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Abstract

We provide the first oracle efficient sublinear re-

gret algorithms for adversarial versions of the

contextual bandit problem. In this problem, the

learner repeatedly makes an action on the basis of

a context and receives reward for the chosen ac-

tion, with the goal of achieving reward competi-

tive with a large class of policies. We analyze two

settings: i) in the transductive setting the learner

knows the set of contexts a priori, ii) in the small

separator setting, there exists a small set of con-

texts such that any two policies behave differ-

ently on one of the contexts in the set. Our algo-

rithms fall into the Follow-The-Perturbed-Leader

family (Kalai & Vempala, 2005) and achieve re-

gret O(T 3/4
√

K log(N)) in the transductive set-

ting and O(T 2/3d3/4K
√

log(N)) in the separa-

tor setting, whereT is the number of rounds,K is

the number of actions, N is the number of base-

line policies, and d is the size of the separator.

We actually solve the more general adversarial

contextual semi-bandit linear optimization prob-

lem, whilst in the full information setting we ad-

dress the even more general contextual combi-

natorial optimization. We provide several exten-

sions and implications of our algorithms, such as

switching regret and efficient learning with pre-

dictable sequences.

1. Introduction

We study contextual online learning, a powerful framework

that encompasses a wide range of sequential decision mak-
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ing problems. Here, on every round, the learner receives

contextual information which can be used as an aid in se-

lecting an action. In the full-information version of the

problem, the learner then observes the loss that would have

been suffered for each of the possible actions, while in the

more challenging bandit version, only the loss that was ac-

tually incurred (i.e. for the chosen action) is observed. The

goal is to achieve low loss over several rounds. The con-

textual bandit problem is of particular practical relevance,

with applications to personalized recommendations, clini-

cal trials, and targeted advertising.

Algorithms for contextual learning, such as

Hedge (Freund & Schapire, 1997; Cesa-Bianchi et al.,

1997) and Exp4 (Auer et al., 1995), are well-known to

have remarkable theoretical properties, being effective

even in adversarial, non-stochastic environments and

capable of performing almost as well as the best among

an exponentially large family of policies, or rules for

choosing actions. However, the space requirements and

running time of these algorithms are generally linear in

the number of policies, which is far too expensive for

a the many applications that call for an extremely large

policy space. In this paper, we address this gap between

the statistical and computational complexity of contextual

online learning in an adversarial setting.

As an approach to solving online learning problems, we

posit that the corresponding batch version is solvable. In

other words, we assume access to a certain optimization

oracle for solving a batch-learning problem. Concrete in-

stances of such an oracle include empirical risk minimiza-

tion procedures for supervised learning, algorithms for the

shortest paths problem, and dynamic programming.

Such an oracle is central to the Follow-the-Perturbed-

Leader algorithms of Kalai & Vempala (2005), although

these algorithms are not generally efficient since they re-

quire separately “perturbing” each policy in the entire
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space. Oracles of this kind have also been used in design-

ing efficient contextual bandit algorithms (Agarwal et al.,

2014; Langford & Zhang, 2008; Dudı́k et al., 2011); how-

ever, these require a much more benign setting in which

contexts and losses are chosen randomly and independently

rather than by an adversary.

In this paper, for a wide range of problems, we present

computationally efficient algorithms for contextual online

learning in an adversarial setting, assuming oracle access.

We give results for both the full-information and bandit set-

tings. To the best of our knowledge, these results are the

first of their kind at this level of generality.

Overview of results. We begin in Section 2 with a new

and general Follow-the-Perturbed-Leader algorithm in the

style of Kalai & Vempala (2005). This algorithm only ac-

cesses the policy class using the optimization oracle.

We then apply these results in Section 3 to two settings.

The first is a transductive setting (Ben-David et al., 1997)

in which the learner knows the arriving contexts a priori,

or, less stringently, knows only the set, but not necessarily

the actual sequence or multiplicity with which each con-

text arrives. In the second, small-separator setting, we as-

sume that the policy space admits the existence of a small

set of contexts, called a separator, such that any two poli-

cies differ on at least one context from the set. The size of

the smallest separator for a particular policy class can be

viewed as a new measure of complexity, different from the

VC dimension, and potentially of independent interest.

We analyze our algorithm for a generalized online learn-

ing setting called online combinatorial optimization, which

includes as special cases transductive contextual ex-

perts, online shortest-path routing, online linear optimiza-

tion (Kalai & Vempala, 2005), and online submodular min-

imization (Hazan & Kale, 2012).

In Section 4, we extend our results to the bandit setting,

or in fact, to the more general semi-bandit setting, using a

technique of Neu & Bartók (2013). Among our main re-

sults, we obtain regret bounds for the adversarial contex-

tual bandit problem of O(T 3/4
√

K log(N)) in the trans-

ductive setting, and O(T 2/3d3/4K
√

log(N)) in the small-

separator setting, where T is the number of time steps, K
the number of actions, N the size of the policy space, and d
the size of the separator. Being sublinear in T , these bounds

imply the learner’s performance will eventually be almost

as good as the best policy, although they are worse than the

generally optimal dependence on T of O(
√
T ), obtained

by many of the algorithms mentioned above. On the other

hand, these preceding algorithms are computationally in-

tractable when the policy space is gigantic, while ours runs

in polynomial time in T,K, d and log(N), assuming access

to an optimization oracle. Improving these bounds with an

efficient algorithm remains an open problem.

In Section 5, we give an efficient algorithm when regret

is measured in comparison to a competitor that is allowed

to switch from one policy to another a bounded number

of times. Here, we show that the optimization oracle can

be efficiently implemented given an oracle for the original

policy class. Specifically, this leads to a fully efficient al-

gorithm for the online switching shortest path problem in

directed acyclic graphs.

Finally, Section 6 shows how “path length” regret bounds

can be derived in the style of Rakhlin & Sridharan

(2013b). Such bounds have various applications, for

instance, in obtaining better bounds for playing repeated

games (Rakhlin & Sridharan, 2013a; Syrgkanis et al.,

2015). Our results easily extend to infinite policy classes

with bounded Natarajan dimension and more gener-

ally to classes with bounded Laplacian complexity:

L(Π) = supx1:T
E[supπ∈Π

∑T
t=1 Lt(π(xt))], with Lt

a vector of independent Laplace distributions in each

coordinate.

Other related work. Contextual, transductive online

learning using an optimization oracle was previously

studied by Kakade & Kalai (2005), whose work was

later extended and improved by Cesa-Bianchi & Shamir

(2011) using a generalization of a technique from

Cesa-Bianchi et al. (1997). However, these results are for

binary classification or other convex losses defined on one-

dimensional predictions and outcomes; as such, they are

special cases of the much more general setting we consider

here.

Awerbuch & Kleinberg (2008) present an efficient algo-

rithm for the online shortest paths problem. This can be

viewed as solving an adversarial bandit problem with a very

particular optimization oracle over an exponentially large

but highly structured space of “policies” corresponding to

paths in a graph. However, their setting is clearly far more

restrictive and structured than ours is.

Concurrently with our work, Rakhlin & Sridharan

(2016) also obtain sublinear regret guarantees for an

oracle-based adversarial contextual bandit algorithm,

albeit non-combinatorial. Their algorithm achieves

O(T 3/4
√
K(log(N))1/4) in two settings: a hybrid

stochastic-adversarial setting, where the contexts are

drawn i.i.d. from a distribution that the learner knows

how to sample from, and a fully transductive set-

ting, where the contexts and their multiplicities are

known a priori. Their algorithm is of the random play-

out (Cesa-Bianchi & Shamir, 2011) style and is based on a

minimax analysis.
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2. Online Learning with Oracles

We start by analyzing the family of Follow-the-Perturbed-

Leader algorithms in a very general online learning setting.

Parts of this generic formulation follow the recent formu-

lation of Daskalakis & Syrgkanis (2015), but we present a

more refined analysis which is essential for our contextual

learning result in the next sections. The main theorem of

this section is essentially a generalization of Theorem 1.1

of Kalai & Vempala (2005).

Consider an online learning problem where at each time-

step an adversary picks an outcome yt ∈ Y and the algo-

rithm picks a policy πt ∈ Π from some policy space Π.1

The algorithm receives a loss: ℓ(πt, yt), which could be

positive or negative. At the end of each iteration the al-

gorithm observes the realized outcome yt. We will denote

with y1:t a sequence of outcomes {y1, y2, . . . , yt}. More-

over, we denote with:

L(π, y1:t) =
t

∑

τ=1

ℓ(π, yτ ), (1)

the cumulative loss of a fixed policy π ∈ Π for a sequence

of choices y1:t of the adversary. The goal of the learning

algorithm is to achieve loss that is competitive with the best

fixed policy in hindsight. As the algorithms we consider

will be randomized, we will analyze the expected regret,

REGRET = sup
π⋆∈Π

E

[

T
∑

t=1

ℓ(πt, yt)−
T
∑

t=1

ℓ(π⋆, yt)

]

, (2)

which is the worst case difference between the cumulative

loss of the learner and the loss of any fixed policy π ∈ Π.

We consider adversaries that are adaptive, which means

that they can choose the outcome yt at time t, using knowl-

edge of the entire history of interaction. The only knowl-

edge not available to an adaptive adversary is any random-

ness used by the learning algorithm at time t. In contrast,

an oblivious adversary is one that picks the sequence of

outcomes y1:T before the start of the learning process.

To develop computationally efficient algorithms that com-

pete with large sets of policies Π, we assume that we are

given oracle access to the following optimization problem.

Definition 1 (Optimization oracle). Given outcomes y1:t

compute the fixed optimal policy for this sequence:

M
(

y1:t
)

= argminπ∈ΠL(π, y1:t). (3)

We will also assume that the oracle performs consistent

deterministic tie-breaking: i.e. whenever two policies are

tied, then it always outputs the same policy.

1We refer to the choice of the learner as a policy, for unifor-
mity of notation with subsequent sections, where the learner will
choose some policy that maps contexts to actions.

Algorithm 1 Follow the perturbed leader with fake sample

perturbations - FTPL.

for each time step t do

Draw a random sequence of outcomes {z} =
(z1, . . . , . . . , zk) independently, based on some time-

independent distribution over sequences. Both the

length of the sequence and the outcome zi ∈ Y at

each iteration of the sequence can be random

Denote with {z} ∪ y1:t−1 the augmented sequence

where we append the extra outcome samples {z} at

the beginning of sequence y1:t−1

Invoke oracle M and play policy:

πt = M
(

{z} ∪ y1:t−1
)

. (4)

end for

In this generic setting, we define a new family of Follow-

The-Perturbed-Leader (FTPL) algorithms where the pertur-

bation takes the form of extra samples of outcomes (see Al-

gorithm 1). In each round, the learning algorithm draws a

random sequence of outcomes independently, and appends

this sequence to the outcomes experienced during the learn-

ing process. The algorithm invokes the oracle on this aug-

mented outcome sequence, and plays the resulting policy.

Perturbed Leader Regret Analysis. We give a general

theorem on the regret of a perturbed leader algorithm with

sample perturbations. In the sections that follow we will

give instances of this analysis in specific settings.

Theorem 1. For a distribution over sample sequences {z}
and a sequence of adversarially and adaptively chosen out-

comes y1:T , define:

STABILITY =

T
∑

t=1

E{z}
[

ℓ(πt, yt)− ℓ(πt+1, yt)
]

ERROR = E{z}



max
π∈Π

∑

zτ∈{z}
ℓ(π, zτ )





− E{z}



min
π∈Π

∑

zτ∈{z}
ℓ(π, zτ)



 ,

where πt is defined in Equation (4). Then the expected re-

gret of Algorithm 1 is upper bounded by,

REGRET ≤ STABILITY + ERROR. (5)

This theorem shows that any FTPL-variant where the per-

turbation can be described as a random sequence of out-

comes has regret bounded by the two terms STABILITY and
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ERROR. Below we will instantiate this theorem to obtain

concrete regret bounds for several problems.

The proof of the theorem is based on a well-known “be-

the-leader” argument. We first show that if we included

the tth loss vector in the oracle call at round t, we would

have regret bounded by ERROR, and then we show that the

difference between our algorithm and this prescient one is

bounded by STABILITY. See Appendix A for the proof.

3. Adversarial Contextual Learning

Our first specialization of the general setting is to contex-

tual online combinatorial optimization. In this learning

setting, the action space is a feasibility set A ⊆ {0, 1}K
and we use a ∈ A both as a binary vector and as the set

{j ∈ [K] : a(j) = 1}. The adversary picks a outcome

yt = (xt, f t) where xt belongs to some context space X
and f t : A → R is a cost function that maps each feasi-

ble action vector a ∈ A to a cost f t(a). The goal of the

learning algorithm is to achieve low regret relative to a set

of policies Π ⊂ (X → A) that map contexts to feasible ac-

tion vectors. At each iteration the algorithm picks a policy

πt and incurs a cost ℓ(πt, yt) = f t(πt(xt)). In this section,

we consider the full-information problem, where after each

round, the entire loss function f t is revealed to the learner.

Online versions of a number of important learning tasks, in-

cluding cost-sensitive classification, multi-label prediction,

online linear optimization (Kalai & Vempala, 2005) and

online submodular minimization (Hazan & Kale, 2012) are

all special cases of the contextual online combinatorial op-

timization problem, as we will see below.

Contextual Follow the Perturbed Leader. We will ana-

lyze the performance of an instantiation of the FTPL algo-

rithm in this setting. To specialize the algorithm, we need

only specify the distribution from which the sequence of

fake outcomes {z} is drawn at each time-step. This distri-

bution is parameterized by a subset of contexts X ⊆ X ,

with |X | = d and a noise parameter ǫ. We draw the se-

quence {z} as follows: for each context x ∈ X , we add

the fake sample zx = (x, fx) where fx is a linear loss

function based on a loss vector ℓx ∈ R
K , meaning that

fx(a) = 〈a, ℓx〉. Each coordinate of the loss vector ℓx is

drawn from a independent Laplace distribution with param-

eter ǫ, i.e. for each coordinate j ∈ [K] the density of ℓx(j)
at q is f(q) = ǫ

2 exp{−ǫ|q|}. The latter distribution has

mean 0 and variance 2
ǫ2 . Using this distribution for fake

samples gives an instantiation of Algorithm 1, which we

refer to as CONTEXT-FTPL(X, ǫ) (see Algorithm 2).

We analyze CONTEXT-FTPL(X, ǫ) in two settings: the

transductive setting and the small separator setting.

Definition 2. In the transductive setting, at the beginning

of the learning process, the adversary reveals to the learner

Algorithm 2 Contextual Follow the Perturbed Leader Al-

gorithm - CONTEXT-FTPL(X, ǫ).

Input: parameter ǫ, set of contexts X , policies Π.

for each time step t do

Draw a sequence {z} = (z1, . . . , zd) of d fake sam-

ples.

The context associated with sample zx is equal to x
and each coordinate of the loss vector ℓx is drawn i.i.d.

from a Laplace(ǫ)
Pick and play according to policy

πt = M({z} ∪ y1:t−1) (6)

end for

the set of contexts that will arrive, although the ordering

and multiplicity need not be revealed.

Definition 3. In the small separator setting, there exists a

set X ⊂ X such that for any two distinct policies π, π′ ∈
Π, there exists x ∈ X such that π(x) 6= π′(x).

In the transductive setting, the set X that we use in

CONTEXT-FTPL(X, ǫ) is precisely this set of contexts that

will arrive, which by assumption is available to the learning

algorithm. In this small separator setting, the set X used by

CONTEXT-FTPL is the separating set. This enables non-

transductive learning, but one must be able to compute a

small separator prior to learning. Below we will see exam-

ples where this is possible.

We now turn to bounding the regret of

CONTEXT-FTPL(X, ǫ). Let d = |X | be the number

of contexts that are used in the definition of the noise

distribution, let N = |Π|, and let m denote the maximum

number of non-zero coordinates that any policy can choose

on any context, i.e. m = maxa∈A ‖a‖1. Even though at

times we might constrain the sequence of loss functions

that the adversary can pick (e.g. linear non-negative

losses), we will assume that the oracle M can handle at

least linear loss functions with both positive and negative

coordinates. Our main result is:

Theorem 2 (Complete Information Regret).

CONTEXT-FTPL(X, ǫ) achieves regret against any

adaptively and adversarially chosen sequence of contexts

and loss functions:

1. In the transductive setting:

REGRET ≤ 4ǫK ·
T
∑

t=1

E
[

‖f t‖2∗
]

+
10

ǫ

√
dm log(N)

2. In the transductive setting, when loss functions are

linear and non-negative, i.e. f t(a) = 〈a, ℓt〉 with
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ℓt ∈ R
K
≥0:

REGRET ≤ ǫ ·
T
∑

t=1

E
[

〈πt(xt), ℓt〉2
]

+
10

ǫ

√
dm log(N)

3. In the small separator setting:

REGRET ≤ 4ǫKd ·
T
∑

t=1

E
[

‖f t‖2∗
]

+
10

ǫ

√
dm log(N)

where ‖f t‖∗ = maxa∈A |f t(a)|.
When ǫ is set optimally, loss functions are in [0, 1],
and loss vectors are in [0, 1]K , these give re-

gret:2 O
(

(dm)1/4
√

KT log(N)
)

in the first set-

ting, O
(

d1/4m5/4
√

T log(N)
)

in the second and

O
(

m1/4d3/4
√

KT log(N)
)

in the third.

To prove the theorem we separately upper bound the

STABILITY and the ERROR terms and then Theorem 2 fol-

lows from Theorem 1. One key step is a refined ERROR

analysis that leverages the symmetry of the Laplace distri-

bution to obtain a bound with dependence
√
d rather than

d. This is possible only if the perturbation is centered about

zero, and therefore does not apply to other FPTL variants

that use non-negative distributions such as exponential or

uniform (Kalai & Vempala, 2005). Due to lack of space

we defer proof details to Appendix B.

This general theorem has implications for many specific

settings that have been extensively studied in the literature.

We turn now to some examples.

Example 1. (Transductive Contextual Experts) The con-

textual experts problem is the online version of cost-

sensitive multiclass classification, and the full-information

version of the widely-studied contextual bandit problem.

The setting is as above, but A corresponds to sets with car-

dinality 1, meaning that m = 1 in our formulation. As

a result, CONTEXT-FTPL can be applied as is, and the

second claim in Theorem 2 shows that the algorithm has

regret at most O
(

d1/4
√

T log(N)
)

if at most d contexts

arrive. In the worst case this bound is O(T 3/4
√

log(N)),
since the adversary can choose at most T contexts. To our

knowledge, this is the first fully oracle-efficient algorithm

for online adversarial cost-sensitive multiclass classifica-

tion, albeit in the transductive setting.

This result can easily be lifted to infinite policy classes

that have small Natarajan Dimension (a multi-class ana-

log of VC-dimension), since such classes behave like fi-

nite ones once the set of contexts is fixed. Thus, in the

2Observe that when loss vectors are in [0, 1]K , then the linear
loss function is actually in [0, m] not in [0, 1].

transductive setting, Theorem 2 can be applied along with

the analog of the Sauer-Shelah lemma, leading to a sublin-

ear regret bound for classes with finite Natarajan dimen-

sion. On the other hand, in the non-transductive case it

is possible to construct examples where achieving sublin-

ear regret against a VC class is information-theoretically

hard (Ben-David et al., 2009), demonstrating a significant

difference between the two settings. See Corollary 15 and

Theorem 16 in the Appendix F for details.

Example 2. (Non-contextual Shortest Path Routing and

Linear Optimization) For the case when the linear op-

timization corresponds to computing the shortest (s, t)-
path in a DAG, then K and m equal to the number

of edges and the problem can be solved in poly-time

even when edge costs are negative. More generally,

CONTEXT-FTPL can also be applied to non-contextual

problems, which is a special case where d = 1. In such a

case, CONTEXT-FTPL reduces to the classical FTPL algo-

rithm with Laplace instead of Exponential noise, and The-

orem 2 matches existing results for online linear optimiza-

tion (Kalai & Vempala, 2005). In particular, for problems

without context, CONTEXT-FTPL has regret that scales

with
√
T .

Example 3. (Online sub-modular minimization) A spe-

cial case of our setting is the online-submodular mini-

mization problem studied in previous work (Hazan & Kale,

2012; Jegelka & Bilmes, 2011). As above, this is a

non-contextual online combinatorial optimization problem,

where the loss function f t presented at each round is sub-

modular. Here, CONTEXT-FTPL reduces to the strongly

polynomial algorithm of Hazan & Kale (2012), although

our noise follows a Laplace instead of Uniform distribu-

tion. A straightforward application of the first claim of

Theorem 2 shows that CONTEXT-FTPL achieves regret

at most O(KH
√

T log(K)) if the losses are bounded in

[−H,H ], and a slightly refined analysis of the error terms

gives O(KH
√
T ) regret. This matches the FTPL analysis

of Hazan & Kale (2012), although they also develop an al-

gorithm based on online convex optimization that achieves

O(H
√
KT ) regret.

Example 4. (Contextual Experts with linear policy classes)

The third clause of Theorem 2 gives strong guarantees for

the non-transductive contextual experts problem, provided

one can construct a small separating set of contexts. Often

this is possible, and we provide some examples here.

1. For binary classification where the policies are

boolean disjunctions (conjunctions) over n binary

variables, the set of 1-sparse (n − 1-sparse) boolean

vectors form a separator of size n. This is easy to

see as two disjunctions must disagree on at least one

variable, so they will make different predictions on



Efficient Algorithms for Adversarial Contextual Learning

the vector that is non-zero only in that component.

Note that the size of the small separator is indepen-

dent of the time horizon T and logarithmic in the

number of policies. Thus, Theorem 2 shows that

CONTEXT-FTPL suffers at most O(
√
T log(N)) re-

gret since d = log(N),m = 1 and K = 2.

2. For binary classification in n dimensions, consider a

discretization of linear classifiers defined as follows,

the separating hyperplane of each classifier is defined

by choosing the intercept with each axis from one of

O(1/τ) values (possibly including something denot-

ing no intercept). Then a small separator includes,

for each axis, one point between each pair in the dis-

cretization, for a total of O(n/τ) points. This fol-

lows since any two distinct classifiers have different

intercepts for at least one axis, and our small sepa-

rator has one point between these two different inter-

cepts, leading to different predictions. Note that the

number of classifiers in the discretization is O(τ−n).
Here Theorem 2 shows that CONTEXT-FTPL suf-

fers at most O(n
√
T

τ3/4 (log(
1
τ ))

1/4) regret since N =
O(τ−n), d = n

τ ,m = 1 and K = 2. This bound

has a undesireable polynomial dependence on the dis-

cretization resolution τ but avoids exponential dimen-

sion dependence. Note that competing with the set of

all linear classifiers (without discretization) is impos-

sible because the class has infinite Littlestone dimen-

sion (Ben-David et al., 2009) (See also Theorem 16 in

Appendix F).

Thus we believe that the smallest separator size for a policy

class can be viewed as a new complexity measure, which

may be of independent interest.

4. Linear Losses and Semi-Bandit Feedback

In this section, we consider contextual learning with semi-

bandit feedback and linear non-negative losses. At each

round t of this learning problem, the adversary chooses

a non-negative vector ℓt ∈ R
K
≥0 and sets the loss func-

tion to f t(a) = 〈a, ℓt〉. The learner chooses an action

at ∈ A ⊂ {0, 1}K accumulates loss f t(at) and observes

ℓt(j) for each j ∈ at. In other words, the learner ob-

serves the coefficients for only the elements in the set that

he picked. Notice that if A is the one-sparse vectors, then

this setting is equivalent to the well-studied contextual ban-

dit problem (Langford & Zhang, 2008).

Semi-bandit algorithm. Our semi-bandit algorithm pro-

ceeds as follows: At each iteration it makes a call to

CONTEXT-FTPL(ǫ), which returns a policy πt and implies

a chosen action at = πt(xt). The algorithm plays the ac-

tion at, observes the coordinates of the loss {ℓt(j)}j∈at

and proceeds to construct a proxy loss vector ℓ̂t, which it

passes to the instance of CONTEXT-FTPL, before proceed-

ing to the next round.

To describe the construction of ℓ̂t, let pt(π) = Pr[πt =
π|Ht−1] denote the probability that CONTEXT-FTPL re-

turns policy π at time-step t conditioned on the past history

(observed losses and contexts, chosen actions, current iter-

ation’s context, internal randomness etc., which we denote

with Ht−1). For any element j ∈ [K], let:

qt(j) =
∑

π∈Π:j∈π(xt)

pt(π) (7)

denote the probability that element j is included in the ac-

tion chosen by CONTEXT-FTPL(X, ǫ) at time-step t.

Typical semi-bandit algorithms aim to construct proxy loss

vectors by dividing the observed coordinates of the loss by

the probabilities qt(j) and setting other coordinates to zero,

which is the well-known inverse propensity scoring mech-

anism (Horvitz & Thompson, 1952). Unfortunately, in our

case, the probabilities qt(j) stem from randomness fed into

the oracle, so that they are implicit maintained and there-

fore must be approximated.

We therefore construct ℓ̂t through a geometric sampling

scheme due to Neu & Bartók (2013). For each j ∈
πt(xt), we repeatedly invoke the current execution of the

CONTEXT-FTPL algorithm with fresh noise, until it re-

turns a policy that includes j in its action for context xt.

The process is repeated at most L times for each j ∈ πt(xt)
and the number of invocations is denoted J t(j). The vec-

tor ℓ̂t that is returned to the full feedback algorithm is

zero for all j /∈ πt(xt), and for each j ∈ πt(xt) it is

ℓ̂t(j) = J t(j) · ℓt(j).
By Lemma 1 of Neu & Bartók (2013), this process yields a

proxy loss vector ℓ̂t that satisfies,

E

[

ℓ̂t(j) | Ht−1
]

=
(

1−
(

1− qt(j)
)L

)

ℓt(j). (8)

The semi-bandit algorithm feeds this proxy loss vector to

the CONTEXT-FTPL instance and proceeds to the next

round.

The formal description of the complete bandit algo-

rithm is given in Algorithm 3 and we refer to it as

CONTEXT-SEMI-BANDIT-FTPL(X, ǫ, L). We bound its

regret in the transductive and small separator setting.

Theorem 3. The expected regret of

CONTEXT-SEMI-BANDIT-FTPL(X, ǫ, L) in the semi-

bandit setting against any adaptively and adversarially

chosen sequence of contexts and linear non-negative

losses, with ‖ℓt‖∗ ≤ 1, is at most:
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Algorithm 3 Contextual Semi-Bandit Algorithm -

CONTEXT-SEMI-BANDIT-FTPL(X, ǫ, L).

Input: parameter ǫ,M , set of contexts X , policies Π.

Let D denote a distribution over a sequence of d samples,

{z} = (z1, . . . , zd), where the context associated with

sample zx is equal to x and each coordinate of the loss

vector ℓx is drawn i.i.d. from a Laplace(ǫ)
for each time-step t do

Draw a sequence {z}t from distribution D.

Pick and play according to policy

πt = M({z} ∪ (x1:t−1, ℓ̂1:t−1)) (9)

Observe loss ℓt(j) for each j ∈ πt(xt)

Set ℓ̂t(j) = 0 for any j /∈ πt(xt)

Set ℓ̂t(j) = J t(j) · ℓt(j), for each j ∈ πt(xt), where

J t(j) is computed by the following geometric sam-

pling process:

for each element j ∈ πt(xt) do

for each iteration i = 1, . . . , L do

Draw a sequence {y}i from distribution D.

Compute πi = M({y}i ∪ (x1:t−1, ℓ̂1:t−1))
If j ∈ πi(xt) then stop and return J t(j) = i

end for

end for

If process finished without setting J t(j), then set

J t(j) = L
end for

• In the transductive setting:

REGRET ≤ 2ǫmKT +
10

ǫ

√
dm log(N) +

KT

eL

• In the small separator setting:

REGRET ≤ 8ǫK2dLmT+
10

ǫ

√
dm log(N)+

KT

eL

For L =
√
KT and optimal ǫ, the regret is

O
(

d1/4m3/4
√

KT log(N)
)

in the first setting.

For L = T 1/3 and optimal ǫ, the regret is

O
(

(md)3/4KT 2/3
√

log(N)
)

in the second setting.

Moreover, each iteration of the algorithm requires mL
oracle calls and otherwise runs in polynomial time in d,K .

This is our main result for adversarial variants of the con-

textual bandit problem. In the most well-studied setting,

i.e. contextual bandits, we have m = 1, so our regret

bound is O(d1/4
√

KT log(N)) in the transductive setting

and O(d3/4KT 2/3
√

log(N)) in the small separator set-

ting. Since for the transductive case d ≤ T and for the

small-separator case d can be independent of T (see dis-

cussion above), this implies sublinear regret for adversar-

ial contextual bandits in either setting. To our knowledge

this is the first oracle-efficient sublinear regret algorithm

for variants of the contextual bandit problem. However, as

we mentioned before, neither regret bound matches the op-

timal O(
√

KT log(N)) rate for this problem, which can

be achieved by computationally intractable algorithms. An

interesting open question is to develop computationally ef-

ficient, statistically optimal contextual bandit algorithms.

5. Switching Policy Regret

In this section we analyze switching regret for the con-

textual linear optimization setting, i.e. when compet-

ing with the best sequence of policies that switches at

most k times. Such a notion of regret was first ana-

lyzed by Herbster & Warmuth (1998) and several algo-

rithms, that are not computationally efficient for large

policy spaces, have been designed since then (e.g.

(Luo & Schapire, 2015)). Our results provide the first com-

putationally efficient switching regret algorithms assuming

offline oracle access. Note that (György et al., 2012) study

a similar setting but assume access to an online oracle that

can achieve low regret against the best fixed policy. The

offline oracle we consider is significantly weaker.

For this setting we will assume that the learner knows the

exact sequence x1:T of contexts ahead of time and not only

the set of potential contexts. The extension stems from the

realization that we can simply think of time t as part of the

context at time-step t. Thus now the contexts are of the

form x̃t = (t, xt). Moreover, policies in the augmented

context space are now of the form: π̃(x̃t) = πI(t)(x
t),

where I(t) is a selector which maps a time-step t to a policy

index in [N ], with the constraint that the number of time-

steps such that I(t) 6= I(t− 1) is at most k. If the original

policy space Π was of size N , the new policy space, de-

noted Π̃, is of size Ñ at most T kNk, since there are at most

T k partitions of time into k consequetive intervals and each

of the k intervals can be occupied by N possible policies.

Moreover, in this augmented context space, the number of

possible contexts, denoted X̃ is equal to d̃ = T .

Thus if we run CONTEXT-FTPL(X, ǫ) on this augmented

context and policy space, Theorem 2, bounds the regret

against all policies in the augmented policy space Π̃. Since,

regret against the augmented policy space, corresponds to

switching regret against the original set of policies, the fol-

lowing corollary is immediate:

Corollary 4 (Contextual Switching Regret). In

the transductive complete information setting,

CONTEXT-FTPL(X̃, ǫ) applied to the augmented policy

space Π̃, achieves k-switching regret against any adap-

tively and adversarially chosen sequence of contexts and
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losses at most: O
(

m1/4
√

Kk log(TN)T 3/4
)

for general

loss functions in [0, 1] and O
(

√

k log(TN)m5/4T 3/4
)

for linear losses with loss vectors in [0, 1]K .

It remains to show is that we can efficiently solve the offline

optimization problem for the new policy space Π̃, if we

have access to an optimization oracle for the original policy

space Π. Then we can claim that CONTEXT-FTPL(X̃, ǫ)
in the augmented context and policy space is also an effi-

cient algorithm. We show that the latter is true via a dy-

namic programming approach. The approach generalizes

beyond contextual linear optimization settings. The proof

of the Lemma is provided in the supplementary material.

Lemma 5. The oracle M̃ in the augmented space,

M̃(ỹ1:T ) = argminπ̃∈Π̃

∑T
τ=1〈π̃(τ, xτ ), ℓ

τ 〉 (10)

is computable in O(Tk) time, with O(T 2) calls to the ora-

cle over the original space, M . This process can be amor-

tized so that solving a sequence of T problems in the aug-

mented space requires O(T 2) calls to M in total.

6. Efficient Path Length Regret Bounds

In this section we examine a variant of our

CONTEXT-FTPL(ǫ) algorithm that is efficient and

achieves regret that is upper bounded by structural prop-

erties of the loss sequence. Our algorithm is framed in

terms of a generic predictor that the learner has access to

and the regret is upper bounded by the deviation of the true

loss vector from the predictor. For specific instances of the

predictor this leads to path length bounds (Chiang et al.,

2012) or variance based bounds (Hazan & Kale, 2010).

Our approach allows for generalizations of variance and

path length that can incorporate contextual information and

can be viewed as an efficient version and a generalization

of the results of Rakhlin & Sridharan (2013b) on learning

with predictable sequences. Such results have also found

applications in learning in game theoretic environments

(Rakhlin & Sridharan, 2013a; Syrgkanis et al., 2015).

The algorithm is identical to CONTEXT-FTPL(ǫ) with the

exception that now the policy that is used at time-step t is:

πt = M({z} ∪ y1:t−1 ∪ (xt, Qt)) (11)

where Qt ∈ {0, 1}K → R
K is an arbitrary loss function

predictor, which can depend on the observed history up to

time t. This predictor can be interpreted as partial side in-

formation that the learner has about the loss function that

will arrive at time-step t. Given such a predictor we define

the error between the predictor and the actual sequence:

Et = E
[

‖f t −Qt‖2∗
]

(12)

Theorem 6 (Predictor based regret bounds). The regret of

CONTEXT-FTPL(X, ǫ) with predictors and complete in-

formation,

1. In the transductive setting is upper bounded by:

REGRET ≤ 4ǫK
T
∑

t=1

Et +
10

√
dm log(N)

ǫ

2. In the small separator setting is upper bounded by:

REGRET ≤ 4ǫKd

T
∑

t=1

Et +
10

√
dm log(N)

ǫ

Picking ǫ optimally gives regret

O

(

(dm)1/4
√

K log(N)
∑T

t=1 Et

)

in the first set-

ting and O

(

m1/4d3/4
√

K log(N)
∑T

t=1 Et

)

in the

second.

Even without contexts, our result is the first efficient path

length regret algorithm for online combinatorial optimiza-

tion. For instance, for the case of non-contextual, on-

line combinatorial optimization an instantiation of our al-

gorithm achieves regret O

(

m1/4

√

K log(K)
∑T

t=1 Et

)

against adaptive adversaries. For learning with expert ad-

vice, m = 1 and K is number of experts, the results

of Rakhlin & Sridharan (2013b) provide a non-efficient

O

(

√

log(K)
∑T

t=1 Et

)

. Thus our bound incurs an extra

cost of
√
K in comparison. Removing this extra factor of√

K in an efficient manner is an interesting open question.

7. Discussion

In this work we give fully oracle efficient algorithms for

adversarial online learning problems including contextual

experts, contextual bandits, and problems involving linear

optimization or switching experts. Our main algorithmic

contribution is a new Follow-The-Perturbed-Leader style

algorithm that adds perturbed low-dimensional statistics.

Our analysis for this algorithm guarantees sublinear regret

against adaptive adversaries for all of these problems.

While our algorithms achieve sublinear regret in all prob-

lems we consider, we do not always attain the optimal re-

gret bounds. An interesting direction for future work is

whether fully oracle-based algorithms can achieve optimal

regret bounds in the settings we consider. Another inter-

esting direction focuses on a deeper understanding of the

small-separator condition and whether it enables efficient

non-transductive learning in other settings. We look for-

ward to studying these questions in future work.
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cient tracking of large classes of experts. IEEE Transac-

tions on Information Theory, 2012.

Haussler, David and Long, Philip M. A generalization of

sauer’s lemma. Journal of Combinatorial Theory, 1995.

Hazan, Elad and Kale, Satyen. Extracting certainty from

uncertainty: regret bounded by variation in costs. Ma-

chine Learning, 2010.

Hazan, Elad and Kale, Satyen. Online submodular min-

imization. Journal of Machine Learning Research

(JMLR), 2012.

Herbster, Mark and Warmuth, Manfred K. Tracking the

best expert. Machine Learning, 1998.

Horvitz, Daniel G and Thompson, Donovan J. A gener-

alization of sampling without replacement from a finite

universe. Journal of the American Statistical Association

(JASA), 1952.

Hutter, Marcus and Poland, Jan. Adaptive online prediction

by following the perturbed leader. Journal of Machine

Learning Research (JMLR), 2005.

Jegelka, Stefanie and Bilmes, Jeff A. Online submodular

minimization for combinatorial structures. In Interna-

tional Conference on Machine Learning (ICML), 2011.

Kakade, Sham M and Kalai, Adam. From batch to trans-

ductive online learning. In Advances in Neural Informa-

tion Processing Systems (NIPS), 2005.

Kalai, Adam and Vempala, Santosh. Efficient algorithms

for online decision problems. Journal of Computer and

System Sciences, 2005.

Langford, John and Zhang, Tong. The epoch-greedy al-

gorithm for multi-armed bandits with side information.

In Advances in Neural Information Processing Systems

(NIPS), 2008.

Luo, Haipeng and Schapire, Robert E. Achieving all with

no parameters: Adanormalhedge. In Conference on

Learning Theory (COLT), 2015.
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