t

to denote an approximation ofm
t

. Given a pre-
dictive statem

t

and a noisy observationf
t

conditioned on
the historyh

t" 1, we let the loss function4 d(m
t

, f
t

) =

km
t

� �(f
t

)k2
2. This squares loss function can be re-

garded as matching moments. For instance, in the station-
ary Kalman Þlter setting, we could setm

t

= E[f
t

|h
t" 1]

andd(m
t

, f
t

) = km
t

� f
t

k2
2 (matching the Þrst moment).

4Squared loss in an example Bregman divergence of which
there are others that are optimized by the conditional expecta-
tion (Banerjee et al., 2005). We can designd(m

t

, f
t

) as nega-
tive log-likelihood, as long as it can be represented as a Bregman
divergence (e.g., negative log-likelihood of distributions in expo-
nential family).
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Algorithm 1 PREDICTIVE STATE INFERENCEMACHINE

(PSIM) with Forward Training

1: Input: M independent trajectories⌧
i

, 1  i M ;
2: Setm̂1 =

1
M

'
M

i=1 �(f i

1);
3: Setm̂i

1 = m̂1 for trajectory⌧
i

, 1  i M ;
4: for t = 1 to Tdo
5: For each trajectory⌧

i

, add the inputzi

t

= (m̂i

t

, xi

t

) to
D

t

as feature variables and the correspondingf i

t+1
to D

t

as the targets;
6: Train a hypothesisF

t

on D
t

to minimize the loss
d(F (z), f) overD

t

;
7: For each trajectory⌧

i

, roll out F1, ..., Ft

along the
trajectory (Eq. 6) to computêmi

t+1 ;
8: end for
9: Return: the sequence of hypothesis{F

t

}N

t=1 .

We Þrst present a algorithm for learning non-stationary Þl-
ters usingForward Training (Ross & Bagnell, 2010) in
Alg. 1. Forward Training learns a non-stationary Þlter for
each time step. Namely, at time stept, forward training
learns a hypothesisF

t

that approximates the Þltering proce-
dure at time stept: m̂

t+1 = F
t

(m̂
t

, x
t

), wherem̂
t

is com-
puted byF

t" 1(m̂t" 1, xt" 1) and so on. Let us deÞnêmi

t

as the predictive state computed by rolling outF1, .., Ft" 1

on trajectory⌧
i

to time stept � 1. We deÞnef i

t

as the
nextk observations starting at time stept on trajectory⌧

i

.
At each time stept, the algorithm collects a set of training
dataD

t

, where the feature variablesz
t

consist of the pre-
dictive stateŝmi

t

from the previous hypothesisF
t" 1 and the

local observationsxi

t

, and the targets consist of the corre-
sponding future observationsf i

t+1 across all trajectories⌧
i

.
It then trains a new hypothesisF

t

over the hypothesis class
F to minimize the loss over datasetD

t

.

PSIM with Forward Training aims to Þnd a good sequence
of hypotheses{F

t

} such that:

min

F1 %F ,...FT %F
E

⌧&D !

(
1

T

T)

t=1

d(F
t

(m̂⌧

t

, x⌧

t

), f⌧

t+1 )

*
, (5)

s.t. m̂⌧

t+1 = F
t

(m̂⌧

t

, x⌧

t

), 8t 2 [1, T � 1], (6)

wherem̂1 = arg min

m

'
M

t=1 d(m, f i

1), which is equal to
1
T

'
T

i=1 �(f i

i

). Let us deÞne!
t

as the joint distribution
of feature variablesz

t

and targetsf
t+1 after rolling out

F1, ..., Ft" 1 on the trajectories sampled fromD
⌧

. Under
this deÞnition, the Þlter error deÞned above is equivalent

to 1
T

'
T

t=1 E(z,f )& !t

(
d(F

t

(z), f)

*
. Note essentially the

datasetD
t

collected by Alg. 1 at time stept forms a Þnite
sample estimation of!

t

.

To analyze the consistency of our algorithm, we assume
every learning problem can be solved perfectly (risk mini-
mizer Þnds the Bayes optimal) (Langford et al., 2009). We

Þrst show that under inÞnite many training trajectories, and
in realizable case Ñ the underlying true ÞltersF !

1 , ..., F !
T

are in the hypothesis classF , Alg. 1 is consistent:

Theorem 4.1. With infinite many training trajectories and
in the realizable case, if all learning problems are solved
perfectly, the sequence of predictors F1, F2, ..., FT

from
Alg. 1 can generate exact predictive states E[�(f⌧

t

)|h⌧

t" 1]

for any trajectory ⌧ ⇠ D
⌧

and 1  t  T .

We include all proofs in the appendix. Next for the
agnostic case, we show that Alg. 1 can still achieve
a reasonable upper bound. Let us deÞne✏

t

=

min

F &F E(z,f )& !t [d(F (z), f)], which is the minimum
batch training error under the distribution of inputs re-
sulting from hypothesis classF . Let us deÞne✏max =

max

t

{✏
t

}. Under inÞnite many training trajectories, even
in the model agnostic case, we have the following guaran-
tees for Þltering error for Alg. 1:

Theorem 4.2. With infinite many training trajectories, for
the sequence {F

t

}
t

generated by Alg. 1, we have:

E
⌧&D !

(
1

T

T)

t=1

d(F
t

(m̂⌧

t

, x⌧

t

), f⌧

t+1 )

*
=

1

T

)

t

✏
t

 ✏
max

.

Theorem. 4.2 shows that the Þltering error is upper-
bounded by the average of the minimum batch training er-
rors from each step. If we have a rich class of hypotheses
and small noise (e.g., small Bayes error),✏

t

could be small.

To analyze Þnite sample complexity, we need to split the
dataset intoT disjoint sets to make sure that the samples in
the datasetD

t

are i.i.d (see details in Appendix). Hence we
reduce forward training toT independent passive super-
vised learning problems. We have the following agnostic
theoretical bound:
Theorem 4.3. With M training trajectories, for any F !

t

2
F , 8t, we have with probability at least 1� �:

E
⌧⇠D!

h 1
T

TX

t=1

d(F
t

( öm⌧

t

, x⌧

t

), f ⌧

t+1

)
i

 E
⌧⇠D!

⇥ 1
T

TX

t=1

d(F ⇤
t

( öm⌧

t

, x⌧

t

), f ⌧

t+1

)
⇤

+ 4 " øR(F ) + 2

r
T ln( T/# )

2M
, (7)

where v = sup
F,z,f

2kF (z) � f k
2

, øR(F ) = 1

T

P
T

t=1

R
t

(F ))
and R

t

(F ) is the Rademacher number of F under $
t

.

As one might expect, the learning problem becomes harder
asT increases, however our Þnite sample analysis shows
the average Þltering error grows sublinearly as˜O(

p
T ).

Although Alg. 1 has nice theoretical properties, one short-
coming is that it is not very data efÞcient. In practice, it
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is possible that we only have small number of training tra-
jectories but each trajectory is long (T is big). This means
that we may have few training data samples (equal to the
number of trajectories) for learning hypothesisF

t

. Also,
instead of learning non-stationary Þlters, we often prefer to
learn a stationary Þlter such that we can Þlter indeÞnitely.
In the next section, we present a different algorithm that
utilizesall of the training data to learn a stationary Þlter.

4.3. Learning Stationary Filters with Predictive States

The optimization framework for Þnding a good stationary
ÞlterF is deÞned as:

min

F %F
E

⌧&D !

1

T

T)

t=1

d(F (m̂
t

, x
t

), f
t+1 ), (8)

s.t m̂
t+1 = F (m̂

t

, x
t

), 8t 2 [1, T � 1], (9)

wherem̂1 = arg min

m

'
M

t=1 d(m, f i

1) =

1
T

'
T

i=1 �(f i

i

).
Note that the above objective function is non-convex,
sincem̂

t

is computed recursively and in fact is equal to
F (...F (F (m̂1, x1), x2)...), where we havet � 1 nested
F . As we show experimentally, optimizing this objective
function via Back-Propagation likely leads to local optima.
Instead, we optimize the above objective function using
an iterative approach called Dataset Aggregation (DAgger)
(Ross et al., 2011a) (Alg. 2). Due to the non-convexity of
the objective, DAgger also will not promise global opti-
mality. But as we will show, PSIM with DAgger gives us
a sound theoretical bound for Þltering error.

Given a trajectory⌧ and hypothesisF , we deÞnem̂⌧,F

t

as the predictive belief generated byF on ⌧ at time step
t. We also deÞnez⌧,F

t

to represent the feature variables
(m̂⌧,F

t

, x⌧

t

). At iteration n, Alg. 2 rolls out the predic-
tive states using its current hypothesisF

n

(Eq. 9) on all
the given training trajectories (Line. 2). Then it collects all
the feature variables{(m̂i,Fn

t

, xi

t

)}
t,i

and the correspond-
ing target variables{f i

t+1 }
t,i

to form a new datasetD$
n

and
aggregates it to the original datasetD

n" 1. Then a new hy-
pothesisF

n

is learned from the aggregated datasetD
n

by
minimizing the lossd(F (z), f) overD

n

.

Alg. 2 essentially utilizes DAgger to optimize the non-
convex objective in Eq. 8. By using DAgger, we can guar-
antee a hypothesis that, when used during Þltering, per-
forms nearly as well as when performing regression on the
aggregate datasetD

N

. In practice, with a rich hypothe-
sis classF and small noise (e.g., small Bayes error), small
regression error is possible. We now analyze the Þltering
performance of PSIM with DAgger below.

Let us Þx a hypothesisF and a trajectory⌧ , we
deÞne !

F,⌧

as the uniform distribution of(z, f):

!
F,⌧

= U
(
(z⌧,F

1 , f⌧

2 ), ..., (z⌧,F

T

, f⌧

T +1 )

*
. Now we

Algorithm 2 PREDICTIVE STATE INFERENCEMACHINE

(PSIM) with DAgger

1: Input: M independent trajectories⌧
i

, 1  i M ;
2: Initialize D0  ; and initalizeF0 to be any hypothesis

in F ;
3: Initialize m̂1 =

1
M

'
M

i=1 �(f i

1)

4: for n = 0 to Ndo
5: UseF

n

to perform belief propagation (Eq. 9) on tra-
jectory⌧

i

, 1  i M
6: For each trajectory⌧

i

and each time stept, add the
input zi

t

= (mi,Fn
t

, xi

t

) encountered byF
n

to D$
n+1

as feature variables and the correspondingf i

t+1 to
D$

n+1 as the targets ;
7: Aggregate datasetD

n+1 = D
n

[D$
n+1 ;

8: Train a new hypothesisF
n+1 on D

n+1 to minimize
the lossd(F (m, x), f);

9: end for
10: Return: the best hypothesisˆF 2 {F

n

}
n

on validation
trajectories.

can rewrite the Þltering error in Eq. 8 asL(F ) =

E
⌧

[E
z,f& !F,! [d(F (z), f)]|⌧ ]. Let us deÞne the loss func-

tion for any predictorF at iterationn of Alg. 2 as:

L
n

(F ) = E
⌧

[E
z,f& !F n ,! [d(F (z), f)]|⌧ ]. (10)

As we can see, at iterationn, the datasetD$
n

that we collect
forms an empirical estimate of the lossL

n

:

ˆL
n

(F ) =

1

M

M)

⌧=1

E
z,f& !F n ,!

%
d(F (z), f)

&
. (11)

We Þrst analyze the algorithm under the assumption that
M = 1, ˆL

n

(F ) = L
n

(F ). Let us deÞneRegret �
N

as: 1
N

'
N

n=1 L
n

(F
n

) � min

F %F
1
N

'
N

n=1 L
n

(F )  �
N

.
We also deÞne the minimum average training error✏

N

=

min

F %F
1
N

'
N

n=1 L
n

(F ). Alg. 2 can be regarded as run-
ning the Follow the Leader (FTL) (Cesa-Bianchi et al.,
2004; Shalev-Shwartz & Kakade, 2009; Hazan et al., 2007)
on the sequence of loss functions{L

n

(F )}N

n=1 . When the
loss functionL

n

(F ) is strongly convex with respect toF ,
FTL is no-regret in a sense thatlim

N '( �
N

= 0. Ap-
plying Theorem 4.1 and its reduction to no-regret learning
analysis from (Ross et al., 2011a) to our setting, we have
the following guarantee for Þltering error:

Corollary 4.4. (Ross et al., 2011a) For Alg. 2, there exists
a predictor ˆF 2 {F

n

}N

n=1 such that:

L(

ˆF ) = E
⌧

+
E

z,f& ! öF ,!
(d(

ˆF (z), f))|⌧
,
 �

N

+ ✏
N

.

As we can see, under the assumption thatL
n

is strongly
convex, asN ! 1, �

N

goes to zero. Hence the Þltering
error of ˆF is upper bounded by the minimum batch training
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N4SID IVR PSIM-Linear
d

PSIM-Linear
b

PSIM-RFF
d

Traj. Pwr
Robot Drill Assembly 2.87±0.2 2.39±0.1 2.15±0.1 2.54±0.1 1.80±0.1 27.90
Motion Capture 7.86± 0.8 6.88± 0.7 5.75±0.5 9.94±2.9 5.41± 0.5 107.92
Beach Video Texture 231.33±10.5 213.27±11.5 164.23±8.7 268.73±9.5 130.53±9.1 873.77
Flag Video Texture 3.38e3±1.2e2 3.38e3±1.3e2 1.28e3±7.1e1 1.31e3±6.4e1 1.24e3±9.6e1 3.73e3

Table 1. Filter error (1-step ahead) and standard deviation on different datasets. We see that using PSIM with DAgger with both RFF
and Linear outperforms the spectral methods N4SID and IVR, with the RFF performing better on almost all the datasets. DAgger (20
iterations) trains a better linear regression for PSIM than back-propagation with random initialization (400 epochs). We also give the
average trajectory power for the true observations from each dataset.

error that could be achieved by doing regression onD
N

within classF . In general the term✏
N

depends on the noise
of the data and the expressiveness of the hypothesis class
F . Corollary. 4.4 also shows for fully realizable and noise-
free case, PSIM with DAgger Þnds the optimal Þlter that
drives the Þltering error to zero whenN !1.

The Þnite sample analysis from (Ross et al.,
2011a) can also be applied to PSIM. Let us deÞne
✏̂
N

= min

F %F
1
N

ˆL
n

(F ), �̂
N

� 1
N

'
N

n=1
ˆL

n

(F
n

) �
min

F %F
1
N

'
N

n=1
ˆL

n

(F ), we have:

Corollary 4.5. (Ross et al., 2011a) For Alg. 2, there exists
a predictor ˆF 2 {F

n

}N

n=1 such that with probability at
least 1� �:

L ( öF ) = E
⌧

⇥
E

z,f⇠! öF ,!
(d( öF (z), f )) |%⇤  ö&

N

+ ö'
N

+ L
max

(

r
2 ln(1/# )

MN
). (12)

5. Experiments

We evaluate the PSIM on a variety of dynamical system
benchmarks. We use two feature functions:�1(ft

) =

[x
t

, ..., x
t+ k" 1], which stack thek future observations

together (hence the messagem can be regarded as a
prediction of futurek observations(x̂

t

, .., x̂
t+ k" 1)), and

�2(ft

) = [x
t

, ..., x
t+ k" 1, xt

2, ..., x2
t+ k" 1], which includes

second moments (hencem represents a Gaussian distri-
bution approximating the true distribution of future obser-
vations). To measure how good the computed predictive
states are, we extractx̂

i

from m̂
t

, and evaluatekx̂
i

� x
i

k2
2,

the squared distance between the predicted observationx̂
i

and the corresponding true observationx
i

. We implement
PSIM with DAgger using two underlying regression meth-
ods: ridge linear regression (PSIM-Linear

d

) and linear
ridge regression with Random Fourier Features (PSIM-
RFF

d

) (Rahimi & Recht, 2007)5. We also test PSIM with
back-propagation for linear regression (PSIM-Linear

b

).
We compare our approaches to several baselines: Autore-
gressive models (AR), Subspace State Space System Iden-
tiÞcation (N4SID) (Van Overschee & De Moor, 2012), and
PSRs implemented withIVR (Hefny et al., 2015).

5With RFF, PSIM approximately embeds the distribution of
f
t

into a Reproducing Kernel Hilbert Space.

Figure 2. The convergence rate of different algorithms. The ratios
(y-axis) are computed aslog( e

eF
) for errore from corresponding

algorithms. The x-axis is computed aslog(N ), whereN is the
number of trajectories used for training.

5.1. Synthetic Linear Dynamical System

First we tested our algorithms on a synthetic linear dynami-
cal system (Eq. 2) with a 2-dimensional observationx. We
designed the system such that it is exactly2-observable.
The sequences of observations are collected from the linear
stationary Kalman Þlter of the LDS (Boots, 2012; Hefny
et al., 2015). The details of the LDS are in Appendix.

Since the data is collected from the stationary Kalman
Þlter of the2-observable LDS, we setk = 2 and use
�1(ft

) = [x
t

, x
t+1 ]. Note that the 4-dimensional pre-

dictive stateE[�1(ft

)|h
t

] will represent the exact condi-
tional distribution of observations(x

t

, x
t+1 ) and therefore

is equivalent toP (s
t

|h
t" 1) (see the detailed case study for

LDS in Appendix). With linear ridge regression, we test
PSIM with forward training, PSIM with DAgger, and AR
models (AR-k) with different lengths (k steps of past ob-
servations) of history on this dataset. For each method, we
compare the average Þltering errore to e

F

which is com-
puted by using the underlying linear ÞlterF of the LDS.

Fig. 2 shows the convergence trends of PSIM with DAg-
ger, PSIM with Forward Training, and AR as the number of
training trajectoriesN increases. The prediction error for
AR with k = 5, 10, 20 is too big to Þt into the plot. PSIM
with DAgger performs much better with few training data
while Forward Training eventually slightly surpasses DAg-
ger with sufÞcient data. The AR-k models need long his-
tories to perform well given data gnereated by latent state
space models, even for this 2-observable LDS. Note AR-
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Figure 3. Filter error for multiple look ahead steps for the future predictions shown for a few of the datasets. We see across datasets that
the performance of both IVR and N4SID are signiÞcantly worse than using PSIM with either linear or random Fourier feature+ linear
learner. For some datasets, the nonlinearity of the random Fourier features helps to improve the performance.

35 performs regression in a 70-dimensional feature space
(35 past observations), while PSIM only uses 6-d features
(4-d predictive state + 2-d current observation). This shows
thatpredictive state is a more compact representation of the
history and can reduce the complexity of learning problem.

5.2. Real Dynamical Systems

We consider the following three real dynamical systems:
(1) Robot Drill Assembly: the dataset consists of 96 sensor
telemetry traces, each of length 350, from a robotic manip-
ulator assembling the battery pack on a power drill. The 13
dimensional noisy observations consist of the robot armÕs
7 joint torques as well as the the 3D force and torque vec-
tors. Note the Þxed higher level control policy for the drill
assembly task is not given in the observations and must
be learned as part of the dynamics; (2)Human Motion
Capture: the dataset consists of 48 skeletal tracks of 300
timesteps each from a Vicon motion capture system from
three human subjects performing walking actions. The ob-
servations consist of the 3D positions of the various skeletal
parts (e.g. upperback, thorax, clavicle, etc.); (3)Video Tex-
tures: the datasets consists of one video offlag waving and
the other one of waves on abeach.

For these dynamical systems, we do not test PSIM with
Forward Training since our benchmarks have a large num-
ber of time steps per trajectory. Throughout the experi-
ments, we setk = 5 for all datasets except for video tex-
tures, where we setk = 3. For each dataset, we ran-
domly pick a small number of trajectories as a validation
set for parameter tuning (e.g., ridge, rank for N4SID and
IVR, band width for RFF). We partition the whole dataset
into ten folds, train all algorithms on 9 folds and test on
1 fold. For the feature function�1, the average one-step
Þltering errors and its standard deviations across ten folds
are shown in Tab. 1. Our approaches outperforms the two
baselines across all datasets. Since the datasets are gener-
ated from complex dynamics, PSIM with RFF exhibits bet-
ter performance than PSIM with Linear. This experimen-
tally supports our theorems suggesting that with powerful
regressors, PSIM could perform better. We implement
PSIM with back-propagation using Theano with several

training approaches: gradient descent with step decay, RM-
SProp (Tieleman & Hinton, 2012) and AdaDelta (Zeiler,
2012) (see Appendix. E). With random initialization, back-
propagation does not achieve comparable performance, ex-
cept on the ßag video, due to local optimality.We observe
marginal improvement by using back-propogation to reÞne
the solution from DAgger. This shows PSIM with DAgger
Þnds good models by itself (details in Appendix. E). We
also compare these approaches for multi-step look ahead
(Fig. 3). PSIM consistently outperforms the two baselines.

To show predictive states with largerk encode more infor-
mation about latent states, we additionally run PSIM with
k = 1 using�1 . PSIM (DAgger) withk = 5 outper-
formsk = 1 by 5% for robot assembly dataset, 6% for mo-
tion capture, 8% for ßag and 32% for beach video. Includ-
ing belief over longer futures into predictive states can thus
capture more information and increase the performance.

For feature function�2 andk = 5, with linear ridge regres-
sion, the 1-step Þlter error achieved by PSIM with DAgger
across all datasets are:2.05 ± 0.08 on Robot Drill Assem-
bly, 5.47 ± 0.42 on motion capture,154.02 ± 9.9 on beach
video, and1.27e3 ± 13e1 on ßag video. Comparing to the
results shown in thePSIM-Linear

d

in column of Table. 1,
we achieve slightly better performance on all datasets, and
noticeably better performance on the beach video texture.

6. Conclusion
We introduced PREDICTIVE STATE INFERENCE MA-
CHINES, a novel approach to directly learn to Þlter with
latent state space models. Leveraging ideas from PSRs,
PSIM reduces the unsupervised learning of latent state
space models to a supervised learning setting and guaran-
tees Þltering performance for general non-linear models in
both the realizable and agnostic settings.
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