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Abstract

Latent state space models are a fundamental
and widely used tool for modeling dynamical
systems. However, they are difficult to learn
from data and learned models often lack perfor-
mance guarantees on inference tasks such as fil-
tering and prediction. In this work, we present
the PREDICTIVE STATE INFERENCE MACHINE
(PSIM), a data-driven method that considers the
inference procedure on a dynamical system as
a composition of predictors. The key idea is
that rather than first learning a latent state space
model, and then using the learned model for in-
ference, PSIM directly learns predictors for in-
ference in predictive state space. We provide the-
oretical guarantees for inference, in both realiz-
able and agnostic settings, and showcase prac-
tical performance on a variety of simulated and
real world robotics benchmarks.

1. Introduction

Data driven approaches to modeling dynamical systems is
important in applications ranging from time series fore-
casting for market predictions to filtering in robotic sys-
tems. The classic generative approach is to assume that
each observation is correlated to the value of a latent
state and then model the dynamical system as a graph-
ical model, or latent state space model, such as a Hid-
den Markov Model (HMM). To learn the parameters of the
model from observed data, Maximum Likelihood Estima-
tion (MLE) based methods attempt to maximize the like-
lihood of the observations with respect to the parameters.
This approach has proven to be highly successful in some
applications (Coates et al., 2008; Roweis & Ghahramani,
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1999), but has at least two shortcomings. First, it may be
difficult to find an appropriate parametrization for the la-
tent states. If the model is parametrized incorrectly, the
learned model may exhibit poor performance on inference
tasks such as Bayesian filtering or predicting multiple time
steps into the future. Second, learning a latent state space
model is difficult. The MLE objective is non-convex and
finding the globally optimal solution is often computation-
ally infeasible. Instead, algorithms such as Expectation-
Maximization (EM) are used to compute locally optimal
solutions. Although the maximizer of the likelihood objec-
tive can promise good performance guarantees when it is
used for inference, the locally optimal solutions returned
by EM typically do not have any performance guarantees.

Spectral Learning methods are a popular alternative to
MLE for learning models of dynamical systems (Boots,
2012; Boots et al., 2011; Hsu et al., 2009; Hefny et al.,
2015). This family of algorithms provides theoretical guar-
antees on discovering the global optimum for the model pa-
rameters under the assumptions of infinite training data and
realizability. However, in the non-realizable setting — i.e.
model mismatch (e.g., using learned parameters of a Lin-
ear Dynamical System (LDS) model for a non-linear dy-
namical system) — these algorithms lose any performance
guarantees on using the learned model for filtering or other
inference tasks. For example, Kulesza et al. (2014) shows
when the model rank is lower than the rank of the under-
lying dynamical system, the inference performance of the
learned model may be arbitrarily bad.

Both EM and spectral learning suffer from limited theoreti-
cal guarantees: from model mismatch for spectral methods,
and from computational hardness for finding the global op-
timality of non-convex objectives for MLE-based methods.
In scenarios where our ultimate goal is to infer some quan-
tity from observed data, a natural solution is to skip the
step of learning a model, and instead directly optimize the
inference procedure. Toward this end, we generalize the
supervised message-passing Inference Machine approach
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of Ross et al. (2011b); Ramakrishna et al. (2014); Lin et al.
(2015). Inference machines do not parametrize the graph-
ical model (e.g., design of potential functions) and instead
directly train predictors that use incoming messages and
local features to predict outgoing messages via black-box
supervised learning algorithms. By combining the model
and inference procedure into a single object — an Infer-
ence Machine — we directly optimize the end-to-end qual-
ity of inference. This unified perspective of learning and
inference enables stronger theoretical guarantees on the in-
ference procedure: the ultimate task that we care about.

One of the principal limitations of inference machines is
that they require supervision. If we only have access to ob-
servations during training, then there is no obvious way to
apply the inference machine framework to graphical mod-
els with latent states. To generalize Inference Machines
to dynamical systems with latent states, we leverage ideas
from Predictive State Representations (PSRs) (Littman
et al., 2001; Singh et al., 2004; Boots et al., 2011; Hefny
et al., 2015). In contrast to latent variable representations
of dynamical systems, which represent the belief state as a
probability distribution over the unobserved state space of
the model, PSRs instead maintain an equivalent belief over
sufficient features of future observations.

We propose PREDICTIVE STATE INFERENCE MACHINES
(PSIMs), an algorithm that treats the inference procedure
(filtering) on a dynamical system as a composition of pre-
dictors. Our procedure takes the current predictive state
and the latest observation from the dynamical system as in-
puts and outputs the next predictive state (Fig. 1). Since
we have access to the observations at training, this imme-
diately brings the supervision back to our learning problem
— we quantify the loss of the predictor by measuring the
likelihood that the actual future observations are generated
from the predictive state computed by the learner. PSIM
allows us to treat filtering as a general supervised learning
problem handed-off to a black box learner of our choosing.
The complexity of the learner naturally controls the trade-
off between computational complexity and prediction accu-
racy. We provide two algorithms to train a PSIM. The first
algorithm learns a sequence of non-stationary filters which
are provably consistent in the realizable case. The second
algorithm is more data efficient and learns a stationary filter
which has reduction-style performance guarantees.

The three main contributions of our work are: (1) we pro-
vide a reduction of unsupervised learning of latent state
space models to the supervised learning setting by leverag-
ing PSRs; (2) our algorithm, PSIM, directly minimizes er-
ror on the inference task—closed loop filtering; (3) PSIM
works for general non-linear latent state space models and
guarantees filtering performance even in agnostic setting.

2. Related Work

In addition to the MLE-based approaches and the spectral
learning approaches mentioned in Sec. 1, there are several
supervised learning approaches related to our work. Data
as Demonstrator (DaD) (Venkatraman et al., 2015) applies
the Inference Machine idea to fully observable Markov
chains, and directly optimizes the open-loop forward pre-
diction accuracy. In contrast, we aim to design an unsuper-
vised learning algorithm for latent state space models (e.g.,
HMMs and LDSs) to improve the accuracy of closed loop
prediction–Bayesian filtering. It is unclear how to apply
DaD to learning a Bayesian filter. Autoregressive models
(Wei, 1994) on k-th order fully observable Markov chains
(AR-k) use the most recent k observations to predict the
next observation. The AR model is not suitable for latent
state space models since the beliefs of latent states are con-
ditioned on the entire history. Learning mappings from en-
tire history to next observations is unreasonable and one
may need to use a large k in practice. A large k, how-
ever, increases the difficulty of the learning problem (i.e.,
requires large computational and samples complexity).

In summary, our work is conceptually different from DaD
and AR models in that we focus on unsupervised learning
of latent state space models. Instead of simply predicting
next observation, we focus on predictive state—a distribu-
tion of future observations, as an alternative representation
of the beliefs of latent states.

3. Preliminaries

We consider uncontrolled discrete-time time-invariant dy-
namical systems. At every time step t, the latent state
of the dynamical system, s

t

2 Rm, stochastically gener-
ates an observation, x

t

2 Rn, from an observation model
P (x

t

|s
t

). The stochastic transition model P (s
t+1

|s
t

) com-
putes the predictive distribution of states at t + 1 given the
state at time t. We define the belief of a latent state s

t+1

as
the distribution of s

t+1

given all the past observations up to
time step t: {x

1

, ..., x
t

}, which we denote as h
t

.

3.1. Belief Propagation in Latent State Space Models

Let us define b
t

as the belief P (s
t

|h
t�1

). When the transi-
tion model P (s

t+1

|s
t

) and observation model P (x
t

|s
t

) are
known, the belief b

t

can be computed by a special-case of
message passing called forward belief propagation:

b
t+1

=

1

P (x
t

|h
t�1

)

Z

st

b
t

P (s
t+1

|s
t

)P (x
t

|s
t

)ds
t

. (1)

The above equation essentially maps the belief b
t

and the
current observation x

t

to the next belief b
t+1

.
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Consider the following linear dynamical system:

s
t+1

= As
t

+ ✏
s

, ✏
s

⇠ N (0, Q),

x
t

= Cs
t

+ ✏
x

, ✏
x

⇠ N (0, R), (2)

where A 2 Rm⇥m is the transition matrix, C 2 Rn⇥m is
the observation matrix, and Q 2 Rm⇥m and R 2 Rn⇥n

are noise covariances. The Kalman Filter (Van Overschee
& De Moor, 2012) update implements the belief update
in Eq. 1. Since P (s

t

|h
t�1

) is a Gaussian distribution, we
simply use the mean ŝ

t

and the covariance ⌃

t

to represent
P (s

t

|h
t�1

). The Kalman Filter update step can then be
viewed as a function that maps (ŝ

t

, ⌃
t

) and the observation
x

t

to (ŝ
t+1

, ⌃
t+1

), which is a nonlinear map.

Given the sequences of observations {x
t

}
t

generated from
the linear dynamical system in Eq. 2, there are two com-
mon approaches to recover the parameters A, C, Q, R.
Expectation-Maximization (EM) attempts to maximize the
likelihood of the observations with respect to parameters
(Roweis & Ghahramani, 1999), but suffers from locally
optimal solutions. The second approach relies on Spec-
tral Learning algorithms to recover A, C, Q, R up to a lin-
ear transformation (Van Overschee & De Moor, 2012).1
Spectral algorithms have two key characteristics: 1) they
use an observable state representation; and 2) they rely on
method-of-moments for parameter identification instead of
likelihood. Though spectral algorithms can promise global
optimality in certain cases, this desirable property does not
hold under model mismatch (Kulesza et al., 2014). In this
case, using the learned parameters for filtering may result
in poor filtering performance.

3.2. Predictive State Representations

Recently, predictive state representations and observable
operator models have been used to learn from, filter on, pre-
dict, and simulate time series data (Jaeger, 2000; Littman
et al., 2001; Singh et al., 2004; Boots et al., 2011; Boots &
Gordon, 2011; Hefny et al., 2015). These models provide
a compact and complete description of a dynamical system
that is easier to learn than latent variable models, by repre-
senting state as a set of predictions of observable quantities
such as future observations.

In this work, we follow a predictive state representation
(PSR) framework and define state as the distribution of
f

t

= [xT

t

, ..., xT

t+k�1

]

T 2 Rkn, a k-step fixed-sized time
window of future observations {x

t

, ..., x
t+k�1

} (Hefny
et al., 2015). PSRs assume that if we can predict everything
about f

t

at time-step t (e.g., the distribution of f
t

), then we
also know everything there is to know about the state of a
dynamical system at time step t (Singh et al., 2004). We

1Sometimes called subspace identification (Van Overschee &
De Moor, 2012) in the linear time-invariant system context.

x
t

E[�(f
t

)|h
t�1

]

x
t�1

x
t+k�1

x
t+1

x
t+k

Predictive 
State Filter 

x
1

E[�(f
t+1

)|h
t�1

, x
t

]

h
t�1

Figure 1. Filtering with predictive states for a k-observable sys-
tem. At time step t, the filter uses the belief E[�(f

t

)|h
t�1

]

and the latest observation x
t

as feedback, outputs the next belief
E[�(f

t+1

)|h
t�1

, x
t

].

assume that systems we consider are k-observable2 for k 2
N+: there is a bijective function that maps P (s

t

|h
t�1

) to
P (f

t

|h
t�1

). For convenience of notation, we will present
our results in terms of k-observable systems, where it suf-
fices to select features from the next k observations.

Following Hefny et al. (2015), we define the predic-
tive state at time step t as E[�(f

t

)|h
t�1

] where � is
some feature function that is sufficient for the distri-
bution P (f

t

|h
t�1

). The expectation is taken with re-
spect to the distribution P (f

t

|h
t�1

): E[�(f
t

)|h
t�1

] =R
ft

�(f
t

)P (f
t

|h
t�1

)df
t

. The conditional expectation can
be understood as a function of which the input is
the random variable h

t�1

. For example, we can set
E[�(f)|h

t�1

] = E[f, ffT |h
t�1

] if P (f
t

|h
t�1

) is a Gaus-
sian distribution (e.g., linear dynamical system in Eq. 2 );
or we can set �(f) = [x

t

⌦ ... ⌦ x
t+k�1

] if we are work-
ing on a discrete models (discrete latent states and discrete
observations), where x

t

is an indicator vector representa-
tion of the observation and ⌦ is the tensor product. There-
fore, we assume that there exists a bijective function map-
ping P (f |h

t�1

) to E[�(f
t

)|h
t�1

]. For any test f 0
t

, we can
compute the probability of P (f 0

t

|h
t�1

) by simply using the
predictive state E[�(f

t

)|h
t�1

]. Note that the mapping from
E[�(f

t

)|h
t�1

] to P (f 0
t

|h
t�1

) is not necessarily linear.

To filter from the current predictive state E[�(f
t

)|h
t�1

] to
the next state E[�(f

t+1

)|h
t

] conditioned on the most recent
observation x

t

(see Fig. 1 for an illustration), PSRs ad-
ditionally define an extended state E[⇣(f

t

, x
t+k

)|h
t�1

] =R
(ft,xt+k)

⇣(f
t

, x
t+k

)P (f
t

, x
t+k

|h
t�1

)d(f
t

, x
t+k

), where
⇣ is another feature function for the future observations f

t

and one more observation x
t+k

. PSRs explicitly assume
there exists a linear relationship between E[�(f

t

)|h
t�1

] and
E[⇣(f

t

, x
t+k

)|h
t�1

], which can be learned by Instrumen-
tal Variable Regression (IVR) (Hefny et al., 2015). PSRs
then additionally assume a nonlinear conditioning operator
that can compute the next predictive state with the extended
state and the latest observation as inputs.

2This assumption allows us to avoid the cryptographic hard-
ness of the general problem (Hsu et al., 2009).
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4. Predictive State Inference Machines

The original Inference Machine framework reduces the
problem of learning graphical models to solving a set of
classification or regression problems, where the learned
classifiers mimic message passing procedures that output
marginal distributions for the nodes in the model (Lang-
ford et al., 2009; Ross et al., 2011b; Bagnell et al., 2010).
However, Inference Machines cannot be applied to learn-
ing latent state space models (unsupervised learning) since
we do not have access to hidden states’ information.

We tackle this problem with predictive states. By using
an observable representation for state, observations in the
training data can be used for supervision in the inference
machine. More formally, instead of tracking the hidden
state s

t

, we focus on the corresponding predictive state
E[�(f

t

)|h
t�1

]. Assuming that the given predictive state
E[�(f

t

)|h
t�1

] can reveal the probability P (f
t

|h
t�1

), we
use the training data f

t

to quantify how good the predic-
tive state is by computing the likelihood of f

t

. The goal is
to learn an operator F (the green box in Fig. 1) which de-
terministically passes the predictive states forward in time
conditioned on the latest observation:

E[�(f
t+1

)|h
t

] = F
⇣
E[�(f

t

)|h
t�1

], x
t

⌘
, (3)

such that the likelihood of the observations {f
t

}
t

be-
ing generated from the sequence of predictive states
{E[�(f

t

)|h
t�1

]}
t

is maximized. In the standard PSR
framework, the predictor F can be regarded as the com-
position of the linear mapping (from predictive state to
extended state) and the conditioning operator. Below we
show if we can correctly filter with predictive states, then
this is equivalent to filtering with latent states as in Eq. 1.

4.1. Predictive State Propagation

The belief propagation in Eq. 1 is for latent states s
t

.
We now describe the corresponding belief propagation
for updating the predictive state from E[�(f

t

)|h
t�1

] to
E[�(f

t+1

)|h
t

] conditioned on the new observation x
t

.
Since we assume that the mapping from P (s

t

|h
t�1

)

to P (f
t

|h
t�1

) and the mapping from P (f
t

|h
t�1

) to
E[�(f

t

)|h
t�1

] are both bijective, there must exist a bijec-
tive map q and its inverse q

�1 such that q(P (s
t

|h
t�1

)) =

E[�(f
t

)|h
t�1

] and q

�1

(E[�(f
t

)|h
t�1

]) = P (s
t

|h
t�1

),3
then the message passing in Eq. 1 is also equivalent to:

E[�(f
t+1

)|h
t

] = q(P (s
t+1

|h
t

)) (4)

= q

� Z

st

P (s
t

|h
t�1

)P (s
t+1

|s
t

)P (x
t

|s
t

)

P (x
t

|h
t�1

)

ds
t

�

= q

� Z

st

q

�1

(E[�(f
t

)|h
t�1

])P (s
t+1

|s
t

)P (x
t

|s
t

)

P (x
t

|h
t�1

)

ds
t

�

3The composition of two bijective functions is bijective.

Eq. 4 explicitly defines the map F that takes the inputs
of E[�(f

t

)|h
t�1

] and x
t

and outputs E[�(f
t+1

)|h
t

]. This
map F could be non-linear since it depends the transi-
tion model P (s

t+1

|s
t

), observation model P (x
t

|s
t

) and
function q, which are all often complicated, non-linear
functions in real dynamical systems. We do not place
any parametrization assumptions on the transition and ob-
servation models. Instead, we parametrize and restrict
the class of predictors to encode the underlying dynam-
ical system and aim to find a predictor F from the re-
stricted class. We call this framework for inference the
PREDICTIVE STATE INFERENCE MACHINE (PSIM).

PSIM is different from PSRs in the following respects:
(1) PSIM collapses the two steps of PSRs (predict the ex-
tended state and then condition on the latest observation)
into one step—as an Inference Machine—for closed-loop
update of predictive states; (2) PSIM directly targets the
filtering task and has theoretical guarantees on the filter-
ing performance; (3) unlike PSRs where one usually needs
to utilize linear PSRs for learning purposes (Boots et al.,
2011), PSIM can generalize to non-linear dynamics by
leveraging non-linear regression or classification models.

Imagine that we can perform belief propagation with PSIM
in predictive state space as shown in Eq. 4, then this is
equivalent to classic filter with latent states as shown in
Eq. 1. To see this, we can simply apply q

�1 on both sides
of the above equation Eq. 4, which exactly reveals Eq. 1.
We refer readers to the Appendix for a detailed case study
of the stationary Kalman Filter, where we explicitly show
this equivalence. Thanks to this equivalence, we can learn
accurate inference machines, even for partially observable
systems. We now turn our focus on learning the map F in
the predictive state space.

4.2. Learning Non-stationary Filters with Predictive

States

For notational simplicity, let us define trajectory as ⌧ ,
which is sampled from a unknown distribution D

⌧

. We
denote the predictive state as m

t

= E[�(f
t

)|h
t�1

]. We
use m̂

t

to denote an approximation of m
t

. Given a pre-
dictive state m

t

and a noisy observation f
t

conditioned on
the history h

t�1

, we let the loss function4 d(m
t

, f
t

) =

km
t

� �(f
t

)k2
2

. This squares loss function can be re-
garded as matching moments. For instance, in the station-
ary Kalman filter setting, we could set m

t

= E[f
t

|h
t�1

]

and d(m
t

, f
t

) = km
t

� f
t

k2
2

(matching the first moment).
4Squared loss in an example Bregman divergence of which

there are others that are optimized by the conditional expecta-
tion (Banerjee et al., 2005). We can design d(m

t

, f
t

) as nega-
tive log-likelihood, as long as it can be represented as a Bregman
divergence (e.g., negative log-likelihood of distributions in expo-
nential family).
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Algorithm 1 PREDICTIVE STATE INFERENCE MACHINE
(PSIM) with Forward Training

1: Input: M independent trajectories ⌧
i

, 1  i M ;
2: Set m̂

1

=

1

M

P
M

i=1

�(f i

1

);
3: Set m̂i

1

= m̂
1

for trajectory ⌧
i

, 1  i M ;
4: for t = 1 to T do

5: For each trajectory ⌧
i

, add the input zi

t

= (m̂i

t

, xi

t

) to
D

t

as feature variables and the corresponding f i

t+1

to D
t

as the targets;
6: Train a hypothesis F

t

on D
t

to minimize the loss
d(F (z), f) over D

t

;
7: For each trajectory ⌧

i

, roll out F
1

, ..., F
t

along the
trajectory (Eq. 6) to compute m̂i

t+1

;
8: end for

9: Return: the sequence of hypothesis {F
t

}N

t=1

.

We first present a algorithm for learning non-stationary fil-
ters using Forward Training (Ross & Bagnell, 2010) in
Alg. 1. Forward Training learns a non-stationary filter for
each time step. Namely, at time step t, forward training
learns a hypothesis F

t

that approximates the filtering proce-
dure at time step t: m̂

t+1

= F
t

(m̂
t

, x
t

), where m̂
t

is com-
puted by F

t�1

(m̂
t�1

, x
t�1

) and so on. Let us define m̂i

t

as the predictive state computed by rolling out F
1

, .., F
t�1

on trajectory ⌧
i

to time step t � 1. We define f i

t

as the
next k observations starting at time step t on trajectory ⌧

i

.
At each time step t, the algorithm collects a set of training
data D

t

, where the feature variables z
t

consist of the pre-
dictive states m̂i

t

from the previous hypothesis F
t�1

and the
local observations xi

t

, and the targets consist of the corre-
sponding future observations f i

t+1

across all trajectories ⌧
i

.
It then trains a new hypothesis F

t

over the hypothesis class
F to minimize the loss over dataset D

t

.

PSIM with Forward Training aims to find a good sequence
of hypotheses {F

t

} such that:

min

F12F,...FT 2F
E

⌧⇠D⌧

h
1

T

TX

t=1

d(F
t

(m̂⌧

t

, x⌧

t

), f⌧

t+1

)

i
, (5)

s.t. m̂⌧

t+1

= F
t

(m̂⌧

t

, x⌧

t

), 8t 2 [1, T � 1], (6)

where m̂
1

= arg min

m

P
M

t=1

d(m, f i

1

), which is equal to
1

T

P
T

i=1

�(f i

i

). Let us define !
t

as the joint distribution
of feature variables z

t

and targets f
t+1

after rolling out
F

1

, ..., F
t�1

on the trajectories sampled from D
⌧

. Under
this definition, the filter error defined above is equivalent
to 1

T

P
T

t=1

E
(z,f)⇠!t

h
d(F

t

(z), f)

i
. Note essentially the

dataset D
t

collected by Alg. 1 at time step t forms a finite
sample estimation of !

t

.

To analyze the consistency of our algorithm, we assume
every learning problem can be solved perfectly (risk mini-
mizer finds the Bayes optimal) (Langford et al., 2009). We

first show that under infinite many training trajectories, and
in realizable case — the underlying true filters F ⇤

1

, ..., F ⇤
T

are in the hypothesis class F , Alg. 1 is consistent:
Theorem 4.1. With infinite many training trajectories and
in the realizable case, if all learning problems are solved
perfectly, the sequence of predictors F

1

, F
2

, ..., F
T

from
Alg. 1 can generate exact predictive states E[�(f⌧

t

)|h⌧

t�1

]

for any trajectory ⌧ ⇠ D
⌧

and 1  t  T .

We include all proofs in the appendix. Next for the
agnostic case, we show that Alg. 1 can still achieve
a reasonable upper bound. Let us define ✏

t

=

min

F⇠F E
(z,f)⇠!t

[d(F (z), f)], which is the minimum
batch training error under the distribution of inputs re-
sulting from hypothesis class F . Let us define ✏

max

=

max

t

{✏
t

}. Under infinite many training trajectories, even
in the model agnostic case, we have the following guaran-
tees for filtering error for Alg. 1:
Theorem 4.2. With infinite many training trajectories, for
the sequence {F

t

}
t

generated by Alg. 1, we have:

E
⌧⇠D⌧

h
1

T

TX

t=1

d(F
t

(m̂⌧

t

, x⌧

t

), f⌧

t+1

)

i
=

1

T

X

t

✏
t

 ✏
max

.

Theorem. 4.2 shows that the filtering error is upper-
bounded by the average of the minimum batch training er-
rors from each step. If we have a rich class of hypotheses
and small noise (e.g., small Bayes error), ✏

t

could be small.

To analyze finite sample complexity, we need to split the
dataset into T disjoint sets to make sure that the samples in
the dataset D

t

are i.i.d (see details in Appendix). Hence we
reduce forward training to T independent passive super-
vised learning problems. We have the following agnostic
theoretical bound:
Theorem 4.3. With M training trajectories, for any F ⇤

t

2
F , 8t, we have with probability at least 1� �:

E
⌧⇠D⌧

h
1

T

TX

t=1

d(F
t

(m̂⌧

t

, x⌧

t

), f⌧

t+1

)

i

 E
⌧⇠D⌧

⇥
1

T

TX

t=1

d(F ⇤
t

(m̂⌧

t

, x⌧

t

), f⌧

t+1

)

⇤

+ 4⌫ ¯R(F) + 2

r
T ln(T/�)

2M
, (7)

where v = sup

F,z,f

2kF (z) � fk
2

, ¯R(F) =

1

T

P
T

t=1

R
t

(F))

and R
t

(F) is the Rademacher number of F under !
t

.

As one might expect, the learning problem becomes harder
as T increases, however our finite sample analysis shows
the average filtering error grows sublinearly as ˜O(

p
T ).

Although Alg. 1 has nice theoretical properties, one short-
coming is that it is not very data efficient. In practice, it
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is possible that we only have small number of training tra-
jectories but each trajectory is long (T is big). This means
that we may have few training data samples (equal to the
number of trajectories) for learning hypothesis F

t

. Also,
instead of learning non-stationary filters, we often prefer to
learn a stationary filter such that we can filter indefinitely.
In the next section, we present a different algorithm that
utilizes all of the training data to learn a stationary filter.

4.3. Learning Stationary Filters with Predictive States

The optimization framework for finding a good stationary
filter F is defined as:

min

F2F
E

⌧⇠D⌧

1

T

TX

t=1

d(F (m̂
t

, x
t

), f
t+1

), (8)

s.t m̂
t+1

= F (m̂
t

, x
t

), 8t 2 [1, T � 1], (9)

where m̂
1

= arg min

m

P
M

t=1

d(m, f i

1

) =

1

T

P
T

i=1

�(f i

i

).
Note that the above objective function is non-convex,
since m̂

t

is computed recursively and in fact is equal to
F (...F (F (m̂

1

, x
1

), x
2

)...), where we have t � 1 nested
F . As we show experimentally, optimizing this objective
function via Back-Propagation likely leads to local optima.
Instead, we optimize the above objective function using
an iterative approach called Dataset Aggregation (DAgger)
(Ross et al., 2011a) (Alg. 2). Due to the non-convexity of
the objective, DAgger also will not promise global opti-
mality. But as we will show, PSIM with DAgger gives us
a sound theoretical bound for filtering error.

Given a trajectory ⌧ and hypothesis F , we define m̂⌧,F

t

as the predictive belief generated by F on ⌧ at time step
t. We also define z⌧,F

t

to represent the feature variables
(m̂⌧,F

t

, x⌧

t

). At iteration n, Alg. 2 rolls out the predic-
tive states using its current hypothesis F

n

(Eq. 9) on all
the given training trajectories (Line. 2). Then it collects all
the feature variables {(m̂i,Fn

t

, xi

t

)}
t,i

and the correspond-
ing target variables {f i

t+1

}
t,i

to form a new dataset D0
n

and
aggregates it to the original dataset D

n�1

. Then a new hy-
pothesis F

n

is learned from the aggregated dataset D
n

by
minimizing the loss d(F (z), f) over D

n

.

Alg. 2 essentially utilizes DAgger to optimize the non-
convex objective in Eq. 8. By using DAgger, we can guar-
antee a hypothesis that, when used during filtering, per-
forms nearly as well as when performing regression on the
aggregate dataset D

N

. In practice, with a rich hypothe-
sis class F and small noise (e.g., small Bayes error), small
regression error is possible. We now analyze the filtering
performance of PSIM with DAgger below.

Let us fix a hypothesis F and a trajectory ⌧ , we
define !

F,⌧

as the uniform distribution of (z, f):
!

F,⌧

= U
h
(z⌧,F

1

, f⌧

2

), ..., (z⌧,F

T

, f⌧

T+1

)

i
. Now we

Algorithm 2 PREDICTIVE STATE INFERENCE MACHINE
(PSIM) with DAgger

1: Input: M independent trajectories ⌧
i

, 1  i M ;
2: Initialize D

0

 ; and initalize F
0

to be any hypothesis
in F ;

3: Initialize m̂
1

=

1

M

P
M

i=1

�(f i

1

)

4: for n = 0 to N do

5: Use F
n

to perform belief propagation (Eq. 9) on tra-
jectory ⌧

i

, 1  i M
6: For each trajectory ⌧

i

and each time step t, add the
input zi

t

= (mi,Fn
t

, xi

t

) encountered by F
n

to D0
n+1

as feature variables and the corresponding f i

t+1

to
D0

n+1

as the targets ;
7: Aggregate dataset D

n+1

= D
n

[D0
n+1

;
8: Train a new hypothesis F

n+1

on D
n+1

to minimize
the loss d(F (m, x), f);

9: end for

10: Return: the best hypothesis ˆF 2 {F
n

}
n

on validation
trajectories.

can rewrite the filtering error in Eq. 8 as L(F ) =

E
⌧

[E
z,f⇠!F,⌧ [d(F (z), f)]|⌧ ]. Let us define the loss func-

tion for any predictor F at iteration n of Alg. 2 as:

L
n

(F ) = E
⌧

[E
z,f⇠!Fn,⌧ [d(F (z), f)]|⌧ ]. (10)

As we can see, at iteration n, the dataset D0
n

that we collect
forms an empirical estimate of the loss L

n

:

ˆL
n

(F ) =

1

M

MX

⌧=1

E
z,f⇠!Fn,⌧

�
d(F (z), f)

�
. (11)

We first analyze the algorithm under the assumption that
M = 1, ˆL

n

(F ) = L
n

(F ). Let us define Regret �
N

as: 1

N

P
N

n=1

L
n

(F
n

) � min

F2F
1

N

P
N

n=1

L
n

(F )  �
N

.
We also define the minimum average training error ✏

N

=

min

F2F
1

N

P
N

n=1

L
n

(F ). Alg. 2 can be regarded as run-
ning the Follow the Leader (FTL) (Cesa-Bianchi et al.,
2004; Shalev-Shwartz & Kakade, 2009; Hazan et al., 2007)
on the sequence of loss functions {L

n

(F )}N

n=1

. When the
loss function L

n

(F ) is strongly convex with respect to F ,
FTL is no-regret in a sense that lim

N!1 �
N

= 0. Ap-
plying Theorem 4.1 and its reduction to no-regret learning
analysis from (Ross et al., 2011a) to our setting, we have
the following guarantee for filtering error:
Corollary 4.4. (Ross et al., 2011a) For Alg. 2, there exists
a predictor ˆF 2 {F

n

}N

n=1

such that:

L(

ˆF ) = E
⌧

⇥
E

z,f⇠!F̂ ,⌧
(d(

ˆF (z), f))|⌧
⇤
 �

N

+ ✏
N

.

As we can see, under the assumption that L
n

is strongly
convex, as N ! 1, �

N

goes to zero. Hence the filtering
error of ˆF is upper bounded by the minimum batch training
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N4SID IVR PSIM-Linear

d

PSIM-Linear

b

PSIM-RFF

d

Traj. Pwr

Robot Drill Assembly 2.87±0.2 2.39 ±0.1 2.15±0.1 2.54±0.1 1.80±0.1 27.90
Motion Capture 7.86± 0.8 6.88± 0.7 5.75±0.5 9.94±2.9 5.41± 0.5 107.92
Beach Video Texture 231.33±10.5 213.27±11.5 164.23±8.7 268.73±9.5 130.53±9.1 873.77
Flag Video Texture 3.38e3±1.2e2 3.38e3±1.3e2 1.28e3±7.1e1 1.31e3±6.4e1 1.24e3±9.6e1 3.73e3

Table 1. Filter error (1-step ahead) and standard deviation on different datasets. We see that using PSIM with DAgger with both RFF
and Linear outperforms the spectral methods N4SID and IVR, with the RFF performing better on almost all the datasets. DAgger (20
iterations) trains a better linear regression for PSIM than back-propagation with random initialization (400 epochs). We also give the
average trajectory power for the true observations from each dataset.

error that could be achieved by doing regression on D
N

within class F . In general the term ✏
N

depends on the noise
of the data and the expressiveness of the hypothesis class
F . Corollary. 4.4 also shows for fully realizable and noise-
free case, PSIM with DAgger finds the optimal filter that
drives the filtering error to zero when N !1.

The finite sample analysis from (Ross et al.,
2011a) can also be applied to PSIM. Let us define
✏̂
N

= min

F2F
1

N

ˆL
n

(F ), �̂
N

� 1

N

P
N

n=1

ˆL
n

(F
n

) �
min

F2F
1

N

P
N

n=1

ˆL
n

(F ), we have:

Corollary 4.5. (Ross et al., 2011a) For Alg. 2, there exists
a predictor ˆF 2 {F

n

}N

n=1

such that with probability at
least 1� �:

L( ˆF ) = E
⌧

⇥
E

z,f⇠!

F̂ ,⌧
(d( ˆF (z), f))|⌧⇤  �̂

N

+ ✏̂
N

+ L
max

(

r
2 ln(1/�)

MN
). (12)

5. Experiments

We evaluate the PSIM on a variety of dynamical system
benchmarks. We use two feature functions: �

1

(f
t

) =

[x
t

, ..., x
t+k�1

], which stack the k future observations
together (hence the message m can be regarded as a
prediction of future k observations (x̂

t

, .., x̂
t+k�1

)), and
�

2

(f
t

) = [x
t

, ..., x
t+k�1

, x
t

2, ..., x2

t+k�1

], which includes
second moments (hence m represents a Gaussian distri-
bution approximating the true distribution of future obser-
vations). To measure how good the computed predictive
states are, we extract x̂

i

from m̂
t

, and evaluate kx̂
i

� x
i

k2
2

,
the squared distance between the predicted observation x̂

i

and the corresponding true observation x
i

. We implement
PSIM with DAgger using two underlying regression meth-
ods: ridge linear regression (PSIM-Linear

d

) and linear
ridge regression with Random Fourier Features (PSIM-

RFF

d

) (Rahimi & Recht, 2007)5. We also test PSIM with
back-propagation for linear regression (PSIM-Linear

b

).
We compare our approaches to several baselines: Autore-
gressive models (AR), Subspace State Space System Iden-
tification (N4SID) (Van Overschee & De Moor, 2012), and
PSRs implemented with IVR (Hefny et al., 2015).

5With RFF, PSIM approximately embeds the distribution of
f
t

into a Reproducing Kernel Hilbert Space.

Figure 2. The convergence rate of different algorithms. The ratios
(y-axis) are computed as log( e

eF
) for error e from corresponding

algorithms. The x-axis is computed as log(N), where N is the
number of trajectories used for training.

5.1. Synthetic Linear Dynamical System

First we tested our algorithms on a synthetic linear dynami-
cal system (Eq. 2) with a 2-dimensional observation x. We
designed the system such that it is exactly 2-observable.
The sequences of observations are collected from the linear
stationary Kalman filter of the LDS (Boots, 2012; Hefny
et al., 2015). The details of the LDS are in Appendix.

Since the data is collected from the stationary Kalman
filter of the 2-observable LDS, we set k = 2 and use
�

1

(f
t

) = [x
t

, x
t+1

]. Note that the 4-dimensional pre-
dictive state E[�

1

(f
t

)|h
t

] will represent the exact condi-
tional distribution of observations (x

t

, x
t+1

) and therefore
is equivalent to P (s

t

|h
t�1

) (see the detailed case study for
LDS in Appendix). With linear ridge regression, we test
PSIM with forward training, PSIM with DAgger, and AR
models (AR-k) with different lengths (k steps of past ob-
servations) of history on this dataset. For each method, we
compare the average filtering error e to e

F

which is com-
puted by using the underlying linear filter F of the LDS.

Fig. 2 shows the convergence trends of PSIM with DAg-
ger, PSIM with Forward Training, and AR as the number of
training trajectories N increases. The prediction error for
AR with k = 5, 10, 20 is too big to fit into the plot. PSIM
with DAgger performs much better with few training data
while Forward Training eventually slightly surpasses DAg-
ger with sufficient data. The AR-k models need long his-
tories to perform well given data gnereated by latent state
space models, even for this 2-observable LDS. Note AR-
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(c) Motion Capture
Figure 3. Filter error for multiple look ahead steps for the future predictions shown for a few of the datasets. We see across datasets that
the performance of both IVR and N4SID are significantly worse than using PSIM with either linear or random Fourier feature + linear
learner. For some datasets, the nonlinearity of the random Fourier features helps to improve the performance.

35 performs regression in a 70-dimensional feature space
(35 past observations), while PSIM only uses 6-d features
(4-d predictive state + 2-d current observation). This shows
that predictive state is a more compact representation of the
history and can reduce the complexity of learning problem.

5.2. Real Dynamical Systems

We consider the following three real dynamical systems:
(1) Robot Drill Assembly: the dataset consists of 96 sensor
telemetry traces, each of length 350, from a robotic manip-
ulator assembling the battery pack on a power drill. The 13
dimensional noisy observations consist of the robot arm’s
7 joint torques as well as the the 3D force and torque vec-
tors. Note the fixed higher level control policy for the drill
assembly task is not given in the observations and must
be learned as part of the dynamics; (2) Human Motion
Capture: the dataset consists of 48 skeletal tracks of 300
timesteps each from a Vicon motion capture system from
three human subjects performing walking actions. The ob-
servations consist of the 3D positions of the various skeletal
parts (e.g. upperback, thorax, clavicle, etc.); (3) Video Tex-
tures: the datasets consists of one video of flag waving and
the other one of waves on a beach.

For these dynamical systems, we do not test PSIM with
Forward Training since our benchmarks have a large num-
ber of time steps per trajectory. Throughout the experi-
ments, we set k = 5 for all datasets except for video tex-
tures, where we set k = 3. For each dataset, we ran-
domly pick a small number of trajectories as a validation
set for parameter tuning (e.g., ridge, rank for N4SID and
IVR, band width for RFF). We partition the whole dataset
into ten folds, train all algorithms on 9 folds and test on
1 fold. For the feature function �

1

, the average one-step
filtering errors and its standard deviations across ten folds
are shown in Tab. 1. Our approaches outperforms the two
baselines across all datasets. Since the datasets are gener-
ated from complex dynamics, PSIM with RFF exhibits bet-
ter performance than PSIM with Linear. This experimen-
tally supports our theorems suggesting that with powerful
regressors, PSIM could perform better. We implement
PSIM with back-propagation using Theano with several

training approaches: gradient descent with step decay, RM-
SProp (Tieleman & Hinton, 2012) and AdaDelta (Zeiler,
2012) (see Appendix. E). With random initialization, back-
propagation does not achieve comparable performance, ex-
cept on the flag video, due to local optimality.We observe
marginal improvement by using back-propogation to refine
the solution from DAgger. This shows PSIM with DAgger
finds good models by itself (details in Appendix. E). We
also compare these approaches for multi-step look ahead
(Fig. 3). PSIM consistently outperforms the two baselines.

To show predictive states with larger k encode more infor-
mation about latent states, we additionally run PSIM with
k = 1 using �

1

. PSIM (DAgger) with k = 5 outper-
forms k = 1 by 5% for robot assembly dataset, 6% for mo-
tion capture, 8% for flag and 32% for beach video. Includ-
ing belief over longer futures into predictive states can thus
capture more information and increase the performance.

For feature function �
2

and k = 5, with linear ridge regres-
sion, the 1-step filter error achieved by PSIM with DAgger
across all datasets are: 2.05 ± 0.08 on Robot Drill Assem-
bly, 5.47 ± 0.42 on motion capture, 154.02 ± 9.9 on beach
video, and 1.27e3 ± 13e1 on flag video. Comparing to the
results shown in the PSIM-Linear

d

in column of Table. 1,
we achieve slightly better performance on all datasets, and
noticeably better performance on the beach video texture.

6. Conclusion

We introduced PREDICTIVE STATE INFERENCE MA-
CHINES, a novel approach to directly learn to filter with
latent state space models. Leveraging ideas from PSRs,
PSIM reduces the unsupervised learning of latent state
space models to a supervised learning setting and guaran-
tees filtering performance for general non-linear models in
both the realizable and agnostic settings.
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