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Abstract 1999), but has at least two shortcomings. First, it may be
Latent state space models are a fundamental difbcult to bPnd an appropriate paramgtrizgtion for the la-
and widely used tool for modeling dynamical tent states. If the mod.el' is parametrized mcorrgctly, the
systems. However, they are difbcult to learn learned model may e_thlblt poor performar_lce on |r_1fere_nce
from data and learned models often lack perfor- tasks such as Bayesian pltering or predicting multiple time
mance guarantees on inference tasks such as bl- steps irjto Fhe future. Second, I_eaming_ a latent state space
tering and prediction. In this work, we present model is difbcult. The MLE objective is non-convex and
the PREDICTIVE STATE INFERENCEMACHINE Pnding the globally optimal solution is often computation-
(PSIM), a data-driven method that considers the ally infeasible. Instead, algorithms such as Expectation-
inference procedure on a dynamical system as ~ Maximization (EM) are used to compute locally optimal
a composition of predictors. The key idea is solutions. Although the maximizer of the likelihood objec-

that rather than brst learning a latent state space tive can promise good performance guarantees when it is

model, and then using the learned model for in- used for inference, the locally optimal solutions returned
ference, PSIM directly learns predictors for in- by EM typically do not have any performance guarantees.
ference in predictive state space. We provide the-  Spectral Learning methods are a popular alternative to
oretical guarantees for inference, in both realiz-  MLE for learning models of dynamical systems (Boots,

able and agnostic settings, and showcase prac-  2012; Boots et al., 2011; Hsu et al., 2009; Hefny et al.,
tical performance on a variety of simulated and 2015). This family of algorithms provides theoretical guar-
real world robotics benchmarks. antees on discovering the global optimum for the model pa-
rameters under the assumptions of inbnite training data and
. realizability. However, in the non-realizable setting N i.e.
1. Introduction model mismatch (e.g., using learned parameters of a Lin-
igar Dynamical System (LDS) model for a non-linear dy-
namical system) N these algorithms lose any performance
guarantees on using the learned model for bltering or other
ference tasks. For example, Kulesza et al. (2014) shows
en the model rank is lower than the rank of the under-
ying dynamical system, the inference performance of the
learned model may be arbitrarily bad.

Data driven approaches to modeling dynamical systems i
important in applications ranging from time series fore-
casting for market predictions to Pbltering in robotic sys-:
tems. The classic generative approach is to assume th
each observation is correlated to the value of a laten
state and then model the dynamical system as a grap
ical model, or latent state space model, such d%i&
den Markov Model (HMM). To learn the parameters of the Both EM and spectral learning suffer from limited theoreti-
model from observed data, Maximum Likelihood Estima- cal guarantees: from model mismatch for spectral methods,
tion (MLE) based methods attempt to maximize the like-and from computational hardness for Pnding the global op-
lihood of the observations with respect to the parametersimality of non-convex objectives for MLE-based methods.
This approach has proven to be highly successful in somgn scenarios where our ultimate goal is to infer some quan-
applications (Coates et al., 2008; Roweis & Ghahramanitity from observed data, a natural solution is to skip the
R — . ) ) step of learning a model, and instead directly optimize the
Proceedings of the 33" International Conference on Machine . . .
Learning, New York, NY, USA, 2016. JMLR: W&CP volume inference procedure. Toward this end, we generalize the
48. Copyright 2016 by the author(s). supervised message-passing Inference Machine approach
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of Ross et al. (2011b); Ramakrishna et al. (2014); Lin et al2. Related Work

(2015). Inference machines do not parametrize the graph- .
ical model (e.g., design of potential functions) and insteal n addition to the MLE-based approaches and the spectral

directly train predictors that use incoming messages an arning agpl)roac.hes mentionhed in lSecal, there arekseveral
local features to predict outgoing messages via black-boRUPEVIsed learning approaches related to our work. D;\ta
supervised learning algorithms. By combining the mode@S Demonstrator (DaD) (Venkatraman et al., 2015) applies
and inference procedure into a single object N Air- the Inference Machine idea to fully observable Markov
ence Machine N we directly optimize the end-to-end qual- €hains, and directly optimizes thgen-loop forward pre-

ity of inference. This unibed perspective of learning angdiction accuracy. In contrast, we aim to designiasuper-

inference enables stronger theoretical guarantees on the i34 Iearn(;ng algorithm fom’e’”h state space rr;)odels (e.g.,
ference procedure: the ultimate task that we care about. 1MMS an LDSs) to improve the accuracy d@bsed loop
predictionbBayesian bltering. It is unclear how to apply

One of the principal limitations of inference machines isDaD to learning a Bayesian Plter. Autoregressive models
that they require supervision. If we only have access to ob¢wei, 1994) onk-th order fully observable Markov chains
servations during training, then there is no obvious way tqAR-k) use the most recerit observations to predict the
apply the inference machine framework to graphical modnext observation. The AR model is not suitable for latent
els with latent states. To generalize Inference Machinestate space models since the beliefs of latent states are con-
to dynamical systems with latent states, we leverage ideagitioned on theentire history. Learning mappings from en-
from Predictive State Representations (PSRs) (Littman tire history to next observations is unreasonable and one
et al., 2001; Singh et al., 2004; Boots et al., 2011; Hefnymay need to use a largein practice. A largek, how-

et al., 2015). In contrast to latent variable representationsgver, increases the difbculty of the learning problem (i.e.,
of dynamical systems, which represent the belief state as gquires large computational and samples complexity).
probability distribution over the unobserved state space of

the model, PSRs instead maintainegmivalen: belief over 1N Summary, our work is conceptually different from DaD
sufbcient features of future observations and AR models in that we focus on unsupervised learning

of latent state space models. Instead of simply predicting
We propose REDICTIVE STATE INFERENCEMACHINES  next observation, we focus on predictive stateNa distribu-
(PSIMs), an algorithm that treats the inference procedurgion of future observations, as an alternative representation
(Pltering) on a dynamical system as a composition of preof the beliefs of latent states.
dictors. Our procedure takes the current predictive state
and the latest observation from the dynamical system as i . .
puts and outputs the next predictive state (Fig. 1). Sincrg" Preliminaries
we have access to the observations at training, this immep/e consider uncontrolled discrete-time time-invariant dy-
diately brings the supervision back to our learning problemamical systems. At every time step the latent state
N we quantify the loss of the predictor by measuring the of the dynamical systems; € R™, stochastically gener-
likelihood that the actual future observations are generategdtes an observation; € R™, from an observation model
from the predictive state computed by the learner. PSIMP(z,|s,). The stochastic transition model(s;+1 |s;) com-
allows us to treat bltering as a general supervised learningutes the predictive distribution of stateg at 1 given the
problem handed-off to a black box learner of our choosingstate at time. We debne the belief of a latent state; as
The complexity of the learner naturally controls the trade-the distribution ofs,;.1 given all the past observations up to
off between computational complexity and prediction accutime step: {z1, ..., 2}, which we denote ak;.
racy. We provide two algorithms to train a PSIM. The brst
algorithm learns a sequence of non-stationary blters which 1. Belief Propagation in Latent State Space Models
are provably consistent in the realizable case. The second
algorithm is more data efpcient and learns a stationary bltdeet us dePné, as the belief®(s;|hy 1). When the transi-

which has reduction-style performance guarantees. tion modelP(s+1 |s;) and observation modét(x,|s;) are

] o _ known, the belieb; can be computed by a special-case of
T.he three main contributions Qf our worI.< are: (1) we pro- message passing called forward belief propagation:
vide a reduction of unsupervised learning of latent state

space models to the supervised learning setting by leverag- |
ing PSRs; (2) our algorithm, PSIM, directly minimizes er- bor — 1 '
ror on the inference taskNclosed loop bltering; (3) PSIM 1= P(z¢lhe 1)
works for generakon-linear latent state space models and
guarantees bltering performance even in agnostic setting.
The above equation essentially maps the bélieind the
current observatiom; to the next belieb..; .

btP(St+1 |8t)P(.rt|St)dSt. (1)

t
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Consider the following linear dynamical system: hi—1 E[' (fo)|ht 1]
St+1 = ASt + €sy €5 N(07 Q)a { \ {
Ty = Cst + €z, €p~ N(O, R)7 (2) ’ L1 ‘ _____ xt_l-xﬁ'l\ _______
whereA € R™ ™ is the transition matrixC' € R™ ™ is Predictive EQ (Fre1)[Put 1, ]
the observation matrix, an@ € R™ ™ andR € R™n State Filter ST LT 1 R

are noise covariances. The Kalman Filter (Van Overschee o ) o
& De Moor, 2012) update implements the belief updateFig”re 1. Filtering with predictive states for k-observable sys-
in Eq. 1. SinceP(s:|hs 1) is a Gaussian distribution, we tem. At time stept, the plter uses the belieil! (f)|h.-1]

. C 1 . ’ and the latest observation as feedback, outputs the next belief
simply use the mea#g; and the covariancg; to represent B (F pi1) o1, Xa].
P(s¢|hy 1). The Kalman Filter update step can then be )
viewed as a function that mag&, >;) and the observation

to(s ) , which is a nonlinear map. .
210 (8e41, v ) P assume that systems we consideragbservabléfor k €

Given the sequences of observatigas}; generated from N*: there is a bijective function that mag¥(s;|hs 1) to
the linear dynamical system in Eq. 2, there are two com-P( f;|hs 1). For convenience of notation, we will present
mon approaches to recover the parametdrs’, @), R. our results in terms of-observable systems, where it suf-
Expectation-Maximization (EM) attempts to maximize the pces to select features from the nkxdbservations.

likelihood of the observations with respect to parameterﬁzouo\l\/irlg Hefny et al. (2015), we debne the predic-

(Roweis & Ghahramani, 1999), but suffers from locally . : :
optimal solutions. The second approach relies on Spect—'ve state at time step as E[¢(f,)|h- 1] where ¢ is

tral Learning algorithms to recovet, C, Q, R up to a lin-  >°M€ feature function that is sufpcient for the distri-
ear transformation (Van Overschee & De Moor, 2012). bution P(fi|he 1). The expectatlFJn is taken with re-
Spectral algorithms have two key characteristics: 1) thefpeCt to the distribution?®(f;|he 1): E[p(fi)lhe 1] =

use an observable state representation; and 2) they rely o ¢(fe) P(felhe 1)dfr. The conditional expectation can
method-of-moments for parameter identibcation instead o € understood as a function of which the input is
likelihood. Though spectral algorithms can promise globalthe random variableh; 1. For example, we can set

" = T " i " i -
optimality in certain cases, this desirable property does no]F;[qb(f).'ht. 1] . E[f, ff. e 1] if P(.ftlht 1) is a.Gaus )
hold under model mismatch (Kulesza et al., 2014). In this>' 2" distribution (e.g., linear dynamical system in Eq. 2);

y ' rwe can sep(f) = [z; ® ... ® x4+ g~ 1] if we are work-

case, using the learned parameters for bltering may resull . . .
in poor bltering performance. Ing on a discrete models (discrete latent states and discrete

observations), wherg; is an indicator vector representa-
tion of the observation and is the tensor product. There-
fore, we assume that there exists a bijective function map-
Recently, predictive state representations and observab@ing P(f|hs 1) to E[¢(fi)|he 1]. For any testf?, we can
operator models have been used to learn from, blter on, pr€ompute the probability o (ff{h. 1) by simply using the
dict, and simulate time series data (Jaeger, 2000; Littmagredictive staté[¢(f;)|hs 1]. Note that the mapping from
etal., 2001; Singh et al., 2004; Boots et al., 2011; Boots &E[¢(f)|he 1] to P(f|hs 1) is not necessarily linear.

Gordon, 2011; Hefny et al., 2015). These models providel-0 blter from the current predictive stalée(f,)| s 1] to

a cor_npact_and complete descrlpnon_ of a dynamical SYSte}a next Stat&[¢(f141 )| k] conditioned on the most recent
that is easier to learn than latent variable models, by repreébservationmt (see Fig. 1 for an illustration), PSRs ad-

senting state as a set of predictions of observable quamitieﬁﬁtionally dePne an extended St&& (f;, zr 1) e 1] =

such as future observations. Gy CUte @ k) P(fo s 1o 1)d(fi ee i), where

In this work, we follow a predictive state representation( is another feature function for the future observatigns
(PSR) framework and debne state as the distribution oAnd one more observatian. .. PSRs explicitly assume

fi = [2f,...,2L . ;]T € R, ak-step bPxed-sized time there exists a linear relationship betwé&n( f,)|h;» 1] and
window of future observations{z, ...,z 1} (Hefny  E[C(ft, e+ 1) |he 1], which can be learned bipstrumen-
etal., 2015). PSRs assume that if we can predict everything:l Variable Regression (IVR) (Hefny et al., 2015). PSRs
aboutf; at time-steg (e.g., the distribution of;), then we  then additionally assume a nonlinear conditioning operator
also know everything there is to know about the state of ahat can compute the next predictive state with the extended
dynamical system at time steép(Singh et al., 2004). We state and the latest observation as inputs.

3.2. Predictive State Representations

!Sometimes callesubspace identification (Van Overschee & 2This assumption allows us to avoid the cryptographic hard-
De Moor, 2012) in the linear time-invariant system context. ness of the general problem (Hsu et al., 2009).



Learning to Filter with Predictive State Inference Machines

4. Predictive State Inference Machines Eq. 4 explicitly debnes the map that takes the inputs

. ) of E[¢(ft)|he 1] andx; and outputdE[¢p(fir1 )|he]. This
The original Inference Machine framework reduces themapF could be non-linear since it depends the transi-

problem of learning graphical models to solving a set Oftion model P(s.1 |s:), observation modeP(z,|s,) and

classibcation. or regression prol?lems, where the learnegh o q, which are all often complicated, non-linear
classibers mimic message passing procedures that outpilt, tions in real dynamical systems. We do not place

Padrgmall distributions for trlme nOdebe in the Irlnodell (Lang-,ny parametrization assumptions on the transition and ob-
ord et al., 2009; Ross et al., 2011b; Bagnell et al,, 2010)servation models. Instead, we parametrize and restrict

However, Inference Machines cannot b? applied _to Iea‘,mfhe class of predictors to encode the underlying dynam-
ing latent state space modgls (unsupervlsgd Iearn!ng) singe,| system and aim to bnd a predictsr from the re-
we do not have access to hidden statesO information. stricted class. We call this framework for inference the

We tackle this problem with predictive states. By using PREDICTIVE STATE INFERENCEMACHINE (PSIM).

an observable representation for state, observations in tr|§SIM is different from PSRs in the following respects:
trainiqg data can be used .for supervision ﬁn the infgrenc?l) PSIM collapses the two steps of PSRs (predict the ex-
machine. More formally, instead of trackmg t.he' hlddentended state and then condition on the latest observation)
states;, we focus on _the correspor!dlng prec_hc_tlve Stateinig one stepNas an Inference MachineNfor closed-loop
El¢(f:)|he 1]. Assuming that the given predictive state e of predictive states; (2) PSIM directly targets the
E[sb(fﬁ)lht-- 1] Ca':j reveal the pTObzb'l'tf(ftJhﬁ 1) V‘:je, pltering task and has theoretical guarantees on the blter-
use the training datg, to qlrJ]aan;(fyl.how goo L e prel IC~ " ing performance; (3) unlike PSRs where one usually needs
tive state is by computing the likelihood ¢f. The goalis 4" yilize linear PSRs for learning purposes (Boots et al.,

to Iegr.n f"m operataf’ (the green pox in Fig. 1) Wh'c{je’_ 2011), PSIM can generalize to non-linear dynamics by
terministically passes the predictive states forward in ime g, o2 4ing non-linear regression or classipcation models.
conditioned on the latest observation:
# Imagine that we can perform belief propagation with PSIM
E[¢(fes1 )|he] = F E[@(fe)lher 1] 2 ) in predictive state space as shown in Eq. 4, then this is
equivalent 10 classic blter with latent states as shown in
Eg. 1. To see this, we can simply appfy! on both sides
. : - of the above equation Eg. 4, which exactly reveals Eq. 1.
{E[¢(fi)lhe 1]}¢ is maximized. In the standard PSR \ya yefer readers to the Appendix for a detailed case study
framgwork, the predlctoF can be regarded_ as the com- of the stationary Kalman Filter, where we explicitly show
position of the linear mapping (from predictive state to this equivalence. Thanks to this equivalence, we can learn

extenc_jed state) and the cond|t|(_)n|ng oper_ator. Below W&ccurate inference machines, even for partially observable
show if we can correctly blter with predictive states, '[henSystems We now turn our focus on learning the riain
this is equivalent to bltering with latent states as in Eq. 1. the predi.ctive state space

4.1. Predictive State Propagation 4.2. Learning Non-stationary Filters with Predictive

The belief propagation in Eq. 1 is for latent states States
We now describe the corresponding belief propagatio
for updating the predictive state frof[¢(f;)|hsy 1] tO
E[¢(fi+1 )|he] conditioned on the new observatioty.
Since we assume that the mapping fraR(s;|hs 1)
to P(f:|h+ 1) and the mapping fromP(f¢|hsy 1) to
E[é(f:)|he 1] are both bijective, there must exist a bijec-
tive mapq and its inverse; ! such thatg(P(s¢|hs 1)) =

For notational simplicity, let us debne trajectory as
which is sampled from a unknown distributidn,.. We
denote the predictive state as, = E[¢p(f;)|hy 1]. We
usem; to denote an approximation of;. Given a pre-
dictive statem, and a noisy observatiofy conditioned on
the historyh, 1, we let the loss functichd(m., f;) =
lm: — &(f:)||5. This squares loss function can be re-

"1 _ 3
]Ethth”ht" 1] andq (E[¢(_ft)éht"11]) " P(StJht'l' 1), ~ garded as matching moments. For instance, in the station-
then the message passing in Eq. 1 is also equivalent to: ;" aiman bter setting, we could set, — E[f; A 1]

E[gz,(f,iﬂ )R] = (P (5441 |e)) (4) andd(my, fi) = |lm¢ — f¢l|3 (matching the Prst moment).
% P(si|he 1) P(s1 |st)P(3:t\st)dS & 4Squared loss in an example Bregman divergence of which
- s P(xy)|hy 1) t there are others that are optimized by the conditional expecta-

! " tion (Banerjee et al., 2005). We can desigm,,f;) as nega-

% q l(EW(ft)\ht" 1)) P (s \St)P($t|5t)dS & tive log-likelihood, as long as it can be represented as a Bregman

P(xi|hey 1) t divergence (e.g., negative log-likelihood of distributions in expo-
nential family).

=q

St

3The composition of two bijective functions is bijective.
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Algorithm 1 PREDICTIVE STATE INFERENCEMACHINE  Prst show that under inbnite many training trajectories, and

(PSIM) with Forward Training in realizable case N the underlying true PlteF, ..., F,
1: Input: M independent trajectories, 1 < i < M:; are in the hypothesis clags Alg. 1 is consistent:
2: Setrhy = & ZJ.V:II o(f); Theorem 4.1. With infinite many training trajectories and
3: Setrm} = my for trajectoryr;, 1 <i < M, in the realizable case, if all learning problems are solved
4: fort=1to Tdo perfectly, the sequence of predictors F1, Fy, ..., Fr from
5:  For each trajectory;, add the input; = (i, z})t0  Alg. I can generate exact predictive states E[¢(f])|h5 4]

D, as feature variables and the correspondffi\g  for any trajectory T ~ Dy and 1 <t < T.
to D, as the targets; _ _ _
6: Train a hypothesisg’; on D, to minimize the loss We include all proofs in the appendix. Next for the

d(F(z), f) over Dy; agnostic case, we show that Alg. 1 can still achieve
7:  For each trajectory;, roll out F1, ..., F, along the & reasonable upper bound. Let us debPne =
trajectory (Eq. 6) to computé?,, ; minper E(. f)ew [d(F(2), f)], which is the minimum
8: end for batch training error under the distribution of inputs re-
9: Return: the sequence of hypothedig; } Y, . sulting from hypothesis clas®. Let us dePnemax =

max;{¢; }. Under inPnite many training trajectories, even
in the model agnostic case, we have the following guaran-
We brst present a algorithm for learning non-stationary bitees for pltering error for Alg. 1:

ters usingForward Training (Ross & Bagnell, 2010) in  Theorem 4.2. With infinite many training trajectories, for
Alg. 1. Forward Training learns a non-stationary Plter for se sequence { F,}, generated by Alg. 1, we have:

each time step. Namely, at time stepforward training

learns a hypothesis; that approximates the bltering proce- ()T o )
dure at time step: 141 = Fi (1, x¢), Wherer, is com- 78D T d(Fy(m],x]), fly) = T e < €man.
puted byFy- (1 1,2 1) and so on. Let us debng; t=1 .

as the predictive state computed by rolling éut .., Fi 1 ) )
on trajectoryr; to time stept — 1. We dePnef; as the Theorem. 4.2 shows that the Pltering error is upper-

nextk observations starting at time stepn trajectoryr;. ~ bounded by the average of the minimum batch training er-
At each time step, the algorithm collects a set of training "Ors from each step. If we have a rich class of hypotheses
dataD,, where the feature variables consist of the pre- and small noise (e.g., small Bayes errey)could be small.

dictive statesi; from the previous hypothesis- ; andthe T analyze Pnite sample complexity, we need to split the
local observations;, and the targets consist of the corre- gataset intd@” disjoint sets to make sure that the samples in
sponding future observatiorfg,; across alltrajectories.  the dataseb;, are i.i.d (see details in Appendix). Hence we
It then trains a new hypothesi§ over the hypothesis class requce forward training t@ independent passive super-

F to minimize the loss over datasby. vised learning problems. We have the following agnostic
PSIM with Forward Training aims to Pnd a good sequencéheoretical bound:
of hypotheseg F;} such that: Theorem 4.3. With M training trajectories, for any F; €
F,Vt, we have with probability at least 1 — §:
()T :
min Erep, = d(F mT7 Ty 7fT ) (5) 1 = ST, T T
FL%E ... Fr %F ' T, (Fe(mg, 27), fii) E D, [? ;d(Ft(mt,xt),le)]
st Wiy = F(nl,a]) Ve LT —1],  (6)

T
1
. , <Erup [= E d(F; (@7, x7), )]
whererm; = argmin,, ffl d(m, f}), which is equal to T

+ ;ﬁl o(f}). Let us debPnev; as the joint distribution A RF) 42 /T In(T/#) 2

of feature variables, and targetsf,+1 after rolling out () M 7)

Fy, ..., Fy 1 on the trajectories sampled fro®.. Under L

this dePnition, the lter error dePned above is equivalentt/ere vV = sup . ; 2|[F (2) —f[l2, R(F) = 732, Re(F))
1T ) . and R+(F) is the Rademacher number of F under $.

to + 1 B pew d(Fi(z),f) . Note essentially the

datasetD;, collected by Alg. 1 at time stepforms a bnite  As one might expect, the learning problem becomes harder
sample estimation ab;. asT increases, however our bnite sample analysis shows

To analyze the consistency of our algorithm, we assuméhe average Pltering error grows sublinearly¥s/T).

every learning problem can be solved perfectly (risk mini-Although Alg. 1 has nice theoretical properties, one short-
mizer Pnds the Bayes optimal) (Langford et al., 2009). Wecoming is that it is not very data efbcient. In practice, it
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is possible that we only have small number of training tra-Algorithm 2 PREDICTIVE STATE INFERENCEMACHINE
jectories but each trajectory is lon@ (s big). This means (PSIM) with DAgger
that we may have few training data samples (equal to they. |npyt: 1/ independent trajectories, 1 < i < M:;

number of trajectories) for learning hypothesis Also, 2. |njtialize Dy + 0 and initalizeF, to be any hypothesis
instead of learning non-stationary Plters, we often preferto i, ~- .

learn a stationary Plter such that we can Plter indebnitely. 3. |nitialize 17, = 2 Mg
. P

In the next section, we present a different algorithm that 4. for n=0to Ndcj,w

utilizesall of the training data to learn a stationary blter. 5. ygeF, to perform belief propagation (Eq. 9) on tra-
jectoryr;, 1 <i< M

4.3. Learning Stationary Filters with Predictive States 6: For each trajectory; and each time stefy add the

input zi = (m*" | z#) encountered by, to D$,,

The optimization framework for Pnding a good stationary

blter F' is debned as: as$ feature variables and the correspondffig to
D? ., asthetargets;
T 7:  Aggregate datase®,«; = D,, U D3, ;
min Erep, =  d(F (1, x¢), fre1 ), (8) 8:  Train a new hypothesig},+; onD,.; to minimize
F%F T
t=1 the lossd(F(m, x), f);
st e = F(myg,x),Vt € [1,T — 1], (9) 9: end for R
. . 10: Return: the best hypothesig € {F}, },, on validation
whereriy = argmin,, oy d(m, fi) = & L, o(f)). trajectories.

Note that the above objective function is non-convex,
sincem, is computed recursively and in fact is equal to
F(...F(F(r1,x1),2)...), where we have — 1 nested can rewrite the Pltering error in Eq. 8 a5(F) =
F. As we show experimentally, optimizing this objective E-[E. fgwe, [d(F(2), f)]|7]. Let us dePne the loss func-
function via Back-Propagation likely leads to local optima. tion for any predictod” at iterationn of Alg. 2 as:

Instead, we optimize the above objective function using

an iterative approach called Dataset Aggregation (DAgger) Ln(F) = Er[Ez fawe, , [d(F(2), PIT]. (10)
(Ross et al., 2011a) (Alg. 2). Due to the non-convexity of
the objective, DAgger also will not promise global opti-
mality. But as we will show, PSIM with DAgger gives us
a sound theoretical bound for bltering error. ) 1M %

&
Ln(F) == M Ez,f&an,! d(F(Z)vf) . (11)
T=1

As we can see, at iteration the dataseD? that we collect
forms an empirical estimate of the lokg:

Given a trajectoryr and hypothesid”, we debneﬁz{’F
as the predictive belief generated Byon = at time step
t. We also debne]" to represent the feature variables We brst analyze the algorithm under the assumption that
(m; ", xT). At iteration n, Alg. 2 rolls out the predic- M =,00, L,(F) = L,(F). Let,us dePneRegret vy

tive states using its current hypothedis (Eq. 9) on all as: & N L, (F,) — minpor = ) Lo(F) < -

the given training trajectories (Line. 2). Then it collects all We also debne the minimum average training eerpr=

the feature variable§(r.""" , z¢)},; and the correspond- min o L 2[:1 L, (F). Alg. 2 can be regarded as run-
ing target variable$f;,; }:; to form a new datasdd® and  ning the Follow the Leader (FTL) (Cesa-Bianchi et al.,
aggregates it to the original datagef- 1. Then a new hy- 2004; Shalev-Shwartz & Kakade, 2009; Hazan et al., 2007)
pothesisF, is learned from the aggregated dataBgtby  on the sequence of loss functiofs,, (F)}2, . When the
minimizing the lossi(F'(z), f) overD,,. loss functionL,,(F') is strongly convex with respect B,

FTL is no-regret in a sense thAty¢ vy = 0. Ap-
plying Theorem 4.1 and its reduction to no-regret learning

convex objective in Eq. 8. By using DAgger, we can guar- . -
antee a hypothesis that, when used during Pltering, pelgnalyss f'rom (Ross etal., 2011.3) to ou‘r setting, we have
the following guarantee for pbltering error:

forms nearly as well as when performing regression on the
aggregate datasé®y. In practice, with a rich hypothe- Corollary 4.4. (Ross et al., 2011a) For Alg. 2, there exists
sis classF and small noise (e.g., small Bayes error), smalla predictor F € {F,}\_y such that:

regression error is possible. We now analyze the Pltering . + . ,

performance of PSIM with DAgger below. L(F) =Er E; faws, (d(F(2), )T <yn+en.

Alg. 2 essentially utilizes DAgger to optimize the non-

Let us Px a hypothesig’ and a trajectoryr, we

) R As we can see, under the assumption thatis strong|
debne wp . @s the uniform distribytion of (z, f): p " i

h n convex, asV — oo, yn goes to zero. Hence the Pltering
wrr = U (207, f3), (277, ffs1) - Now we  error of £ is upper bounded by the minimum batch training
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N4SID IVR PSIM-Linear,; | PSIM-Linear, | PSIM-RFF,; | Traj. Pwr
Robot Drill Assembly | 2.8740.2 2.39+0.1 2.15+0.1 2.54+0.1 1.80+0.1 27.90
Motion Capture 7.86+ 0.8 6.88+ 0.7 5.75+0.5 9.94+2.9 5.41+ 0.5 107.92
Beach Video Texture | 231.33t10.5 | 213.2A411.5 | 164.23t8.7 268.73t9.5 130.53t9.1 873.77
Flag Video Texture 3.38e3t1.2e2| 3.38e3t1.3e2| 1.28e3:7.1el | 1.31e3t6.4el | 1.24e3:9.6el| 3.73e3

Table 1. Filter error (1-step ahead) and standard deviation on different datasets. We see that using PSIM with DAgger with both RFF
and Linear outperforms the spectral methods N4SID and IVR, with the RFF performing better on almost all the datasets. DAgger (20
iterations) trains a better linear regression for PSIM than back-propagation with random initialization (400 epochs). We also give the
average trajectory power for the true observations from each dataset.

[— Forward Train— DAgger— AR-35— AR-30— N4sID|

error that could be achieved by doing regression/aq
within classF. In general the terray depends on the noise

of the data and the expressiveness of the hypothesis class
F. Corollary. 4.4 also shows for fully realizable and noise-
free case, PSIM with DAgger bnds the optimal blter that
drives the bltering error to zero whé — oco.

0.081

0.061

Ratio

0.04+

The bnite sample analysis from (Ross et al,
2011a) can also be applied to PSIM. Let us debne
éN = minF%F %i"(F)’ ;YN Z % 712/21 [A/”(F") - 0.00 10 20 30 0 50
’r]LV:l IA/n(F), we haVe: Number of Training Examples (log N)

0.02

: 1
MiNpFyF 7

Corollary 4.5. (Ross et al., 2011a) For Alg. 2, there exists

a predictor ' € {F,}N., such that with probability at
least 1 — 0:

Figure 2. The convergence rate of different algorithms. The ratios
(y-axis) are computed zieg(i) for errore from corresponding
algorithms. The x-axis is computed &g (N ), whereN is the
number of trajectories used for training.

L(B) = Er[Bs frwy, (d(P(2),f))|% <&y +0n
Ly /%),

5. Experiments

5.1. Synthetic Linear Dynamical System

First we tested our algorithms on a synthetic linear dynami-
cal system (Eq. 2) with a 2-dimensional observatioie
designed the system such that it is exa@igbservable.
The sequences of observations are collected from the linear

Wi luate the PSIM ity of d ical ¢ stationary Kalman Plter of the LDS (Boots, 2012; Hefny
€ evaluate the on a variety of dynamical Systemg al., 2015). The details of the LDS are in Appendix.
benchmarks. We use two feature functiong;(f;) =

[#¢, ..., 24+ 1 1], Which stack thek future observations Since the data is collected from the stationary Kalman
together (hence the message can be regarded as a blter of the2-observable LDS, we sét = 2 and use
prediction of futurek observationgi;, .., #+ 4 1)), and  ¢1(f:) = [z, 7+1]. Note that the 4-dimensional pre-
G2(ft) = (@t ooy T 1 1, 42, .o, 7%, 1 1], Which includes  dictive stateE[¢1(f;)|h:] will represent the exact condi-
second moments (henee represents a Gaussian distri- tional distribution of observationg:, z++1 ) and therefore
bution approximating the true distribution of future obser-is equivalent taP(s;|h. 1) (see the detailed case study for
vations). To measure how good the computed predictivd-DS in Appendix). With linear ridge regression, we test
states are, we extragt from s, and evaluatd#; — x;||3,  PSIM with forward training, PSIM with DAgger, and AR
the squared distance between the predicted observation models (AR-k) with different lengthsk(steps of past ob-
and the corresponding true observatign We implement ~ servations) of history on this dataset. For each method, we
PSIM with DAgger using two underlying regression meth- compare the average bltering ereoto e which is com-
ods: ridge linear regressiofP§IM-Linear ;) and linear  puted by using the underlying linear blterof the LDS.

ridge regression with Random Fourier FeaturB$ M-
RFF,) (Rahimi & Recht, 2007 We also test PSIM with
back-propagation for linear regressioRSIM-Linear ).
We compare our approaches to several baselines: Autor
gressive modelsAR), Subspace State Space System Iden

gbsc;lti(_)n (\IMSlD)t (\éan_u?‘;/srsahcfae & Pel Mzocg)lr,52012), and while Forward Training eventually slightly surpasses DAg-
S iImplemented wi (Hefny etal., )- ger with sufpcient data. The AR-k models need long his-

SWith RFF, PSIM approximately embeds the distribution of tories to perform well given data gnereated by latent state
f into a Reproducing Kernel Hilbert Space. space models, even for this 2-observable LDS. Note AR-

(12)

Fig. 2 shows the convergence trends of PSIM with DAg-
ger, PSIM with Forward Training, and AR as the number of
training trajectoriesV increases. The prediction error for
KR with & = 5,10, 20 is too big to bt into the plot. PSIM
with DAgger performs much better with few training data
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Rob9t Drill Assem?ly . Beach Video Texture Motion Capture
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(a) Robot Drill Assembly (b) Beach Video Texture (c) Motion Capture

Figure 3. Filter error for multiple look ahead steps for the future predictions shown for a few of the datasets. We see across datasets that
the performance of both IVR and N4SID are signibcantly worse than using PSIM with either linear or random Fourietféiatae
learner. For some datasets, the nonlinearity of the random Fourier features helps to improve the performance.

35 performs regression in a 70-dimensional feature spackaining approaches: gradient descent with step decay, RM-
(35 past observations), while PSIM only uses 6-d featureSProp (Tieleman & Hinton, 2012) and AdaDelta (Zeiler,
(4-d predictive state + 2-d current observation). This show2012) (see Appendix. E). With random initialization, back-
thatpredictive state is a more compact representation of the propagation does not achieve comparable performance, ex-
history and can reduce the complexity of learning problemcept on the Rag video, due to local optimality.We observe

. marginal improvement by using back-propogation to rebne
5.2. Real Dynamical Systems the solution from DAgger. This shows PSIM with DAgger

We consider the following three real dynamical systemsnds good models by itself (details in Appendix. E). We
(1) Robot Drill Assembly: the dataset consists of 96 sensor @S0 compare these approaches for multi-step look ahead
telemetry traces, each of length 350, from a robotic manip{(Fig- 3). PSIM consistently outperforms the two baselines.

ulator assembling the battery pack on a power drill. The 13rq show predictive states with largerencode more infor-
dimensional noisy observations consist of the robot armQgation about latent states, we additionally run PSIM with
7 joint torques as well as the the 3D force and torque vecy — 1 ysing$; . PSIM (DAgger) withk = 5 outper-
tors. Note the Pxed higher level control policy for the drill formsk = 1 by 5% for robot assembly dataset, 6% for mo-
assembly task is not given in the observations and musfon capture, 8% for Rag and 32% for beach video. Includ-
be learned as part of the dynamics; @yman Motion ing belief over longer futures into predictive states can thus

Capture: the dataset consists of 48 skeletal tracks of 30Q:apture more information and increase the performance.
timesteps each from a Vicon motion capture system from

three human subjects performing walking actions. The obFor feature functiom; andk = 5, with linear ridge regres-
servations consist of the 3D positions of the various skeleta#ion the 1-step blter error achieved by PSIM with DAgger
parts (e.g. upperback, thorax, clavicle, etc.);{@o Tex- ~ @cross all datasets ar205 + 0.08 on Robot Drill Assem-

tures: the datasets consists of one videgfog waving and DIy, 5.47 + 0.42 on motion capturel54.02 + 9.9 on beach
the other one of waves onbaach. video, andl.27e3 £ 13el on RBag video. Comparing to the

) _ results shown in th@SIM-Linear ;4 in column of Table. 1,
For these dynamical systems, we do not test PSIM withye gchieve slightly better performance on all datasets, and

Forward Training since our benchmarks have a large numnqticeably better performance on the beach video texture.
ber of time steps per trajectory. Throughout the experi-

ments, we set = 5 for all datasets except for video tex- 6. Conclusion
tures, where we set = 3. For each dataset, we ran-

domly pick a small number of trajectories as a validation
set for parameter tuning (e.g., ridge, rank for N4SID and
IVR, band width for RFF). We patrtition the whole dataset

We introduced REDICTIVE STATE INFERENCE MA-
CHINES, a novel approach to directly learn to blter with
latent state space models. Leveraging ideas from PSRs,
) ) . PSIM reduces the unsupervised learning of latent state
into ten folds, train all algorithms on 9 folds and test on space models to a supervised learning setting and guaran-

éIIOIq For the fegt.ltjre Iungtloo?a thet.average on?—stipl dtees bltering performance for general non-linear models in
ering errors and its standard deviations across ten foldg .\ < aalizable and agnostic settings.

are shown in Tab. 1. Our approaches outperforms the two
baselines across all datasets. Since the datasets are geq&&knowbdgemems

ated from complex dynamics, PSIM with RFF exhibits bet-__ . e .

ter performance than PSIM with Linear. This experimen-ThIS material is based upon work supported in part by:
tally supports our theorems suggesting that with powerfuIDARPA ALIAS contract number HR0011-15-C-0027 and

regressors, PSIM could perform better. We irnplernemNational Science Foundation Graduate Research Fellow-
PSIM with back-propagation using Theano with severaSiP Grant No. DGE-1252522. The authors also thank Ge-
off Gordon for valuable discussions.
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