
Mixing Rates for the Alternating Gibbs Sampler over
Restricted Boltzmann Machines and Friends

Christopher Tosh CTOSH@CS.UCSD.EDU

Department of Computer Science and Engineering, UC San Diego, 9500 Gilman Dr., La Jolla, CA 92093

Abstract
Alternating Gibbs sampling is a modification of
classical Gibbs sampling where several variables
are simultaneously sampled from their joint con-
ditional distribution. In this work, we investigate
the mixing rate of alternating Gibbs sampling
with a particular emphasis on Restricted Boltz-
mann Machines (RBMs) and variants.

1. Introduction
Markov Random Fields (MRFs) are a popular class of
graphical models which have found uses from image
restoration (Geman & Geman, 1984), to modeling in sta-
tistical physics (Ising, 1925; Potts, 1952), to pretraining
deep neural networks (Hinton et al., 2006; Bengio, 2009).
Formally, a Markov Random Field consists of an under-
lying graph G = (V,E) and a set of random variables
X = (X

v

)

v2V

indexed by the vertices V satisfying

P
�
X

v

|X
V \{v}

�
= P

�
X

v

|X
N(v)

�

where N(v) is the set of vertices adjacent to v in G, also
known as the Markov blanket of v.

A fundamental problem in the setting of MRFs is to sam-
ple from the joint distribution P (X). When the state space
of X is finite and each state has positive probability, the
Hammersley-Clifford theorem (Hammersley & Clifford,
1971; Besag, 1974) tells us that we can decompose the
probability density function as

P (X = x) =
1

Z

Y

c2cl(G)

 
c

(x
c

)

where cl(G) is the set of maximal cliques of G,  
c

(·) are
positive functions, and Z is the normalizing constant to
make the density sum to one. In general, computing Z is a
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hard problem (Bulatov & Grohe, 2005), which makes ex-
actly sampling from P (X) challenging. The solution to
this problem is to approximately sample from P (X).

The Gibbs sampler is a generic Markov chain method to ap-
proximately sample from a joint distribution using only the
conditional distributions to do so. In the case of MRFs, the
Gibbs sampler maintains a current state (X

v

= x
v

)

v2V

,
and it takes a single step by choosing an index v 2 V and
updating the value of X

v

according to the conditional dis-
tribution P (X

v

|X
N(v)

= x
N(v)

). If we can efficiently
sample from these conditional distributions then each step
of the Gibbs sampler is also efficient. For many MRFs of
interest, this is indeed the case.

It is well known that the state of the Gibbs sampler con-
verges to the joint distribution P (X) (Levin et al., 2008,
Chapter 3). Unfortunately, this convergence is only guaran-
teed in the limit. Thus, a central object of study in Markov
chain literature is the rate at which a Markov chain con-
verges to its stationary distribution, and this quantity is
known as its mixing rate.

In some cases, it is possible to efficiently sample more
than a single random variable at a time. Consider an MRF
whose underlying graph is k-colorable, i.e. there is a parti-
tion B

1

, . . . , B
k

of V such that for all i 2 {1, . . . , k} and
all u, v 2 B

i

, the edge (u, v) does not appear in the graph.
Then conditioning on V \B

i

, the elements of B
i

are inde-
pendent and the joint conditional distribution factorizes:

P (X
B

i

|X
V \B

i

) =

Y

v2B

i

P (X
v

|X
N(v)

).

If we can efficiently sample from the individual conditional
distributions then we can also do so for these joint condi-
tional distributions. Moreover, we can modify the Gibbs
sampler so that at each step it updates an entire block B

i

,
and it will still converge to the correct distribution. This
Markov chain is the alternating Gibbs sampler.

1.1. Restricted Boltzmann Machines

An important special case of a Markov Random Field is
the Restricted Boltzmann Machine (RBM). The underly-
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Figure 1. The structure of a Restricted Boltzmann Machine.

ing graph of an RBM is a fully connected bipartite graph
with visible nodes v = (v

1

, . . . , v
n

) and hidden nodes
h = (h

1

, . . . , h
n

). A configuration x = (x(h), x(v)) is
an assignment of each node to a value in {0, 1}. The en-

ergy of a configuration x is

E(x) = �
nX

i=1

a
i

x(v
i

)�
mX

j=1

b
j

x(h
j

)�
X

i,j

x(v
i

)W
ij

x(h
j

)

where the a
i

’s and b
j

’s are biases and the W
ij

’s are inter-
action strengths or weights. This induces the Gibbs distri-
bution over configurations: for a random configuration X ,
P (X = x) =

1

Z

e�E(x), where Z is the normalizing con-
stant to make the distribution integrate to one. Because the
underlying graph is bipartite, the conditional distribution of
a visible node v

i

is

P (X(v
i

) = 1 |x(N(v
i

))) = P (X(v
i

) = 1 |x(h))

= �(a
i

+

mX

j=1

W
ij

x(h
j

))

where �(t) = 1/(1+e�t

) is the logistic sigmoid. Similarly,
the conditional distribution of a hidden node h

j

is

P (X(h
j

) = 1 |x(v)) = �(b
j

+

nX

i=1

W
ij

x(v
i

)).

Because these conditional distributions are easy to sample,
the Gibbs sampler can be implemented efficiently.

Alternating Gibbs sampling is particularly simple in the
case of RBMs. Since RBMs are built on bipartite graphs,
the alternating Gibbs sampler first independently samples
all of the hidden nodes conditioned on the visible nodes and
then independently samples all of the visible nodes con-
ditioned on the hidden nodes. Further, this simplicity is
not restricted to RBMs themselves; it only requires that the
MRF in question have an underlying graph that is bipartite.

In this paper, we consider the mixing rates for the alternat-
ing Gibbs sampler for a wide variety of bipartite MRFs.

1.2. High-level Overview

In Section 3 we give conditions which are sufficient to
guarantee that the alternating Gibbs sampler over discrete-

valued bipartite MRFs rapidly converges to its stationary
distribution. As corollaries we establish conditions for
rapid mixing for the alternating Gibbs sampler over RBMs
as well as two important variants: Deep Boltzmann Ma-
chines and Softmax RBMs.

In Section 4 we give conditions which guarantee rapid con-
vergence for the alternating Gibbs sampler over general,
continuously-valued bipartite MRFs. As a consequence we
are also able to establish conditions for rapid convergence
for the alternating Gibbs sampler over two continuously-
valued variants of RBMs: Gaussian-NReLU RBMs and
Gaussian-Gaussian RBMs.

In Section 5, we establish lower bounds on the mixing rate
for the alternating Gibbs sampler in the cases of RBMs and
Gaussian-Gaussian RBMs.

In Section 6 we discuss computational complexity issues
surrounding RBMs and remaining open questions.

1.3. Related Work

There has been some recent work on proving mixing rates
for the Gibbs sampler on a wide range of models. Notably,
Liu and Domkey (2014), De Sa et al. (2015), Gotovos et
al. (2015) gave upper bounds for the mixing rate for the
single-site update Gibbs sampler over a wide class of mod-
els which include certain discrete-valued MRFs.

De Sa et al. and Gotovos et al. both introduced quantities
for the models that they consider for which the mixing rate
of the Gibbs sampler is polynomial in the size of the model
and exponential in these special quantites. More closely re-
lated to our work, Gotovos et al. and Liu and Domke also
showed that if the model meets a certain ‘bounded influ-
ence’ criterion, then the single-site update Gibbs sampler
mixes in time O(n log n).

There has also been some recent work on single-site Gibbs
sampling in general state spaces. Notably, Wang and Wu
(2014) gave general convergence rates for the single-site
update Gibbs sampler on general state spaces.

In this work, we also give general convergence results in
both discrete and continuous spaces, but for the alternating
Gibbs sampler as opposed to the single-site update Gibbs
sampler. We then apply these results to a variety of models
closely related to the standard RBM, such as the Gaussian-
NReLU RBM, for which mixing rate bounds were previ-
ously unknown.

2. Preliminaries and Notation
A Markov chain is a stochastic process (X

t

)

1
t=0

taking val-
ues in some space ⌦ and satisfying the Markov property:
Pr(X

t

2 A |X
t�1

, . . . , X
0

) = Pr(X
t

2 A |X
t�1

). For
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ease of exposition, we will assume that ⌦ is a finite set.
For an overview of the case when ⌦ is a general space, see
(Roberts & Rosenthal, 2004).

The transition probabilities can be viewed as a matrix Q
indexed by elements of ⌦ such that

Q(x, y) = Pr(X
t

= y |X
t�1

= x).

Q is irreducible if, for all x, y 2 ⌦, there exists a t > 0

such that Qt

(x, y) > 0. It is aperiodic if

gcd({t : Qt

(x, y) > 0}) = 1 for all x, y 2 ⌦.

A distribution ⇡ over ⌦ is a stationary distribution of Q if,
when ⇡ and Q are viewed as matrices indexed by ⌦, then
⇡ = ⇡Q. A fundamental result of Markov chain theory
says that if a Markov chain Q is irreducible and aperiodic,
then it has a unique stationary distribution. Furthermore,
the distribution of X

t

converges to ⇡, regardless of initial
distribution (Levin et al., 2008, Theorem 4.9).

Convergence is only guaranteed in the limit. Thus, we need
to define when the distribution of the Markov chain is a
good approximation of its stationary distribution. Given
probability measures µ, ⌫ over ⌦, the total variation dis-

tance has two equivalent characterizations:

kµ�⌫k
TV

:= sup

A⇢⌦

|µ(A)�⌫(A)| = 1

2

X

!2⌦

|µ(!)�⌫(!)|

where the supremum is taken over all measurable subsets
of ⌦. The mixing rate of a Markov chain Q with unique
stationary distribution ⇡ is the function ⌧ : (0, 1) ! N

⌧(✏) := min{t : max

x2⌦

kQt

(x, ·)� ⇡k
TV

< ✏}.

2.1. Couplings

In this section, we introduce our main technique for bound-
ing the mixing rate of a Markov chain: the coupling.

Let µ and ⌫ be probability measures over a space ⌦. A pair
of random variables (X,Y ) is a coupling of µ and ⌫ if for
all measurable sets A and B,

Pr(X 2 A) = µ(A) and Pr(Y 2 B) = ⌫(B).

Couplings are convenient probabilistic tools for bounding
distances between measures. The following lemma, whose
proof can be found in (Aldous, 1983), tells us that not only
does any coupling provide an upper bound on the total vari-
ation distance between measures but also that there exists a
coupling that achieves this bound.
Lemma 1. Let µ and ⌫ be probability measures.

(a) For any coupling (X,Y ) of µ and ⌫, kµ � ⌫k
TV


Pr(X 6= Y ).

(b) There exists a coupling (X,Y ) satisfying kµ� ⌫k
TV

=

Pr(X 6= Y ).

Couplings involving entire stochastic processes can be
quite cumbersome to work with. A convenient restricted
class of couplings for Markov chains are the Markovian
couplings. A Markovian coupling of a Markov chain over
⌦ with transition matrix Q is a Markov chain (X

t

, Y
t

) over
⌦⇥ ⌦ whose transitions satisfy

Pr(X
t+1

= x0 |X
t

= x, Y
t

= y) = Q(x, x0
),

P r(Y
t+1

= y0 |X
t

= x, Y
t

= y) = Q(y, y0).

The following lemma relates Markovian couplings to the
mixing time. It dates back at least to Aldous (1983) and can
be found in the form we present, for example, in (Jerrum,
2003, Lemma 4.7).

Lemma 2. Let (X
t

, Y
t

) be a Markovian coupling for

Markov chain Z
t

such that there exists a function ⌧
couple

:

(0, 1) ! N satisfying that for all x, y 2 ⌦ and ✏ > 0,

Pr(X
⌧

couple

(✏)

6= Y
⌧

couple

(✏)

|X
0

= x, Y
0

= y)  ✏. Then

the mixing rate for Z
t

satisfies ⌧(✏)  ⌧
couple

(✏).

2.2. Semimetrics and Matrix Norms

A bivariate function d(·, ·) is a semimetric over a space X
if for all x, y 2 X if it satisfies all the properties of a metric
except for the triangle inequality, i.e. non-negativity, iden-
tity iff equality, and symmetry. Any metric is trivially a
semimetric. In addition, distances such as `2

2

-distance are
also semimetrics.

Given a matrix A 2 Rn⇥m and positive reals p, q > 0, the
L
p,q

norm of A is defined as

kAk
p,q

=

0

@
mX

j=1

"
nX

i=1

|A
ij

|p
#
q/p

1

A
1/q

.

Special cases of the L
p,q

include the Frobenius norm,

kAk
F

= kAk
2,2

=

vuut
mX

j=1

nX

i=1

A2

ij

,

the L
1

-norm, kAk
1

= kAk
1,1 = max

1jm

P
n

i=1

|A
ij

|,
and the max-norm, kAkmax = kAk1,1 = max

i,j

|A
ij

|.

3. The Discrete Case
Suppose that we have two vectors of nodes: visible nodes
v = (v

1

, . . . , v
n

) and hidden nodes h = (h
1

, . . . , h
m

).
Let X be some finite space, and let ⌦

v

denote the set of
configurations x which assign to each visible node a value
in X . We can also define ⌦

h

to be the same except for
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hidden nodes and ⌦ = ⌦

v

⇥ ⌦

h

to be the configurations
which assign to every node a value in X .

For x 2 ⌦

h

, let P (v)

(· |x(h)) denote the conditional dis-
tribution of the visible nodes given an assignment to the
hidden nodes. We can symmetrically define P (h)

(· |x(v)).
For two configurations x, y 2 ⌦, let d

v

(x, y) denote a
semimetric over the assignments to the visible nodes. Sim-
ilarly, let d

h

(x, y) denote a semimetric over the hidden
nodes. Define

�(min)
v

= min

x 6=y

d
v

(x, y) and �(max)
v

= max

x 6=y

d
v

(x, y).

Similarly, define �(min)
h

and �(max)
h

as the corresponding ex-
tremal hidden distances.

The alternating Gibbs sampler is the Markov chain (X
t

)

1
t=0

taking values in ⌦, which starts at some initial configura-
tion X

0

= x
0

, and performs the following for t = 1, 2, . . .

1. Draw X
t

(h) ⇠ P (h)

(· |X
t�1

(v))

2. Draw X
t

(v) ⇠ P (v)

(· |X
t

(h))

We say that the distribution P (v) is c-contractive if for any
assignments x, y 2 ⌦ there exists a coupling (X,Y ) of
P (v)

(· |x(h)) and P (v)

(· | y(h)) satisfying

E [d
v

(X,Y )]  c d
h

(x, y).

Contractivity for P (h) is defined symmetrically. With these
notions in hand, we are ready to state our first theorem.
Theorem 3. Let c

1

, c
2

� 0 such that c
1

c
2

< 1, P (v)

is c
1

-

contractive, and P (h)

is c
2

-contractive. Then the mixing

rate of the Gibbs sampler is bounded as

⌧(✏)  1 +

1

log(1/c
1

c
2

)

log

✓
C

✏

◆

where C = min

⇣
�

(max)

v

�

(min)

v

,
�

(max)

h

�

(min)

h

,
c2�

(max)

v

�

(min)

h

⌘
.

Proof. We will prove ⌧(✏)  1 +

1

log(1/c1c2)
log

⇣
�

(max)
v

✏�

(min)
v

⌘
.

The other inequalities are left to the appendix. Our
strategy is to glue together the two contractive cou-
plings for the conditional distributions in order to make
a Markovian coupling for the Gibbs sampler. Formally,
if we are at time step t, then we will first sample
(X

t+1

(h), Y
t+1

(h)) according to the c
1

-contractive cou-
pling of P (h)

(· |X
t

(v)) and P (h)

(· |Y
t

(v)). Then we will
sample (X

t+1

(v), Y
t+1

(v)) according to the c
2

-contractive
coupling of P (v)

(· |X
t+1

(h)) and P (v)

(· |Y
t+1

(h)). By
construction, this is a valid Markovian coupling for the al-
ternating Gibbs sampler. For t � 1 and any initial distribu-
tion of X

0

and Y
0

, we have

Pr(X
t

6= Y
t

)  Pr(d
v

(X
t�1

, Y
t�1

) � �(min)
v

).

By Markov’s inequality and the law of total expectation,
we have

Pr(d
v

(X
t�1

, Y
t�1

) � �(min)
v

)  E[d
v

(X
t�1

, Y
t�1

)]

�(min)
v

 (c
1

c
2

)

t�1E[d
v

(X
0

, Y
0

)]

�(min)
v

 (c
1

c
2

)

t�1�(max)
v

�(min)
v

For t � 1 +

1

log(c1c2)
log

⇣
�

(max)
v

✏�

(min)
v

⌘
, the above is less than ✏.

Applying Lemma 2 completes the proof.

3.1. Restricted Boltzmann Machines

Returning to the case of RBMs, recall that a configuration
assigns values in {0, 1} and the conditional distributions
are product distributions whose components are of the form

P
(v)

RBM

(X(v
i

) = 1 |x(h)) = �(a
i

+

mX

j=1

W
ij

x(h
j

))

P
(h)

RBM

(X(h
j

) = 1 |x(v)) = �(b
j

+

nX

i=1

W
ij

x(v
i

))

where �(t) = 1/(1+exp(�t)) is the logistic sigmoid, and
a 2 Rn, b 2 Rm, and W 2 Rn⇥m are parameters of the
model. We will use Hamming distance as our semimetric
for both hidden and visible distances, i.e.

d
v

(x, y) = |{i : x(v
i

) 6= y(v
i

)}| and
d
h

(x, y) = |{j : x(h
j

) 6= y(h
j

)}|

The following lemma, which is proven in the appendix, es-
tablishes the contractivity of the RBM conditional distribu-
tions with respect to Hamming distance.

Lemma 4. P
(v)

RBM

and P
(h)

RBM

are

kWk1

2

- and

kWT k1

2

-

contractive, respectively.

Combining this with the simple observations that �(min)
v

=

�(min)
h

= 1, �(max)
v

= n, and �(max)
h

= m we have the follow-
ing corollary of Theorem 3.
Corollary 5. The mixing rate for the alternating Gibbs

sampler over an RBM whose weight matrix W satisfies

kWk
1

kWT k
1

< 4 is upper bounded as

⌧(✏)  1

log(4)� log(kWk
1

kWT k
1

)

log

✓
min(n,m)

✏

◆
.

3.2. Deep Boltzmann Machines

A natural way to generalize an RBM is to consider several
stacked layers of nodes v(1), . . . , v(K) of sizes n

1

, . . . , n
K

with interaction matrices W (i) 2 Rn

i

⇥n

i+1 connecting
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Figure 2. Unrolling a DBM. Left: the standard stacked view of a DBM. Right: unrolling a DBM into a bipartite graph.

them. This Markov field is known as a Deep Boltzmann

Machine (DBM) (Salakhutdinov & Hinton, 2009). Figure
2 gives two visualizations of a 4-layer DBM.

As one can see from the ‘unrolled’ view in Figure 2, DBMs
are also bipartite MRFs. Indeed, they are a special case of
RBMs in which the visible nodes correspond to the odd
layer nodes and the hidden nodes correspond to the even
layer nodes and the weight matrix is given by

W :=

2

66664

W (1)

0 0

W (2)

T

W (3)

0

0 W (4)

T

W (5)

0 0

. . .

3

77775

Thus the alternating Gibbs sampler can be applied to DBMs
where we sample first the even layers and then the odd lay-
ers. Corollary 5 then immediately implies the following.
Corollary 6. Let W (1), . . . ,W (K)

be the weight matri-

ces of a DBM and let W be defined as above. Then if

kWk
1

kWT k
1

< 4 the mixing rate of the alternating Gibbs

sampler is bounded above as

⌧(✏)  1

log(4)� log(kWk
1

kWT k
1

)

log

✓
min(n,m)

✏

◆
.

where n = n
1

+ n
3

+ · · · is the total number of nodes in

the odd layers and m = n
2

+ n
4

+ · · · is the total number

of nodes in the even layers.

The matrix W is far more structured in the setting of DBMs
than in the setting of general RBMs, with most of its entries
take the value 0. For example, if K = 2M , then

kWk
1

= max

1kM

max

t2n2k

n2k�1X

i=1

|W (2k�1)

it

|+
n2kX

j=1

|W (2k)

tj

|

kWT k
1

= max

0kM

max

t2n2k+1

n2kX

i=1

|W (2k)

it

|+
n2k+1X

j=1

|W (2k+1)

tj

|

where W (0) and W (2M+1) are taken to be zero matrices of
the appropriate dimensions. Thus kWk

1

kWT k
1

< 4 is a
much less restrictive requirement in the case of DBMs than
it is for general RBMs.

3.3. Softmax RBMs

Another generalization of RBMs is to replace the binary lo-
gistic sigmoid units with K-ary softmax units. In this set-
ting, the n visible units take values in [K] = {1, . . . ,K}
and the m hidden units take values in {0, 1}. Further, there
are K weight matrices W (1), . . . ,W (K), K visible bias
vectors a(1), . . . , a(K), and a hidden bias vector b. Given
x 2 ⌦, the conditional distribution of a hidden node h

j

is

P
(h)

S (X(h
j

) = 1 |x(v)) = �(b
j

+

X

i,k

W
(k)

ij

[x(v
i

) = k]).

For a visible node v
i

, the conditional distribution is

P
(v)

S (X(v
i

) = k |x(h)) = ea
(k)
i

+

P
j

x(h

j

)W

(k)
ij

P
K

k

0
=1

ea
(k0)
i

+

P
j

x(h

j

)W

(k0)
ij

.

Finally, the full conditional distributions of the hidden and
visible nodes are simply the product distributions. Define
W 2 Rn⇥m as the matrix with entries

W
ij

= max

k,k

0

���W (k)

ij

�W
(k

0
)

ij

��� .

Because there is no a priori relationship between the values
in [K] or in {0, 1}, we will again use Hamming distance for
both visible and hidden distances. The following lemma,
which is proven in the appendix, establishes the contractiv-
ity of our conditional distributions.

Lemma 7. P
(h)

S

and P
(v)

S

are

1

2

kWT k
1

- and

1

2

�
K

2

�
kWk

1

-

contractive, respectively.

We then have the following corollary.
Corollary 8. The mixing rate for the Gibbs sam-

pler over a softmax RBM whose matrices satisfies�
K

2

�
kWk

1

kWT k
1

< 4 is upper bounded as

⌧(✏)  1

log(4)� log

⇣�
K

2

�
kWk

1

kWT k
1

⌘
log

✓
min(n,m)

✏

◆
.

In the case where K = 2, the Softmax RBM is the orig-
inal RBM in disguise. Identifying the state 1 with 0 and
the state 2 with 1, taking W = W (2) � W (1), and taking
a = a(2)�a(1) gives us the RBM conditional distributions.
Thus, Corollary 8 is a generalization of Corollary 5.
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4. The General Case
We now turn our attention to a more general setting. Sup-
pose that our vectors v and h take values in spaces ⌦

v

and
⌦

h

equipped with semimetrics d
v

(·, ·) and d
h

(·, ·) that do
not have a minimum distance for distinct elements, i.e.

inf

x 6=y

d
v

(x, y) = 0 = inf

x 6=y

d
h

(x, y).

In this case, we cannot hope to apply Theorem 3 even if
we could bound the diameter of ⌦

v

and ⌦

h

. Contractiv-
ity of the conditional distributions alone is not sufficient to
guarantee rapid convergence in total variation distance.

To guarantee rapid mixing, we will require another prop-
erty of one of our conditional distributions. For conve-
nience, we will use the visible conditional distribution.

Definition 9. We say that P (v)

is (✏, �,M)-gamble admis-
sible if for any x, y 2 ⌦, there exists a coupling (X,Y ) of

P (v)

(· |x(h)) and P (v)

(· | y(h)) such that

(i) Pr(X 6= Y | d
h

(x, y)  ✏)  �.

(ii) E [d
v

(X,Y ) | d
h

(x, y)  ✏, X(v) 6= Y (v)]  M .

(iii) Pr(X 6= Y |x(h) = y(h)) = 0.

We call a coupling (X,Y ) that satisfies conditions (i)-(iii)
a (✏, �,M)-gamble coupling. As opposed to the contractive
couplings given in Section 3, a gamble coupling aims to set
X = Y instead of simply shrinking d

v

(X,Y ). In particu-
lar, if d

h

(x, y) is small enough (less than ✏), then condition
(i) guarantees that X = Y with probability at least 1 � �.
On the other hand, in the event that X 6= Y , condition
(ii) guarantees that the expected distance between X and
Y is not too large. Finally, condition (iii) guarantees that if
P (v)

(· |x(h)) = P (v)

(· | y(h)), then X and Y will be the
same with probability one.

The following lemma says that if both conditional distri-
butions are contractive and one is gamble admissible, then
these couplings can be interleaved in such a way to produce
a Markovian coupling whose time to couple is small.

Lemma 10. Let c
1

, c
2

, ✏
0

, �
0

,M > 0 such that c
1

c
2

<
1, P (h)

is c
1

-contractive, P (v)

is c
2

-contractive and

(✏
0

, �
0

,M)-gamble admissible, then there exists a Marko-

vian coupling (X
t

, Y
t

) s.t. if E[d
v

(X
0

, Y
0

)]  M , then for

any � > 0, if

t � log(2/�)

log(1/c
1

c
2

) log(1/�
0

)

log

✓
2c

1

M

�✏
0

· log(2/�)

log(1/�
0

)

◆

we have Pr(X
t

(v) 6= Y
t

(v))  �.

The strategy for proving Lemma 10 is to use our contractive
coupling until d

h

(X
s

, Y
s

)  ✏
0

and then apply our gamble

coupling. We will succeed with probability 1 � �
0

, but
even if we fail we are no worse off than when we started in
expectation. Therefore, we can repeat this process until we
achieve convergence, roughly log(1/�)

log(1/�0)
times. We present

the full proof in the appendix.

Unfortunately, we can not simply use Lemma 10 along with
Lemma 2 to get upper bounds on the mixing rate due to the
unbounded nature of our state space. That is, so long as our
conditional distributions have contractivity greater than 0,
for any T 2 N and � 2 (0, 1), there may exist an initial pair
of states x, y such that Pr(X

T

6= Y
T

|X
0

= x, Y
0

= y) >
1� � under the coupling (X

t

, Y
t

) in Lemma 10.

Therefore, to get bounds on the rate of convergence, we
assume that the initial state of the alternating Gibbs sampler
is close enough to a random state drawn from the stationary
distribution in expectation. When this assumption is made,
the following theorem tells us how quickly we converge to
the stationary distribution.
Theorem 11. Let c

1

, c
2

, ✏
0

, �
0

, M , P (h)

, and P (v)

satisfy

the conditions of Lemma 10. If X
t

is the Gibbs sampler

whose initial state X
0

satifies E[d
v

(X
0

, Y )]  M where

Y is drawn independently from the stationary distribution

⇡, then for � > 0 and any t satisfying

t � 1 +

log(2/�)

log(1/c
1

c
2

) log(1/�
0

)

log

✓
2c

1

M

�✏
0

· log(2/�)

log(1/�
0

)

◆

we have kX
t

� ⇡k
TV

 �.

Proof. Let (X
s

, Y
s

) be the Markovian coupling from
Lemma 10. Say Y

0

⇠ ⇡ independently from X
0

, then
Y
0

, Y
1

, . . . ⇠ ⇡. Further, if at time S � 0 we have
X

S

(v) = Y
S

(v), then for any time s � S + 1 we have
X

s

= Y
s

. Therefore for t satisfying our lower bound and
for any measurable subset A ⇢ ⌦,

Pr(X
t

2 A) � Pr(X
t

= Y
t

, Y
t

2 A)

� 1� (Pr(X
t

6= Y
t

) + Pr(Y
t

62 A))

� Pr(Y
t

2 A)� Pr(X
t�1

(v) 6= Y
t�1

(v))

� ⇡(A)� �.

Where we used Lemma 10 to bound Pr(X
t�1

(v) 6=
Y
t�1

(v)). Since the above holds for any measurable subset
A, we can conclude kX

t

� ⇡k
TV

 �.

4.1. Gaussian RBMs

We now turn our attention to two special cases of
continuous-valued RBMs: Gaussian-Gaussian RBMs and
Gaussian-NReLU RBMs. In both cases, our configurations
take values in R.

For the Gaussian-Gaussian RBM, we have a weight matrix
W 2 Rn⇥m, bias vectors a 2 Rn and b 2 Rm, variance
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vectors �2 2 Rn and s2 2 Rm, and the conditional distri-
butions are all independent normal:

P
(v)

GG

(X(v
i

) |x(h)) = N (a
i

+

mX

j=1

W
ij

x(h
j

), �2

i

)

P
(h)

GG

(X(h
j

) |x(v)) = N (b
j

+

nX

i=1

W
ij

x(v
i

), s2
j

)

For the Gaussian-NReLU RBM, the parameters W , a, and
�2, and the conditional distribution for the visible nodes
P

(v)

GN

are the same as in the Gaussian-Gaussian RBM. How-
ever, the hidden conditional distribution P

(h)

GN

has changed
so that all X(h

j

) are independently distributed according to
the noisy rectified linear distribution R(

P
n

i=1

W
ij

x(v
i

))

(Nair & Hinton, 2010), where if Z ⇠ N (z,�(z)), then
max(0, Z) is distributed according to R(z).

For both cases, the visible and hidden semimetrics that we
will use will be `2

2

-distance, i.e. for configurations x, y,
d
v

(x, y) =
P

n

i=1

(x(v
i

) � y(v
i

))

2. Similarly for d
h

(x, y).
The following lemma, whose proof appears in the ap-
pendix, establishes contractivity and gamble-admissibility
for the conditional distributions we have defined.
Lemma 12. The following holds.

(a) P
(v)

GG

, P
(h)

GG

, P
(v)

GN

are kWk2
F

-contractive.

(b) P
(h)

GN

is

5

4

kWk2
F

-contractive.

(c) P
(v)

GG

and P
(v)

GN

are (✏
0

, �
0

,M)-gamble admissible for

✏
0

=

1

4k(W/�)

T k2
2,1

, �
0

= 1/4, and

M = 4k�k2
2

+

r
2

⇡

��
(W�)T

��
2,1

k(W/�)T k
2,1

+

✓
kWk

F

2k(W/�)T k
2,1

◆
2

where W/� and W� denote n⇥m matrices whose entries

are W
ij

/�
i

and W
ij

�
i

, respectively

Lemma 12 and Theorem 11 imply the following corollary
on the mixing rate for the alternating Gibbs sampler over
Gaussian-Gaussian RBMs and Gaussian-NReLU RBMs.
Corollary 13. Let M be the quantity given in Lemma

12. Let X
t

denote the Gibbs sampler for the Gaussian-

Gaussian RBM with stationary distribution ⇡
X

and Y
t

de-

note the Gibbs sampler for the Gaussian-NReLU RBM with

stationary distribution ⇡
Y

. If there exists M⇤ > 0 s.t.

max (E
X⇠⇡

X

[d
v

(X
0

, X)] ,E
Y⇠⇡

Y

[d
v

(Y
0

, Y )] ,M)  M⇤

then for � > 0 and C =

M

⇤k(W/�)

T k2
2,1kWk2

F

log(

2
�

)

� log(4)

,

(a) if kWk
F

 1 and

t � 1 +

log(2/�) log (8C)

log

⇣
1

kWk4
F

⌘
log(4)

then kX
t

� ⇡
X

k
TV

 �, and

(b) if kWk4
F

 4/5 and

t � 1 +

log(2/�) log (10C)

log

⇣
4

5kWk4
F

⌘
log(4)

then kY
t

� ⇡
Y

k
TV

 �.

5. Lower Bounds
We now turn our attention towards providing lower bounds
for the mixing rate of the alternating Gibbs sampler. To
do so, we will use the the method of conductance. Given
a Markov chain Q over a state space ⌦ and its stationary
distribution ⇡, the conductance of S ⇢ ⌦ is

�(S) :=
1

⇡(S)

X

x2S,y2S

c

⇡(x)Q(x, y)

and the conductance of Q, denoted by �

⇤, is the minimum
conductance of any set S with ⇡(S)  1/2. The following
theorem, due to Sinclair (1988), relates the mixing rate and
conductance of a Markov chain.
Theorem 14 (Sinclair (1988)). For any aperiodic, irre-

ducible Markov chain with conductance �

⇤
, ⌧

mix

� 1

4�

⇤ .

Our first lower bound is for the case of RBMs.
Theorem 15. Pick any T > 0 and n,m 2 N even posi-

tive integers. Then there is a weight matrix W 2 Rn⇥m

satisfying kWk
max

 2

min(n,m)

ln (4T (n+m)) such that

the Gibbs sampler over the RBM with zero bias and weight

matrix W has mixing rate bounded as ⌧
mix

� T .

The proof of Theorem 15 appears in the appendix, but we
present the main idea here. We construct a weight matrix
W such that the energy function associated with W has two
antipodal global minima. Because there are two minima,
the singleton set consisting of one minima has probability
mass less than 1/2 under the Gibbs distribution. Escaping
from one of these minima is a very unlikely event, which
implies that the conductance is small.

Our second lower bound is for the case of Gaussian-
Gaussian RBMs. The state space of a Gaussian-Gaussian
RBM is unbounded, but any implementation of the Gibbs
sampler is necessarily in a bounded state space. Therefore,
lower bounds that exploit the unbounded nature of the state
space may not be particularly meaningful. To compensate
for this, we work with a restricted version of the alternat-
ing Gibbs sampler. Given B > 0, consider the following
B-thresholded alternating Gibbs sampler (Y

t

)

1
t=0

. At time
step t, it performs the following.

1. For each hidden node h
j

, draw X
t

(h
j

) ⇠ N (b
j

+P
n

i=1

W
ij

Y
t�1

(v
i

), s2
j

). Set Y
t

(h
j

) to be the closest
point in [�B,B] to X

t

(h
j

).
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2. For each hidden node h
j

, draw X
t

(v
i

) ⇠ N (a
i

+P
m

j=1

W
ij

Y
t

(h
j

), �2

i

). Set Y
t

(v
i

) to be the closest
point in [�B,B] to X

t

(v
i

).

The following theorem, whose proof appears in the ap-
pendix, gives a lower bound on the mixing rate for this
restricted Markov chain.

Theorem 16. Let T,B > 0 and n,m 2 N be even positive

integers. Then there exists weight matrix W 2 Rn⇥m

s.t.

kWk
max

 1

min(n,m)

✓
1 +

1

B

p
8 log(4T max(n,m))

◆

such that the B-truncated chain of the Gibbs sampler for

the Gaussian-Gaussian RBM with no biases and unit vari-

ances mixes in time ⌧
mix

� T .

In the case where n = m, the restriction on W translates to
a 1 +

1

B

p
8 log(4Tn) upper bound on the Frobenius norm

of W . This implies that for any ✏, T > 0, there exists a
B > 0 and a weight matrix W such that kWk

F

 1 + ✏,
but the alternating Gibbs sampler mixes in time bounded
below by T . In this sense, the condition on the Frobenius
norm of W given in Corollary 13(a) is tight for establishing
finite convergence rates on the alternating Gibbs sampler
over Gaussian-Gaussian RBMs.

6. Complexity of RBMs
The results in the previous sections give conditions under
which a particular algorithm, the alternating Gibbs sam-
pler, can efficiently sample from the Gibbs distributions of
RBMs and several of its variants. It is natural to ask how
much better can we hope to do with either a better analysis
of the Gibbs sampler or a different algorithm altogether.

The complexity of approximately sampling from a distribu-
tion is often closely tied to the complexity of approximately
computing its normalizing constant or partition function
(Jerrum et al., 1986; Long & Servedio, 2010). Therefore, to
help understand the complexity of sampling from the Gibbs
distribution over RBMs, we will focus on the complexity of
computing approximate solutions to the following problem.

Name: #RBM
Instance: Parameters W 2 Rn⇥m, a 2 Rn, and b 2 Rm.
Output: The partition function

Z =

X

x : (v,h)!{0,1}n+m

ea
T

x(v)+b

T

x(h)+x(v)

T

Wx(h).

In the complexity literature, there are three well-
documented categories that an approximate counting prob-
lem can be placed in. The first category consists of prob-
lems for which we have an efficient algorithm to approx-
imately count or compute a partition function. The sec-
ond category consists of problems for which an efficient

approximate counting algorithm would imply the equiva-
lence of two complexity classes widely viewed to be dis-
tinct, such as P and NP . Finally, problems in the third
category do not belong to either of the above categories but
often are placed in well-defined classes of possibly inter-
mediate computational complexity. As we shall see, #RBM
exhibits flavors of all three of these categories.

Jerrum and Sinclair (1993) showed that when all weights
are positive and all biases are consistent, there is an efficient
algorithm to approximate #RBM. Moreover, we can com-
bine our results from Section 3 with annealing techniques
(Štefankovič et al., 2009) to get an efficient algorithm for
the general case when kWk

1

kWT k
1

< 4. Putting this all
together, we have the following result which place certain
instances of #RBM into the first category.
Theorem 17. (Jerrum and Sinclair (1993), this paper,
Štefankovič et al. (2009)) #RBM admits an efficient algo-

rithm in both of the following cases.

(i) 8 (i, j) 2 [n]⇥[m], W
ij

� 0 and sign(a
i

) = sign(b
j

).

(ii) kWk
1

kWT k
1

< 4.

On the other hand, Long and Servedio (2010) showed that
when the max-norm of the weight matrix grows quickly
enough, #RBM falls into the second category.
Theorem 18 (Long and Servedio (2010)). There is a uni-

versal constant ↵ > 0 such that if P 6= NP , then there is

no polynomial-time algorithm such that given an n⇥n ma-

trix W such that kWk
max

  (n) = !(n)1
, the algorithm

approximates #RBM with weight matrix W and no bias to

within a multiplicative factor of e↵ (n).

Finally, Goldberg and Jerrum (2007) showed that when
the weights are constrained to be positive but the biases
may be arbitrary, #RBM falls into the third category. For-
mally, they showed that it belongs to a class of problems
introduced by Dyer et al. (2004) that are approximation-
preserving interreducible2 with the problem of counting in-
dependent sets in bipartite graphs (#BIS).
Theorem 19. (Goldberg and Jerrum (2007)) #BIS ⌘

AP

#RBM when W
ij

� 0 and kWk
1

kWT k
1

= ⌦(n2

).

Theorems 18 and 19 both imply that for large values of
kWk

1

kWT k
1

, it seems unlikely that we will be able to
sample from the Gibbs distribution over RBMs, even when
all the weights are constrained to be positive. On the other
hand, Theorem 17 gives hope that there are cases when we
can succeed. However, there are large gaps in the cases
that we know can be efficiently solved and those in which
we believe that they cannot. Closing these gaps remains an
interesting direction for future research.

1Two functions f(n), g(n) satisfy the relationship g(n) =

!(f(n)) if limn!1
g(n)
f(n) = 1.

2For a precise definition of approximation-preserving re-
ducibility, see (Dyer et al., 2004).
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Christopher. Rapidly mixing gibbs sampling for a class
of factor graphs using hierarchy width. In Advances in

Neural Information Processing Systems, pp. 3079–3087,
2015.

Dyer, Martin, Goldberg, Leslie Ann, Greenhill, Catherine,
and Jerrum, Mark. The relative complexity of approxi-
mate counting problems. Algorithmica, 38(3):471–500,
2004.

Geman, Stuart and Geman, Donald. Stochastic relaxation,
Gibbs distributions, and the Bayesian restoration of im-
ages. In IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, pp. 721–741, 1984.

Goldberg, Leslie Ann and Jerrum, Mark. The complexity
of ferromagnetic ising with local fields. Combinatorics,

Probability and Computing, 16(01):43–61, 2007.

Gotovos, Alkis, Hassani, Hamed, and Krause, Andreas.
Sampling from probabilistic submodular models. In Ad-

vances in Neural Information Processing Systems, pp.
1936–1944, 2015.

Hammersley, John and Clifford, Peter. Markov fields on
finite graphs and lattices. 1971.

Hinton, Geoffrey E, Osindero, Simon, and Teh, Yee-Whye.
A fast learning algorithm for deep belief nets. Neural

computation, 18(7):1527–1554, 2006.

Ising, Ernst. A contribution to the theory of ferromag-
netism. z. Phys, 31(1):253–258, 1925.

Jawitz, James W. Moments of truncated continuous uni-
variate distributions. Advances in water resources, 27
(3):269–281, 2004.

Jerrum, Mark. Counting, sampling and integrating: al-

gorithms and complexity. Springer Science & Business
Media, 2003.

Jerrum, Mark and Sinclair, Alistair. Polynomial-time ap-
proximation algorithms for the ising model. SIAM Jour-

nal on computing, 22(5):1087–1116, 1993.

Jerrum, Mark, Valiant, Leslie, and Vazirani, Vijay. Ran-
dom generation of combinatorial structures from a uni-
form distribution. Theoretical Computer Science, 43:
169–188, 1986.

Levin, David A., Peres, Yuval, and Wilmer, Elizabeth L.
Markov Chains and Mixing Times. American Mathe-
matical Society, 2008.

Liu, Xianghang and Domke, Justin. Projecting markov ran-
dom field parameters for fast mixing. In Advances in

Neural Information Processing Systems, pp. 1377–1385,
2014.

Long, Philip M. and Servedio, Rocco A. Restricted boltz-
mann machines are hard to approximately evaluate or
simulate. In ICML, pp. 703–710. Omnipress, 2010.

Nair, Vinod and Hinton, Geoffrey. Rectified linear units
improve restricted boltzmann machines. In Proceedings

of the 27th International Conference on Machine Learn-

ing (ICML-10), pp. 807–814, 2010.

Potts, Renfrey Burnard. Some generalized order-disorder
transformations. In Mathematical proceedings of the

cambridge philosophical society, volume 48, pp. 106–
109. Cambridge Univ Press, 1952.

Roberts, Gareth and Rosenthal, Jeffrey. General state space
markov chains and mcmc algorithms. Probability Sur-

veys, 1:20–71, 2004.
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