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Appendix: Proof Details
Proofs from Section 3
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Proofs from Section 4
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Proof. Part (a) follows from a more general result Ruschendorf and Rachev (1990). To prove part (b), we introduce some
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Here �(·) denotes cumulative distribution function for the standard normal distribution and erf(·) denotes the error function.
Figure 3 helps explain the picture.

Then our coupling is the following.

1. Draw S ⇠ f
S

, U ⇠ f
U

, L = �U .

2. With probability Z
S

, set X = S = Y .

3. With probability 1� Z
S

, set X = L and Y = U .
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Figure 3. Illustration of the unnormalized densities fS , fU , fL.

It is not hard to see that (X,Y ) is a valid coupling of f
X

and f
Y

. We now turn to the two claims of this coupling. The first
is easy:
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Now we turn to the second claim. To handle this, we will first introduce two more random variables.
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Lemma 12. The following holds.
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To prove part (c), it will suffice to prove that P (v)
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by symmetry. To do this, we will construct a gamble coupling (X,Y ) by independently coupling the visible nodes v

i

according to the coupling from Lemma 20(b). The probability that we set X(v) 6= Y (v) is bounded as

Pr(X(v) 6= Y (v)) = Pr (9v
i

s.t. X(v
i

) 6= Y (v
i

))
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Similarly we can bound the expected visible distance given X(v) 6= Y (v) as
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Plugging in d
h

(x, y)  ✏
0

=

1

4k(W/�)

T k2
2,1

finishes the proof.

Proofs from Section 5

Theorem 15. Pick any T > 0 and n,m 2 N even positive integers. Then there is a weight matrix W 2 Rn⇥m

satisfying

kWk
max

 2

min(n,m)

ln (4T (n+m)) such that the Gibbs sampler over the RBM with zero bias and weight matrix W has

mixing rate bounded as ⌧
mix

� T .

Proof. Let r =

2

min(n,m)

ln (4T (n+m)). Choose a canonical configuration x such that exactly half of the x(v
i

)’s are 1
and exactly half of the x(h

j

)’s are 1. Now let W 2 Rn⇥m such that W
ij

= r if x(v
i

) = x(h
j

) and �r otherwise. Let
⇡(·) denote the Gibbs distribution for the RBM with weight matrix W and zero bias and let S = {x} be the singleton
set containing only the canonical configuration. Note that if x̄ satisfies that x̄(v

i

) = 1 iff x(v
i

) = 0 and x̄(h
j

) = 1 iff
x(h

j

) = 0, then ⇡(x) = ⇡(x̄). Thus, ⇡(S)  1/2.

It is not hard to see Pr(X(h
j

) 6= x(h
j

) |x(v)) = �
�
�nr

2

�
for all j 2 [m], where �(x) = 1/(1+exp(�x)) is the logistic

sigmoid as before. Similarly, for any i 2 [n], Pr(X(v
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) |x(h)) = �
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�
. Thus,
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Thus the conductance of S (and therefore �

⇤) is upper bounded as

�(S) =
1

⇡(S)

X

x2S,y2S

c

⇡(x)Pr(we transition from x to y) = Pr(leave state x)  1

4T

Theorem 14 completes the proof.

Lemma 21. �(x)  1�
q
1� exp
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2

2

�
for x  0.

Proof. We begin by writing �(·) in terms of the error function:

�(x) =
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2

✓
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✓
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2

◆◆
.

Thus it suffices to prove
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.

By calculus, we have
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where the inequality comes from the fact that e�(s

2
+t

2
) � 0 and the quarter circle of radius x centered at the origin and

lying in the first quadrant is a subset of the square [0, x]2.

Theorem 16. Let T,B > 0 and n,m 2 N be even positive integers. Then there exists weight matrix W 2 Rn⇥m

s.t.

kWk
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such that the B-truncated chain of the Gibbs sampler for the Gaussian-Gaussian RBM with no biases and unit variances

mixes in time ⌧
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� T .

Proof. Let r =
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. Let I�, I+ be an even partition of [n], i.e. |I�| = n/2 =

|I
+

|. Similarly, let J�,J+

be an even partition of [m]. Define
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S
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: x(h
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) � B/2 if j 2 J
+

and x(h
j

)  �B/2 else}

Then our low conductance set of configurations is S = S
v

⇥ S
h

. Note that the c.d.f.’s of the conditional distributions for
the B-thresholded chain are exactly the same as the regular normal distribution for points within [�B,B]. That is, given
x 2 ⌦ and p 2 (�B,B), for any hidden node h

j

and visible node v
i
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P (X(h
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) < p |x(v)) = �
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Symmetric inequalities also hold for P (X(h
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) > �B/2 |x(v)) when j 2 J�. Additionally, for i 2 I
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Therefore, given that the current state of our chain Y
t

is in S, we can bound the probability that we transition out of S in
the next step as

P (Y
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62 S |Y
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Plugging in our value for r gives us an upperbound of 1

4T

. Theorem 14 completes the proof.

Proofs from Section 6

The works of Jerrum and Sinclair (1993), Long and Servedio (2010), and Goldberg and Jerrum (2007) technically deal
with Ising (or spin glass) models as opposed to Boltzmann machines. As the following lemma demonstrates, however, the
partition functions of these models differs only by an easily computable constant. Thus, they are approximation-preserving
interreducible in the sense of Dyer et al. (Dyer et al., 2004).

Lemma 22. Let G = (V,E) be a graph, W
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2 R for all (i, j) 2 E, b
i

2 R for all i 2 V , and define
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Proof. The key idea is to identify every Ising configuration x : V ! {�1, 1}V with a Boltzmann configurations y :

V ! {0, 1}V . The convention we will take is y(i) = 1

2

(x(i) + 1), which has the effect of identifying the spin �1 with 0
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and 1 with 1. Then for any Ising/Boltzmann corresponding pair x, y, we have
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Because the mapping from Ising to Boltzmann configurations is bijective, it then holds that
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= CZIsing(G,W, b).


