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Abstract
With the growing importance of large network
models and enormous training datasets, GPUs
have become increasingly necessary to train neu-
ral networks. This is largely because conven-
tional optimization algorithms rely on stochastic
gradient methods that don’t scale well to large
numbers of cores in a cluster setting. Further-
more, the convergence of all gradient methods,
including batch methods, suffers from common
problems like saturation effects, poor condition-
ing, and saddle points. This paper explores an
unconventional training method that uses alter-
nating direction methods and Bregman iteration
to train networks without gradient descent steps.
The proposed method reduces the network train-
ing problem to a sequence of minimization sub-
steps that can each be solved globally in closed
form. The proposed method is advantageous be-
cause it avoids many of the caveats that make
gradient methods slow on highly non-convex
problems. The method exhibits strong scaling in
the distributed setting, yielding linear speedups
even when split over thousands of cores.

1. Introduction
As hardware and algorithms advance, neural network per-
formance is constantly improving for many machine learn-
ing tasks. This is particularly true in applications where
extremely large datasets are available to train models with
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many parameters. Because big datasets provide results that
(often dramatically) outperform the prior state-of-the-art in
many machine learning tasks, researchers are willing to
purchase specialized hardware such as GPUs, and commit
large amounts of time to training models and tuning hyper-
parameters.

Gradient-based training methods have several properties
that contribute to this need for specialized hardware. First,
while large amounts of data can be shared amongst many
cores, existing optimization methods suffer when paral-
lelized. Second, training neural nets requires optimizing
highly non-convex objectives that exhibit saddle points,
poor conditioning, and vanishing gradients, all of which
slow down gradient-based methods such as stochastic gra-
dient descent, conjugate gradients, and BFGS. Several mit-
igating approaches to avoiding this issue have been intro-
duced, including rectified linear units (ReLU) (Nair & Hin-
ton, 2010), Long Short-Term Memory networks (Hochre-
iter & Schmidhuber, 1997), RPROP (Riedmiller & Braun,
1993), and others, but the fundamental problem remains.

In this paper, we introduce a new method for training the
parameters of neural nets using the Alternating Direction
Method of Multipliers (ADMM) and Bregman iteration.
This approach addresses several problems facing classi-
cal gradient methods; the proposed method exhibits linear
scaling when data is parallelized across cores, and is robust
to gradient saturation and poor conditioning. The method
decomposes network training into a sequence of sub-steps
that are each solved to global optimality. The scalability
of the proposed method, combined with the ability to avoid
local minima by globally solving each substep, can lead to
dramatic speedups.

We begin in Section 2 by describing the mathematical no-
tation and context, and providing a discussion of several
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weaknesses of gradient-based methods that we hope to ad-
dress. Sections 3 and 4 introduce and describe the opti-
mization approach, and Sections 5 and 6 describe in detail
the distributed implementation. Section 7 provides an ex-
perimental comparison of the new approach with standard
implementations of several gradient-based methods on two
problems of differing size and difficulty. Finally, Section
8 contains a closing discussion of the paper’s contributions
and the future work needed.

2. Background and notation
Though there are many variations, a typical neural network
consists of L layers, each of which is defined by a linear
operator Wl, and a non-linear neural activation function
hl. Given a (column) vector of input activations, al−1, a
single layer computes and outputs the non-linear function
al = hl(Wlal−1). A network is formed by layering these
units together in a nested fashion to compute a composite
function; in the 3-layer case, for example, this would be

f(a0;W ) =W3(h2(W2h1(W1a0))) (1)

where W = {Wl} denotes the ensemble of weight ma-
trices, and a0 contains input activations for every training
sample (one sample per column). The function h3 is absent
as it is common for the last layer to not have an activation
function.

Training the network is the task of tuning the weight ma-
trices W to match the output activations aL to the targets
y, given the inputs a0. Using a loss function `, the training
problem can be posed as

min
W

`(f(a0;W ), y) (2)

Note that in our notation, we have included all input acti-
vations for all training data into the matrix/tensor a0. This
notation benefits our discussion of the proposed algorithm,
which operates on all training data simultaneously as a
batch.

Also, in our formulation the tensor W contains linear op-
erators, but not necessarily dense matrices. These linear
operators can be convolutions with an ensemble of filters,
in which case (1) represents a convolutional net.

Finally, the formulation used here assumes a feed-forward
architecture. However, our proposed methods can handle
more complex network topologies (such as recurrent net-
works) with little modification.

2.1. What’s wrong with backprop?

Most networks are trained using stochastic gradient de-
scent (SGD, i.e. backpropagation) in which the gradient
of the network loss function is approximated using a small

number of training samples, and then a descent step is
taken using this approximate gradient. Stochastic gradient
methods work extremely well in the serial setting, but lack
scalability. Recent attempts to scale SGD include Down-
pour, which runs SGD simultaneously on multiple cores.
This model averages parameters across cores using multi-
ple communication nodes that store copies of the model. A
conceptually similar approach is elastic averaging (Zhang
et al., 2015), in which different processors simultaneously
run SGD using a quadratic penalty term that prevents dif-
ferent processes from drifting too far from the central av-
erage. These methods have found success with modest
numbers of processors, but fail to maintain strong scaling
for large numbers of cores. For example, for several ex-
periments reported in (Dean et al., 2012), the Downpour
distributed SGD method runs slower with 1500 cores than
with 500 cores.

The scalability of SGD is limited because it relies on a large
number of inexpensive minimization steps that each use a
small amount of data. Forming a noisy gradient from a
small mini-batch requires very little computation. The low
cost of this step is an asset in the serial setting where it en-
ables the algorithm to move quickly, but disadvantageous
in the parallel setting where each step is too inexpensive
to be split over multiple processors. For this reason, SGD
is ideally suited for computation on GPUs, where multi-
ple cores can simultaneously work on a small batch of data
using a shared memory space with virtually no communi-
cation overhead.

When parallelizing over CPUs, it is preferable to have
methods that use a small number of expensive minimiza-
tion steps, preferably involving a large number of data. The
work required on each minimization step can then be split
across many worker nodes, and the latency of communica-
tion is amortized over a large amount of computation. This
approach has been suggested by numerous authors who
propose batch computation methods (Ngiam et al., 2011),
which compute exact gradients on each iteration using the
entire dataset, including conjugate gradients (Towsey et al.,
1995; Møller, 1993), BFGS, and Hessian-free (Martens &
Sutskever, 2011; Sainath et al., 2013) methods.

Unfortunately, all gradient-based approaches, whether
batched or stochastic, also suffer from several other criti-
cal drawbacks. First, gradient-based methods suffer from
the vanishing gradients. During backpropagation, the
derivative of shallow layers in a network are formed us-
ing products of weight matrices and derivatives of non-
linearities from downstream layers. When the eigenvalues
of the weight matrices are small and the derivatives of non-
linearities are nearly zero (as they often are for sigmoid and
ReLU non-linearities), multiplication by these terms anni-
hilates information. The resulting gradients in shallow lay-
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ers contain little information about the error (Bengio et al.,
1994; Riedmiller & Braun, 1993; Hochreiter & Schmidhu-
ber, 1997).

Second, backprop has the potential to get stuck at local
minima and saddle points. While recent results suggest
that local minimizers of SGD are close to global minima
(Choromanska et al., 2014), in practice SGD often lingers
near saddle points where gradients are small (Dauphin
et al., 2014).

Finally, backprop does not easily parallelize over layers, a
significant bottleneck when considering deep architectures.
However, recent work on SGD has successfully used model
parallelism by using multiple replicas of the entire network
(Dean et al., 2012).

We propose a solution that helps alleviate these problems
by separating the objective function at each layer of a neu-
ral network into two terms: one term measuring the relation
between the weights and the input activations, and the other
term containing the nonlinear activation function. We then
apply an alternating direction method that addresses each
term separately. The first term allows the weights to be
updated without the effects of vanishing gradients. In the
second step, we have a non-convex minimization problem
that can be solved globally in closed-form. Also, the form
of the objective allows the weights of every layer to be up-
dated independently, enabling parallelization over layers.

This approach does not require any gradient steps at all.
Rather, the problem of training network parameters is re-
duced to a series of minimization sub-problems using the
alternating direction methods of multipliers. These mini-
mization sub-problems are solved globally in closed form.

2.2. Related work

Other works have applied least-squares based methods to
neural networks. One notable example is the method of
auxiliary coordinates (MAC) (Carreira-Perpinán & Wang,
2012) which uses quadratic penalties to approximately
enforce equality constraints. Unlike our method, MAC
requires iterative solvers for sub-problems, whereas the
method proposed here is designed so that all sub-problems
have closed form solutions. Also unlike MAC, the method
proposed here uses Lagrange multipliers to exactly enforce
equality constraints, which we have found to be necessary
for training deeper networks.

Another related approach is the expectation-maximization
(EM) algorithm of (Patel et al., 2015), which is derived
from the Deep Rendering Model (DRM), a hierarchical
generative model for natural images. They show that feed-
forward propagation in a deep convolutional net corre-
sponds to inference on their proposed DRM. They derive
a new EM learning algorithm for their proposed DRM that

employs least-squares parameter updates that are conceptu-
ally similar to (but different from) the Parallel Weight Up-
date proposed here (see Section 5). However, there is cur-
rently no implementation nor any training results to com-
pare against.

Note that our work is the first to consider alternating least
squares as a method to distribute computation across a clus-
ter, although the authors of (Carreira-Perpinán & Wang,
2012) do consider implementations that are “distributed”
in the sense of using multiple threads on a single machine
via the Matlab matrix toolbox.

3. Alternating minimization for neural
networks

The idea behind our method is to decouple the weights
from the nonlinear link functions using a splitting tech-
nique. Rather than feeding the output of the linear opera-
tor Wl directly into the activation function hl, we store the
output of layer l in a new variable zl = Wlal−1. We also
represent the output of the link function as a vector of ac-
tivations al = hl(zl). We then wish to solve the following
problem

minimize
{Wl},{al},{zl}

`(zL, y)

subject to zl =Wlal−1, for l = 1, 2, · · ·L
al = hl(zl), for l = 1, 2, · · ·L− 1.

(3)

Observe that solving (3) is equivalent to solving (2). Rather
than try to solve (3) directly, we relax the constraints by
adding an `2 penalty function to the objective and attack
the unconstrained problem

minimize
{Wl},{al},{zl}

`(zL, y) + βL‖zL −WLaL−1‖2

+

L−1∑
l=1

[
γl‖al − hl(zl)‖2 + βl‖zl −Wlal−1‖2

]
(4)

where {γl} and {βl} are constants that control the weight
of each constraint. The formulation (4) only approximately
enforces the constraints in (3). To obtain exact enforcement
of the constraints, we add a Lagrange multiplier term to (4),
which yields

minimize
{Wl},{al},{zl}

`(zL, y) (5)

+ 〈zL, λ〉+ βL‖zL −WLaL−1‖2

+

L−1∑
l=1

[
γl‖al − hl(zl)‖2 + βl‖zl −Wlal−1‖2

]
.

where λ is a vector of Lagrange multipliers with the same
dimensions as zL. Note that in a classical ADMM formu-
lation, a Lagrange multiplier would be added for each con-
straint in (3). The formulation above corresponds more
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Algorithm 1 ADMM for Neural Nets

Input: training features {a0}, and labels {y},
Initialize: allocate {al}L=1

l=1 , {zl}Ll=1, and λ
repeat
for l = 1, 2, · · · , L− 1 do
Wl ← zla

†
l−1

al←(βl+1W
T
l+1Wl+1+γlI)

−1(βl+1W
T
l+1zl+1+γlhl(zl))

zl ← argminz γl‖al − hl(z)‖2 + βl‖zl −Wlal−1‖2
end for
WL ← zLa

†
L−1

zL ← argminz `(z, y) + 〈zL, λ〉+ βL‖z −WLal−1‖2
λ← λ+ βL(zL −WLaL−1)
until converged

closely to Bregman iteration, which only requires a La-
grange correction to be added to the objective term (and
not the constraint terms), rather than classical ADMM. We
have found the Bregman formulation to be far more stable
than a full scale ADMM formulation. This issue will be
discussed in detail in Section 4.

The split formulation (4) is carefully designed to be easily
minimized using an alternating direction method in which
each sub-step has a simple closed-form solution. The al-
ternating direction scheme proceeds by updating one set of
variables at a time – either {Wl}, {al}, or {zl} – while
holding the others constant. The simplicity of the proposed
scheme comes from the following observation: The min-
imization of (4) with respect to both {Wl} and {al−1} is
a simple linear least-squares problem. Only the minimiza-
tion of (4) with respect {zl} is nonlinear. However, there is
no coupling between the entries of {zl}, and so the prob-
lem of minimizing for {zl} decomposes into solving a large
number of one-dimensional problems, one for each entry
in {zl}. Because each sub-problem has a simple form and
only 1 variable, these problems can be solved globally in
closed form.

The full alternating direction method is listed in Algo-
rithm 1. We discuss the details below.

3.1. Minimization sub-steps

In this section, we consider the updates for each variable in
(5). The algorithm proceeds by minimizing for Wl, al, and
zl, and then updating the Lagrange multipliers λ.

Weight update We first consider the minimization of (4)
with respect to {Wl}. For each layer l, the optimal solution
minimizes ‖zl −Wlal−1‖2. This is simply a least squares
problem, and the solution is given by Wl ← zla

†
l−1 where

a†l−1 represents the pseudoinverse of the (rectangular) acti-
vation matrix al−1.

Activations update Minimization for al is a simple least-
squares problem similar to the weight update. However, in
this case the matrix al appears in two penalty terms in (4),
and so we must minimize βl‖zl+1 −Wl+1al‖ + γl‖al −
hl(zl)‖2 for al, holding all other variables fixed. The new
value of al is given by

(βl+1W
T
l+1Wl+1 + γlI)

−1(βl+1W
T
l+1zl+1 + γlhl(zl)) (6)

where WT
l+1 is the adjoint (transpose) of Wl+1.

Outputs update The update for zl requires minimizing

min
z
γl‖al − hl(z)‖2 + βl‖z −Wlal−1‖2. (7)

This problem is non-convex and non-quadratic (because
of the non-linear term h). Fortunately, because the non-
linearity h works entry-wise on its argument, the entries in
zl are de-coupled. Solving (7) is particularly easy when h
is piecewise linear, as it can be solved in closed form; com-
mon piecewise linear choices for h include rectified lin-
ear units (ReLUs) and non-differentiable sigmoid functions
given by

hrelu(x) =

{
x, if x > 0

0, otherwise
, hsig(x) =


1, if x ≥ 1

x, if 0 < x < 1

0, otherwise
.

For such choices of h, the minimizer of (7) is easily com-
puted using simple if-then logic. For more sophistical
choices of h, including smooth sigmoid curves, the prob-
lem can be solved quickly with a lookup table of pre-
computed solutions because each 1-dimensional problem
only depends on two inputs.

Lagrange multiplier update After minimizing for
{Wl}, {al}, and {zl}, the Lagrange multiplier update is
given simply by

λ← λ+ βL(zL −WLaL−1). (8)

We discuss this update further in Section 4.

4. Lagrange multiplier updates via method of
multipliers and Bregman iteration

The proposed method can be viewed as solving the con-
strained problem (3) using Bregman iteration, which is
closely related to ADMM. The convergence of Bregman
iteration is fairly well understood in the presence of linear
constraints (Yin et al., 2008). The convergence of ADMM
is fairly well understood for convex problems involving
only two separate variable blocks (He & Yuan, 2015). Con-
vergence results also guarantee that a local minima is ob-
tained for two-block non-convex objectives under certain
smoothness assumptions (Nocedal & Wright, 2006).
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Because the proposed scheme involves more than two cou-
pled variable blocks and a non-smooth penalty function,
it lies outside the scope of known convergence results for
ADMM. In fact, when ADMM is applied to (3) in a con-
ventional way using separate Lagrange multiplier vectors
for each constraint, the method is highly unstable because
of the de-stabilizing effect of a large number of coupled,
non-smooth, non-convex terms.

Fortunately, we will see below that the Bregman Lagrange
update method (8) does not involve any non-smooth con-
straint terms, and the resulting method seems to be ex-
tremely stable.

4.1. Bregman interpretation

Bregman iteration (also known as the method of multipli-
ers) is a general framework for solving constrained opti-
mization problems. Methods of this type have been used
extensively in the sparse optimization literature (Yin et al.,
2008). Consider the general problem of minimizing

min
u
J(u) subject to Au = b (9)

for some convex function J and linear operator A. Breg-
man iteration repeatedly solves

uk+1 ← minDJ(u, u
k) +

1

2
‖Au− b‖2 (10)

where p ∈ ∂J(uk) is a (sub-)gradient of J at uk, and
DJ(u, u

k) = J(u)− J(uk)− 〈u− uk, p〉 is the so-called
Bregman distance. The iterative process (10) can be viewed
as minimizing the objective J subject to an inexact penalty
that approximately obtains Ax ≈ b, and then adding a lin-
ear term to the objective to weaken it so that the quadratic
penalty becomes more influential on the next iteration.

The Lagrange update described in Section 3 can be inter-
preted as performing Bregman iteration to solve the prob-
lem (3), where J(u) = `(zL, y), and A contains all the
constraints in (3). On each iteration, the outputs zl are up-
dated immediately before the Lagrange step is taken, and
so zl−1 satisfies the optimality condition

0 ∈ ∂z`(zL, y) + βL(zL −WLaL−1) + λ.

It follows that

λ+ βL(zL −WLaL−1) ∈ −∂z`(zL, y).

For this reason, the Lagrange update (8) can be inter-
preted as updating the sub-gradient in the Bregman iterative
method for solving (3). The combination of the Bregman
iterative update with an alternating minimization strategy
makes the proposed algorithm an instance of the split Breg-
man method (Goldstein & Osher, 2009).

4.2. Interpretation as method of multipliers

In addition to the Bregman interpretation, the proposed
method can also be viewed as an approximation to the
method of multipliers, which solves constrained problems
of the form

min
u
J(u) subject to A(u) = b (11)

for some convex function J and (possibly non-linear) oper-
ator A(·). In its most general form (which does not assume
linear constraints) the method proceeds using the iterative
updates{
uk+1 ← min J(u) + 〈λk, A(u)− b〉+ β

2 ‖A(u)− b‖
2

λk+1 ← λk + ∂u{β2 ‖A(u)− b‖
2}

where λk is a vector of Lagrange multipliers that is gen-
erally initialized to zero, and β

2 ‖A(u) − b‖
2 is a quadratic

penalty term. After each minimization sub-problem, the
gradient of the penalty term is added to the Lagrange mul-
tipliers. When the operator A is linear, this update takes
the form λk+1 ← λk + βAT (Au − b), which is the most
common form of the method of multipliers.

Just like in the Bregman case, we now let J(u) = `(zL, y),
and let A contain the constraints in (3). After a minimiza-
tion pass, we must update the Lagrange multiplier vector.
Assuming a good minimizer has been achieved, the deriva-
tive of (5) should be nearly zero. All variables except zL ap-
pear only in the quadratic penalty, and so these derivatives
should be negligibly small. The only major contributor to
the gradient of the penalty term is zL,which appears in both
the loss function and the quadratic penalty. The gradient of
the penalty term with respect to zL, is βL(zL −WLaL−1),
which is exactly the proposed multiplier update.

When the objective is approximately minimized by al-
ternately updating separate blocks of variables (as in
the proposed method), this becomes an instance of the
ADMM (Boyd et al., 2011).

5. Distributed implementation using data
parallelism

The main advantage of the proposed alternating minimiza-
tion method is its high degree of scalability. In this section,
we explain how the method is distributed.

Consider distributing the algorithm acrossN worker nodes.
The ADMM method is scaled using a data parallelization
strategy, in which different nodes store activations and out-
puts corresponding to different subsets of the training data.
For each layer, the activation matrix is broken into columns
subsets as ai = (a1, a2, · · · , aN ). The output matrix zl and
Lagrange multipliers λ decompose similarly.
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The optimization sub-steps for updating {al} and {zl}
do not require any communication and parallelize triv-
ially. The weight matrix update requires the computation of
pseudo-inverses and products involving the matrices {al}
and {zl}. This can be done effectively using transpose re-
duction strategies (Goldstein et al., 2016) that reduce the
dimensionality of matrices before they are transmitted to a
central node.

Parallel Weight update The weight update has the form
Wl ← zla

†
l , where a†l represents the pseudoinverse of

the activation matrix al. This pseudoinverse can be writ-
ten a†l = aTl (ala

T
l )
−1. Using this expansion, the W update

decomposes across nodes as

Wl ←

(
N∑
n=1

znl (a
n
l )
T

)(
N∑
n=1

anl (a
n
l )
T

)−1
.

The individual products znl (a
n
l )
T and anl (a

n
l )
T are com-

puted separately on each node, and then summed across
nodes using a single reduce operation. Note that the width
of anl equals the number of training vectors that are stored
on node n, which is potentially very large for big data sets.
When the number of features (the number of rows in anl ) is
less than the number of training data (columns of anl ), we
can exploit transpose reduction when forming these prod-
ucts – the product anl (a

n
l )
T is much smaller than the matrix

anl alone. This dramatically reduces the quantity of data
transmitted during the reduce operation.

Once these products have been formed and reduced onto
a central server, the central node computes the inverse of
ala

T
l , updates Wl, and then broadcasts the result to the

worker nodes.

Parallel Activations update The update (6) trivially de-
composes across workers, with each worker computing

anl ← (βl+1W
T
l+1Wl+1+γI)

−1(βl+1W
T
l+1z

n
l+1+γlhl(z

n
l )).

Each server maintains a full representation of the entire
weight matrix, and can formulate its own local copy of the
matrix inverse (βl+1W

T
l+1Wl+1 + γI)−1.

Parallel Outputs update Like the activations update, the
update for zl trivially parallelizes and each worker node
solves

min
znl

γl‖anl − hl(znl )‖2 + βl‖znl −Wla
n
l−1‖2. (12)

Each worker node simply computes Wla
n
l−1 using local

data, and then updates each of the (decoupled) entries in
znl by solving a 1-dimensional problem in closed form.

Parallel Lagrange multiplier update The Lagrange
multiplier update also trivially splits across nodes, with
worker n computing

λn ← λn + βL(z
n
L −WLa

n
L−1) (13)

using only local data.

6. Implementation details
Like many training methods for neural networks, the
ADMM approach requires several tips and tricks to get
maximum performance. The convergence theory for the
method of multipliers requires a good minimizer to be com-
puted before updating the Lagrange multipliers. When the
method is initialized with random starting values, the ini-
tial iterates are generally far from optimal. For this reason,
we frequently “warm start” the ADMM method by running
several iterations without Lagrange multiplier updates.

The method potentially requires the user to choose a large
number of parameters {γi} and {βi}. We choose γi = 10
and βi = 1 for all trials runs reported here, and we have
found that this choice works reliably for a wide range of
problems and network architectures. Note that in the clas-
sical ADMM method, convergence is guaranteed for any
choice of the quadratic penalty parameters.

We use training data with binary class labels, in which each
output entry aL is either 1 or 0. We use a separable loss
function with a hinge penalty of the form

`(z, a) =

{
max{1− z, 0}, when a = 1,

max{a, 0}, when a = 0.

This loss function works well in practice, and yields min-
imization sub-problems that are easily solved in closed
form.

Finally, our implementation simply initializes the activa-
tion matrices {al} and output matrices {zl} using i.i.d
Gaussian random variables. Because our method updates
the weights before anything else, the weight matrices do
not require any initialization. The results presented here
are using Gaussian random variables with unit variance,
and the results seem to be fairly insensitive to the variance
of this distribution. This seems to be because the output
updates are solved to global optimality on each iteration.

7. Experiments
In this section, we present experimental results that com-
pare the performance of the ADMM method to other
approaches, including SGD, conjugate gradients, and L-
BFGS on benchmark classification tasks. Comparisons are
made across multiple axes. First, we illustrate the scaling
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(a) Time required for ADMM to reach 95% test accuracy
vs number of cores. This problem was not large enough to
support parallelization over many cores, yet the advantages
of scaling are still apparent (note the x-axis has log scale). In
comparison, on the GPU, L-BFGS reached this threshold in
3.2 seconds, CG in 9.3 seconds, and SGD in 8.2 seconds.

(b) Test set predictive accuracy as a function of time in sec-
onds for ADMM on 2,496 cores (blue), in addition to GPU
implementations of conjugate gradients (green), SGD (red),
and L-BFGS (cyan).

Figure 1. Street View House Numbers (subsection 7.1)

of the approach, by varying the number of cores available
and clocking the compute time necessary to meet an accu-
racy threshold on the test set of the problem. Second, we
show test set classification accuracy as a function of time to
compare the rate of convergence of the optimization meth-
ods. Finally, we show these comparisons on two different
data sets, one small and relatively easy, and one large and
difficult.

The new ADMM approach was implemented in Python on
a Cray XC30 supercomputer with Ivy Bridge processors,
and communication between cores performed via MPI.
SGD, conjugate gradients, and L-BFGS are run as imple-
mented in the Torch optim package on NVIDIA Tesla K40
GPUs. These methods underwent a thorough hyperparam-
eter grid search to identify the algorithm parameters that
produced the best results. In all cases, timings indicate
only the time spent optimizing, excluding time spent load-
ing data and setting up the network.

Experiments were run on two datasets. The first is a subset
of the Street View House Numbers (SVHN) dataset (Net-
zer et al., 2011). Neural nets were constructed to classify
pictures of 0s from 2s using histogram of gradient (HOG)
features of the original dataset. Using the “extra” dataset
to train, this meant 120,290 training datapoints of 648 fea-
tures each. The testing set contained 5,893 data points.

The second dataset is the far more difficult Higgs
dataset (Baldi et al., 2014), consisting of a training set of
10,500,000 datapoints of 28 features each, with each data-
point labelled as either a signal process producing a Higgs
boson or a background process which does not. The testing
set consists of 500,000 datapoints.

7.1. SVHN

First, we focus on the problem posed by the SVHN dataset.
For this dataset, we optimized a net with two hidden layers
of 100 and 50 nodes and ReLU activation functions. This
is an easy problem (test accuracy rises quickly) that does
not require a large volume of data and is easily handled
by gradient-based methods on a GPU. However, Figure
1a demonstrates that ADMM exhibits linear scaling with
cores. Even though the implementations of the gradient-
based methods enjoy communication via shared memory
on the GPU while ADMM required CPU-to-CPU commu-
nication, strong scaling allows ADMM on CPU cores to
compete with the gradient-based methods on a GPU.

This is illustrated clearly in Figure 1b, which shows each
method’s performance on the test set as a function of time.
With 1,024 compute cores, on an average of 10 runs,
ADMM was able to meet the 95% test set accuracy thresh-
old in 13.3 seconds. After an extensive hyperparameter
search to find the settings which resulted in the fastest con-
vergence, SGD converged on average in 28.3 seconds, L-
BFGS in 3.3 seconds, and conjugate gradients in 10.1 sec-
onds. Though the small dataset kept ADMM from taking
full advantage of its scalability, it was nonetheless sufficient
to allow it to be competitive with GPU implementations.

7.2. Higgs

For the much larger and more difficult Higgs dataset, we
optimized a simple network with ReLU activation func-
tions and a hidden layer of 300 nodes, as suggested in
(Baldi et al., 2014). The graph illustrates the amount of
time required to optimize the network to a test set pre-
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(a) Time required for ADMM to reach 64% test accuracy
when parallelized over varying levels of cores. L-BFGS
on a GPU required 181 seconds, and conjugate gradients re-
quired 44 minutes. SGD never reached 64% accuracy.

(b) Test set predictive accuracy as a function of time for
ADMM on 7200 cores (blue), conjugate gradients (green),
and SGD (red). Note the x-axis is scaled logarithmically.

Figure 2. Higgs (subsection 7.2)

diction accuracy of 64%; this parameter was chosen as all
batch methods being tested reliably hit this accuracy bench-
mark over numerous trials. As is clear from Figure 2a, par-
allelizing over additional cores decreases the time required
dramatically, and again exhibits linear scaling.

In this much larger problem, the advantageous scaling al-
lowed ADMM to reach the 64% benchmark much faster
than the other approaches. Figure 2b illustrates this clearly,
with ADMM running on 7200 cores reaching this bench-
mark in 7.8 seconds. In comparison, L-BFGS required 181
seconds, and conjugate gradients required 44 minutes.1 In
seven hours of training, SGD never reached 64% accuracy
on the test set. These results suggest that, for large and
difficult problems, the strong linear scaling of ADMM en-
ables it to leverage large numbers of cores to (dramatically)
out-perform GPU implementations.

8. Discussion & Conclusion
We present a method for training neural networks without
using gradient steps. In addition to avoiding many diffi-
culties of gradient methods (like saturation and choice of
learning rates), performance of the proposed method scales
linearly up to thousands of cores. This strong scaling en-
ables the proposed approach to out-perform other methods
on problems involving extremely large datasets.

1It is worth noting that though L-BFGS required substantially
more time to reach 64% than did ADMM, it was the only method
to produce a superior classifier, doing as well as 75% accuracy on
the test set.

8.1. Looking forward

The experiments shown here represent a fairly narrow
range of classification problems and are not meant to
demonstrate the absolute superiority of ADMM as a train-
ing method. Rather, this study is meant to be a proof of
concept demonstrating that the caveats of gradient-based
methods can be avoided using alternative minimization
schemes. Future work will explore the behavior of alter-
nating direction methods in broader contexts.

We are particularly interested in focusing future work
on recurrent nets and convolutional nets. Recurrent
nets, which complicate standard gradient methods (Jaeger,
2002; Lukoševičius, 2012), pose no difficulty for ADMM
schemes whatsoever because they decouple layers using
auxiliary variables. Convolutional networks are also of
interest because ADMM can, in principle, handle them
very efficiently. When the linear operators {Wl} represent
convolutions rather than dense weight matrices, the least
squares problems that arise in the updates for {Wl} and
{al} can be solved efficiently using fast Fourier transforms.

Finally, there are avenues to explore to potentially im-
prove convergence speed. These include adding momen-
tum terms to the weight updates and studying different ini-
tialization schemes, both of which are known to be impor-
tant for gradient-based schemes (Sutskever et al., 2013).
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