
Energetic Natural Gradient

A. Derivation of FIM from KLD
In this appendix we show that 1

2∆ᵀF (θ)∆ is a second or-
der Taylor approximation of DKL(p(θ)‖p(θ + ∆)). First,
let

gq(θ) :=DKL(q‖p(θ))

=
∑
ω∈Ω

q(ω) ln

(
q(ω)

p(ω|θ)

)
.

We begin by deriving equations for the Jacobian and Hes-
sian of gq at θ:

∂gq(θ)

∂θ
=
∑
ω∈Ω

q(ω)
p(ω|θ)

q(ω)

∂

∂θ

(
q(ω)

p(ω|θ)

)

=
∑
ω∈Ω

q(ω)
p(ω|θ)

q(ω)

(
−q(ω)∂p(ω|θ)

∂θ

p(ω|θ)2

)

=
∑
ω∈Ω

− q(ω)

p(ω|θ)

∂p(ω|θ)

∂θ
, (4)

and so:

∂2gq(θ)

∂θ2 =
∂

∂θ

(
∂gq(θ)

∂θ

)
=−

∑
ω∈Ω

q(ω)
∂

∂θ

(
1

p(ω|θ)

∂p(ω|θ)

∂θ

)
=−

∑
ω∈Ω

q(ω)

p(ω|θ)

∂2p(ω|θ)

∂θ2

+
∑
ω∈Ω

q(ω)

p(ω|θ)2

∂p(ω|θ)

∂θ

∂p(ω|θ)

∂θ

ᵀ

=−
∑
ω∈Ω

q(ω)

p(ω|θ)

∂2p(ω|θ)

∂θ2

+
∑
ω∈Ω

q(ω)
∂ ln p(ω|θ)

∂θ

∂ ln p(ω|θ)

∂θ

ᵀ

. (5)

Next we compute a second order Taylor expansion of
gq(θ + ∆) around gq(θ):

gp(θ)(θ + ∆)
Taylor2≈ gp(θ)(θ) + ∆ᵀ ∂gp(θ)(θ)

∂θ
(6)

+
1

2
∆ᵀ ∂

2gp(θ)(θ)

∂θ2 ∆.

Notice that

gp(θ)(θ) = DKL(p(θ)‖p(θ)) = 0,

and by (4)

∆ᵀ ∂gp(θ)(θ)

∂θ
=−∆ᵀ

∑
ω∈Ω

p(ω|θ)

p(ω|θ)

∂p(ω|θ)

∂θ

=−∆ᵀ ∂

∂θ

(∑
ω∈Ω

p(ω|θ)

)
(a)
=0,

where (a) holds because∑
ω∈Ω

p(ω|θ) = 1,

so
∂

∂θ

(∑
ω∈Ω

p(ω|θ)

)
=
∂1

∂θ
= 0. (7)

Thus, the first two terms on the right side of (6) are zero,
and thus:

gp(θ)(θ + ∆)
Taylor2≈ 1

2
∆ᵀ ∂

2gp(θ)(θ)

∂θ2 ∆. (8)

Next we focus on the Hessian, (5), with q = p(θ):

∂2gp(θ)(θ)

∂θ2 =−
∑
ω∈Ω

p(ω|θ)

p(ω|θ)

∂2p(ω|θ)

∂θ2︸ ︷︷ ︸
(a)
=0

+
∑
ω∈Ω

p(ω|θ)
∂ ln p(ω|θ)

∂θ

∂ ln p(ω|θ)

∂θ

ᵀ

=F (θ),

where (a) comes from taking the derivative of both sides of
(7) with respect to θ. Substituting this into (8) we have that

gp(θ)(θ + ∆)
Taylor2≈ 1

2
∆ᵀF (θ)∆.

B. Derivation of EIM from Energy Distance
In this section we show that ∆ᵀE(θ)∆ is a second order
Taylor approximation of DE(p(θ), p(θ + ∆))2. First, let

gq(θ) :=DE(q, p(θ))

=2
∑

ω1∈Ω,ω2∈Ω

q(ω1)p(ω2|θ)dq(ω1, ω2)

−
∑

ω1∈Ω,ω2∈Ω

p(ω1|θ)p(ω2|θ)dq(ω1, ω2)

−
∑

ω1∈Ω,ω2∈Ω

q(ω1)q(ω2)dq(ω1, ω2),
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where we use dq to denote that d should be the distance
metric at the distribution q. We begin by deriving an ex-
pression for the Jacobian of gq at θ:

∂gq(θ)

∂θ
=
∂

∂θ

(
2

∑
ω1∈Ω,ω2∈Ω

q(ω1)p(ω2|θ)dq(ω1, ω2)

−
∑

ω1∈Ω,ω2∈Ω

p(ω1|θ)p(ω2|θ)dq(ω1, ω2)

−
∑

ω1∈Ω,ω2∈Ω

q(ω1)q(ω2)dq(ω1, ω2)

)

=2
∑

ω1∈Ω,ω2∈Ω

dq(ω1, ω2)q(ω1)
∂p(ω2|θ)

∂θ

−
∑

ω1∈Ω,ω2∈Ω

dq(ω1, ω2)
∂p(ω1|θ)p(ω2|θ)

∂θ

=2
∑

ω1∈Ω,ω2∈Ω

dq(ω1, ω2)q(ω1)
∂p(ω2|θ)

∂θ

−
∑

ω1∈Ω,ω2∈Ω

dq(ω1, ω2)p(ω1|θ)
∂p(ω2|θ)

∂θ

−
∑

ω1∈Ω,ω2∈Ω

dq(ω1, ω2)p(ω2|θ)
∂p(ω1|θ)

∂θ
.

Notice that the last two lines are equal because dq is
symmetric—swap ω1 and ω2 in the last line, and you get
the second to last line with dq(ω2, ω1) = dq(ω1, ω2). So:

∂gq(θ)

∂θ
=2

∑
ω1∈Ω,ω2∈Ω

dq(ω1, ω2)q(ω1)
∂p(ω2|θ)

∂θ

− 2
∑

ω1∈Ω,ω2∈Ω

dq(ω1, ω2)p(ω1|θ)
∂p(ω2|θ)

∂θ

=2
∑

ω1∈Ω,ω2∈Ω

dq(ω1, ω2)
∂p(ω2|θ)

∂θ
(q(ω1)− p(ω1|θ)).

(9)

Next we compute the Hessian of gq at θ:

∂2gq(θ)

∂θ2 =
∂

∂θ

(
∂gq(θ)

∂θ

)
=

∂

∂θ

(
2

∑
ω1∈Ω,ω2∈Ω

dq(ω1, ω2)
∂p(ω2|θ)

∂θ
q(ω1)

)

∂

∂θ

(
− 2

∑
ω1∈Ω,ω2∈Ω

dq(ω1, ω2)
∂p(ω2|θ)

∂θ
p(ω1|θ)

)

=2
∑

ω1∈Ω,ω2∈Ω

dq(ω1, ω2)q(ω1)
∂2p(ω2|θ)

∂θ2

− 2
∑

ω1∈Ω,ω2∈Ω

dq(ω1, ω2)
∂

∂θ

(
∂p(ω2|θ)

∂θ
p(ω1|θ)

)

=2
∑

ω1∈Ω,ω2∈Ω

dq(ω1, ω2)q(ω1)
∂2p(ω2|θ)

∂θ2

− 2
∑

ω1∈Ω,ω2∈Ω

dq(ω1, ω2)
∂p(ω2|θ)

∂θ

∂p(ω1|θ)ᵀ

∂θ

− 2
∑

ω1∈Ω,ω2∈Ω

dq(ω1, ω2)p(ω1|θ)
∂2p(ω2|θ)

∂2θ)

=2
∑

ω1∈Ω,ω2∈Ω

dq(ω1, ω2)(q(ω1)− p(ω1|θ))
∂2p(ω2|θ)

∂θ2

− 2
∑

ω1∈Ω,ω2∈Ω

dp(θ)(ω1, ω2)
∂p(ω1|θ)

∂θ

∂p(ω2|θ)ᵀ

∂θ
.

(10)

Next we compute a second order Taylor expansion of
gq(θ + ∆) around gq(θ):

gp(θ)(θ + ∆)
Taylor2≈ gp(θ)(θ) + ∆ᵀ ∂gp(θ)(θ)

∂θ

+
1

2
∆ᵀ ∂

2gp(θ)(θ)

∂θ2 ∆. (11)

Notice that

gp(θ)(θ) = DE(p(θ), p(θ)) = 0,

and by (9)

∆ᵀ ∂gp(θ)(θ)

∂θ
=−∆ᵀ2

∑
ω1∈Ω,ω2∈Ω

dp(θ)(ω1, ω2)
∂p(ω2|θ)

∂θ

× (p(ω1|θ)− p(ω1|θ))

=0.

The first two terms on the right side of (11) are zero, and
thus:

gp(θ)(θ + ∆)
Taylor2≈ 1

2
∆ᵀ ∂

2gp(θ)(θ)

∂θ2 ∆. (12)
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Next we focus on the Hessian, (10), with q = p(θ):

∂2gp(θ)(θ)

∂θ2 =2
∑

ω1∈Ω,ω2∈Ω

dp(θ)(ω1, ω2) (p(ω1|θ)− p(ω1|θ))︸ ︷︷ ︸
=0

∂2p(ω2|θ)
∂θ2

− 2
∑

ω1∈Ω,ω2∈Ω

dp(θ)(ω1, ω2)
∂p(ω1|θ)

∂θ

∂p(ω2|θ)ᵀ

∂θ

=2E(θ).

Substituting this into (12) we have that

gp(θ)(θ + ∆)
Taylor2≈ ∆ᵀE(θ)∆.

C. Proof of Theorem 1

Let |Ω| = m, and let D be a m×m distance matrix where
Dij := dp(θ)(ωi, ωj). Let M be an m × n matrix where
the ith row is ∂p(ωi|θ)

∂θ . The EIM can then be written as:

E(θ) = −MᵀDM.

Recall from (7) that
∑m

i=1
∂p(ωi|θ)

∂θ = 0. This means that
each column of M must sum to zero, and thus that for
any x ∈ Rn, Mx is a vector whose entries also sum to
0. Hence, if D is conditionally negative definite then E(θ)
is negative semidefinite since

xᵀE(θ)x = −xᵀMᵀDMx
(a)
≥ 0,

for all x, where (a) holds from the definition of condition-
ally positive semidefinite matrices.

D. Discussion of CND Distances
Conditionally negative definite distances are related to Eu-
clidean distances, as shown by Schoenberg (1938).

Corollary 1. Assume |Ω| < ∞ and
√
dp(θ) is a metric

and Euclidean embeddable, that is, there exists a mapping
φ from Ω to a Euclidean space with distance d′ so that√
dp(θ)(ω1, ω2) = d′(φ(ω1), φ(ω2)). Then E(θ) is posi-

tive semidefinite. For |Ω| ≤ 4, every distance is Euclidean
embeddable, therefore

√
dp(θ) being a metric is sufficient

in this case.

The corollary follows directly from Theorem 1 and the
work by Schoenberg (1938) and Rao (1984).

We now provide an example of a distance metric d that is
not conditionally negative definite. We define a distance d
over the set Ω = {1, 2, 3, 4, 5} by the number of edges in
the shortest path between two nodes in the graph depicted
in Figure 5. For example, the distance between 1 and 5 is

1 3

2

4

5

Figure 5: The distance defined by the length of the short-
est path between two nodes is not conditionally negative
definite.

d(1, 5) = 2, while d(1, 2) = 1 and d(1, 1) = 0. One can
easily verify by enumeration that d is actually a distance: it
satisfies d(w1, w2) ≥ 0, and d(w1, w2) = 0 ⇔ w1 = w2,
and the triangle inequality. The distance matrix, D, of d is

D =


0 1 1 1 2
1 0 2 2 1
1 2 0 2 1
1 2 2 0 1
2 1 1 1 0

 .
The vector

x =


−3
2
2
2
−3


satisfies

∑5
i=1 xi = 0 and gives xᵀDx = 12. Hence, d is

not conditionally negative semidefinite.

E. Proof of Theorem 2

We have

E(θ) =−
∑

ω1∈Ω,ω2∈Ω

dp(θ)(ω1, ω2)
∂p(ω1|θ)

∂θ

∂p(ω2|θ)
∂θ

ᵀ

=−
∑

ω1∈Ω,ω2∈Ω

(
1(ω1 6=ω2)

2p(ω1|θ)
+

1(ω1 6=ω2)

2p(ω2|θ)

)
∂p(ω1|θ)

∂θ

∂p(ω2|θ)
∂θ

ᵀ

=−
∑
ω1∈Ω

1

2p(ω1|θ)
∂p(ω1|θ)

∂θ

∑
ω2 6=ω1

∂p(ω1|θ)
∂θ

ᵀ

−
∑
ω2∈Ω

1

2p(ω2|θ)

 ∑
ω1 6=ω2

∂p(ω1|θ)
∂θ

 ∂p(ω2|θ)
∂θ

ᵀ

.

By (7) we have that:∑
i 6=j

∂p(i|θ)

∂θ
= −∂p(j|θ)

∂θ
,
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and so

E(θ) =
∑
ω1∈Ω

1

2p(ω1|θ)

∂p(ω1|θ)

∂θ

∂p(ω1|θ)

∂θ

ᵀ

+
∑
ω2∈Ω

1

2p(ω2|θ)

∂p(ω2|θ)

∂θ

∂p(ω2|θ)

∂θ

ᵀ

=
∑
ω∈Ω

1

p(ω|θ)

∂p(ω|θ)

∂θ

∂p(ω|θ)

∂θ

ᵀ

=
∑
ω∈Ω

p(ω|θ)
∂ ln p(ω|θ)

∂θ

∂ ln p(ω|θ)

∂θ

ᵀ

=F (θ).

F. Proof of Theorem 3

Here we present a formal definition of what it means for
an update direction to be covariant before proving Theo-
rem 3, which states that the energetic natural gradient is a
covariant update direction. Intuitively, an update is covari-
ant if the direction of an update in the space of probability
distributions does not depend on the parametrization of the
space of probability distributions. We provide a (possibly
unintuitive) formal definition below, which comes from the
work of Dabney & Thomas (2014, Lemma 1).

Definition 1 (Congruency of PPMs). We say that two
PPMs, p with parameters θ ∈ Rn and q with parameters
φ ∈ Rn, are congruent if there exists a continuous func-
tion Φ : Rn → Rn such that for all θ:

p(θ) = q(Φ(θ)),

and the Jacobian of Φ is full rank.

Definition 2 (Covariant Update). The update direction ∇̃
is covariant if, for all congruent PPMs, p and q, and all
θ ∈ Rn:

∇̃(f ◦ q)(Φ(θ)) =
∂Φ(θ)

∂θ
∇̃(f ◦ p)(θ). (13)

We now prove that the Energetic natural gradient is a co-
variant update direction. Our proof is similar to that of
Dabney & Thomas (2014), who show that a broad class of
natural gradient algorithms (not including the energetic nat-
ural gradient) are covariant. First notice that by the chain
rule:

∂ ln q(ω|Φ(θ))

∂θ
=
∂Φ(θ)

∂θ

∂ ln q(ω|Φ(θ))

∂Φ(θ)
,

and so, since the Jacobian of Φ(θ) is full rank:

∂Φ(θ)

∂θ

−1
∂ ln q(ω|Φ(θ))

∂θ
=
∂ ln q(ω|Φ(θ))

∂Φ(θ)
. (14)

Now consider E(Φ(θ)), where we write φ as shorthand for
Φ(θ). Below, ... denotes that a long line was split onto two
lines.

E(φ)

=−Eω1∼q(φ)
ω2∼q(φ)

[
dq(φ)(ω1, ω2)

∂ ln q(ω1|φ)
∂φ

∂ ln q(ω2|φ)
∂φ

ᵀ]

(a)
=−Eω1∼q(φ)

ω2∼q(φ)

[
dq(φ)(ω1, ω2)

∂φ

∂θ

−1 ∂ ln q(ω1|φ)
∂θ

...
∂ ln q(ω2|φ)

∂θ

ᵀ(∂φ

∂θ

−1
)ᵀ
]

=− ∂φ

∂θ

−1

Eω1∼q(φ)
ω2∼q(φ)

[
dq(φ)(ω1, ω2)

∂ ln q(ω1|φ)
∂θ

...
∂ ln q(ω2|φ)

∂θ

ᵀ
](

∂φ

∂θ

−1
)ᵀ

,

where (a) comes from (14). Since q(φ) = p(θ) we have
that:

E(φ)

= −
∂φ

∂θ

−1

Eω1∼p(θ)
ω2∼p(θ)

[
dp(θ)(ω1, ω2)

∂ ln p(ω1|θ)

∂θ

∂ ln p(ω2|θ)

∂θ

ᵀ]( ∂φ

∂θ

−1
)ᵀ

=
∂φ

∂θ

−1

E(θ)

(
∂φ

∂θ

−1
)ᵀ

.

So, we have that the left side of (13) is:

E(φ)+ ∂(f ◦ q)(φ)
∂φ

=

[
∂φ

∂θ

−1

E(θ)
(
∂φ

∂θ

−1
)ᵀ]+

∂(f ◦ q)(φ)
∂φ

.

(15)

We can use the chain rule as before to show that

∂(f ◦ q)(φ)

∂φ
=
∂φ

∂θ

−1 ∂(f ◦ q)(φ)

∂θ
,

and so continuing (15) we have that

E(φ)
+ ∂(f ◦ q)(φ)

∂φ
=

[
∂φ

∂θ

−1

E(θ)

(
∂φ

∂θ

−1)ᵀ]+ ∂φ

∂θ

−1 ∂(f ◦ q)(φ)

∂θ

(a)
=

∂φ

∂θ
E(θ)

+ ∂φ

∂θ

∂φ

∂θ

−1 ∂(f ◦ q)(φ)

∂θ

=
∂φ

∂θ
E(θ)

+ ∂(f ◦ q)(φ)

∂θ

=
∂φ

∂θ
∇̃(f ◦ p)(θ),

where (a) comes from the assumption that ∂φ/∂θ has full
rank, and so [∂φ∂θ

−1
A]+ = A+ ∂φ

∂θ for any matrix A. We
therefore have that (13) holds for the energetic natural gra-
dient.


