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1. Additional Details

In this supplementary material, we give additional details
on the two polynomial filters discussed in the main paper.
First, we give an example to illustrate how the choice of
the degree in the extend McWeeny filter method affects the
inflexion point and the rank estimated. Next, we discuss
some details on the practical implementation of the Cheby-
shev polynomial filter method. In section 4, we propose an
alternate method for the threshold ¢ selection using mul-
tiple filters. Finally, we present some additional numeri-
cal experiments and an application from signal processing
where our rank estimation methods can be useful.

2. McWeeny filter: An example

In the main paper, we discussed how the cut-off or the in-
flexion point of the extended McWeeny filter depends on
the choice of the degree m;. We also know that a higher de-
gree my implies a better filter (captures the relevant eigen-
values better) as depicted in figure 1 of the main paper.
Here we give a small toy example to illustrate the per-
formance of the four filters from figure 1 of the main pa-
per. We consider a random matrix X of size 25 x 15 and
rank exactly 5 to which we add noise to obtain the matrix
X = Xo + 0.1 x randn(m,n) (matlab notation used).
The 15 nonzero exact singular values after division by the
largest one and squaring are :

1.0000, 0.7919, 0.4774, 0.3639, 0.3499,

0.0098, 0.0083, ---,---,0.0004.

The exact rank is 15 but there is a sharp drop after the fifth
eigenvalue suggesting that the data we have is the result of
perturbing a matrix of rank 5, as is indeed the case. The
traces of 1)(A) obtained for each of the cases shown in fig-
ure 1 of the main paper are :

Trace(©2,2(A)) = 2.9375,
Trace(©2,10(A4)) = 4.8936,

Trace(©2,6(A)) = 4.4811,
Trace(©2,14(A4)) = 4.9991.

The ©5 2 polynomial misses the desired rank by about 2.
This is because the only singular values that are moved re-

ally close to one are those close to 0.8 and higher. The
cut-off here is 1/2 and is is not adequate for this case. The
second polynomial ©; ¢ gives slightly better result. The
traces of both ©2 10(A) and O3 14(A) are rather close to
the exact value of 5. To estimate the trace, we have used the
Hutchinson’s trace estimator. Using just 20 random vec-
tors, the trace of © 14(A) was evaluated to be 5.02 while
that of ©3,19(A) was evaluated to 4.9, though these esti-
mates show some small variance between different runs. In
the main paper, we saw how the choice of m; affected the
inflexion point and how a dichotomy method can be used
to choose appropriate 71 and m to get the ideal filter for a
given threshold €.

Though we have not analyzed the rounding error or the sta-
bility of the scheme based on Hermite polynomials, we ob-
served that even when very high degree polynomials are
used (a few hundreds) no numerical difficulties of any sort
were encountered.

3. Pacticalities with Chebyshev Filters

In this section, we discuss some details on the practical im-
plementation of the Chebyshev polynomial filter method.

Damping. When we expand discontinuous functions us-
ing Chebyshev polynomials, oscillations known as Gibbs
Phenomenon (Oscillations) appear near the discontinuities.
To suppress this behavior or limit its extent, damping mul-
tipliers are included, i.e., we replace eq. (11) in the main

paper by
Prpm(A) = gl wTi(A).
k=0

In effect, each ~y; is multiplied by a smoothing factor g;*
and this factor tends to be quite small for larger £, i.e., for
the highly oscillatory terms in the expansion. In the sim-
plest case where no damping is applied we set g;" = 1.
The most popular damping used in the literature is called
Jackson smoothing whereby the coefficients g;* are given
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Figure 1. Four different ways of dampening Gibbs oscillations for Chebyshev approximation. All the final polynomials have the same

degree (9 on the left and 18 on the right).

by the formula

sin(k + 1)ay, k+1
p= SRR () coska).
Ik (m + 2) sin(ayy,) < m+ 2> cos(kam)

where o, = ;. Details on this expression can be found
in (Di Napoli et al., 2013). Another form of smoothing pro-
posed by Lanczos (see Chap. 4 in (Lanczos, 1956)) which
is referred to as o-smoothing can also be used. It uses sim-
pler damping coefficients called o factors given by:

O—k:SIHk(Gﬂ7 k:17...,m

with 0, = 2.

The damping factors are small for larger values of k£ and
this has the effect of reducing the oscillations. The Jackson
polynomials have a much stronger damping effect on these
last terms than the Lanczos o factors. For example the very
last factors, and their approximate values for large m’s, are
in each case:

_ 2sin? (o) 2

~ . sin(6,,) 1
(m+2)3’

m

mb,, m

Jackson coefficients tend to over-damp the oscillations at
the expense of sharpness of the approximation. Thus, the
Lanczos smoothing can be viewed as an intermediate form
of damping between no damping and Jackson damping.
A comparison of the three forms of damping is shown in
Figure 1. To the three forms of damping just discussed
(no-damping, Jackson, o-damping) we have added a fourth
one which consists of compounding the degree 3 McWeeny
filter with the Chebyshev filter. In the numerical experi-
ments presented in the main paper and here, Lanczos o-
smoothing were used.

Recurrence. In general, since the input matrix A does
not necessarily have eigenvalues between -1 and 1, we will

Oy = ——f— R —.

transform A linearly into the matrix :

A—cl . A1+ A Al — A
W with ¢ = — = —
(1

whose spectrum is included in [—1, 1]. In practice, A
and )\, in the above formulas are replaced by upper and
lower bounds respectively obtained from the Lanczos pro-
cess, see for e.g., (Saad, 2011) for details. Note that the
interval [, A;] must be mapped to [¢, 1], where £ is the

linear transformation of ¢ using (1).

B = h

Another important practical consideration is that Cheby-
shev polynomials obey a three term recurrence which al-
lows an economical computation of vectors of the form
Ty (B)v. Indeed,

Ths1(t) = 2T4(t) — To_1(t)

with To(t) = 1,7y1(t) = ¢. This results in the following
iteration for computing wy, = Ty (B)v ;

Wit1 = 2Bwp, —wg—1,k=1,2,...,m;
with wg = v; wy = Bo.

Remark 1 If the input matrix X is rectangular or non
symmetric, we can consider B to be of the form B =Y 'Y,
where Y is a linear transformation of the data matrix X us-
ing the mapping (1). This matrix B need not be computed
explicitly since only matrix-vector product operations are
required.

4. Threshold selection: An alternate method

In the main paper, we presented a threshold selection
method based on the spectral density plots and used the
Lanczos spectroscopic method (LSM) to estimate these
spectral densities. Here we present an alternate method to
estimate the threshold € using multiple filters.
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Let us consider the Chebyshev polynomial rank expression
given by

2

We observe that the only terms in the above expression
that depend on the choice of ¢ are the 7y, ’s and the expen-
sive computations (v;) ' T, (A)v; remain the same for any &
chosen. So, once the scalars (v;) " T} (A)v; are computed,
we can define any number of filters (defined over different
intervals [a, b]) with no additional cost. Hence, an alter-
nate method for threshold selection/rank estimation is to
define several filters and count the eigenvalues by setting
a = A, and incrementing b from A\, to A; with a small
step-size. The eigenvalue counts obtained by these filters
will be increasing and in the region of a gap in the spec-
trum, this count will remain the same. That is, the plot
of the eigenvalue-counts obtained by the multiple filters
will be an increasing function with plateaus in the region
of gaps. We know that the threshold € must be located at
the first gap encountered this way. Thus, we can select the
threshold as the value of b for which the first plateau in the
eigenvalue count plot occurs, and the corresponding rank
will be the difference between the matrix size and the value
of the eigencount at this plateau. From another viewpoint,
if we consider the differences between the eigen-counts ob-
tained by these filters, then the threshold € can be selected
as the value of b for which the eigencount difference plot
becomes zero for the first time.

As an illustration, let us consider the numerically rank de-
ficient matrix discussed in the threshold selection section
(sec. 4.2) of the main paper. The eigenvalue count plot
for this matrix obtained using Chebyshev filters of degree
m = 50 is given in the left plot of fig. 2. The step size for
incrementing b was chosen to be 0.01. We see that the plot
increases from 0 to 0.1 indicating the existence of a large
number of smaller noise related eigenvalues. Next, there is
a plateau between 0.1 — 0.5. This region corresponds to the
gap in the spectrum and we can select the threshold and the
corresponding rank in this region. The differences between
the eigencounts are plotted in the right plot of fig. 2. We
see that the difference plot goes to zero at the gap, and we
can choose the corresponding b value as the threshold.

Interestingly, we note that the eigencount difference plot
appears similar to the spectral density plot obtained for the
matrix (see right plot of fig. 2 in the main paper). Indeed
the eigencount difference plot is equivalent to the spectral
density plot, since the eigencount over an interval [a, b] is
just the integration of the spectral density function over the
interval. So, in a sense, the two threshold selection methods
are equivalent. However, in the multiple filter method, we
need to select an incremental step size for b. Experiments

show that the spectral density plot method performs better
than the multiple filter method for threshold selection.

5. Additional Experiments

In the main paper, we presented several numerical exper-
iments to illustrate the performances of the two rank esti-
mation methods proposed. In this section, we give some
additional numerical experimental results. We also give an
application from signal processing where our rank estima-
tion methods can be useful.

5.1. Threshold ¢ and the gap

In the first experiment, we examine whether the threshold
¢ selected by the spectral density plot method discussed
in the main paper is indeed located in the gap of the ma-
trix spectrum. We consider two matrices namely deter3
and dw4 096 from UFL database, the matrices consdiered
in rows 2 and 3 of table 1 in the main paper. Figure 3
plots their spectra and the corresponding spectral densities
obtained by LSM using Chebyshev polynomial of degree
m = 50. In the first spectrum (of deter3 matrix), there are
around 7056 eigenvalues between 0 to 8 followed by a gap
in the region 8 to 20. Ideally, the threshold ¢ should be in
this gap. The DOS plot shows a high value between 0 to 8
indicating the presents of the large number of noise related
eigenvalues and drops to zero near 10 depicting the gap.
The threshold selected by the spectral density plot method
was 10.01 (see table 1, main paper) and clearly this value
is in the gap.

Similarly, in the second spectrum (third plot of figure 3, of
matrix dw4096), after several smaller eigenvalues, there is
a gap in the spectrum from 20 to 100. The threshold se-
lected by the spectral density plot method was 79.13 (see
table 1, main paper). These two examples not only show
us that the thresholds selected are indeed in the gap of the
matrix spectra, but also let us visualize the connection be-
tween the actual matrix spectra and the corresponding spec-
tral density plots.

In the next two sections, we shall consider two applications
and illustrate how the rank estimation methods based on
polynomial filtering perform on these application matrices.

5.2. Matérn covariance matrices

The first application is with the Matérn covariance func-
tions, that are commonly used in statistical analysis appli-
cations such as Machine Learning (Rasmussen & Williams,
2006). We demonstrate the performance of the two rank
estimator techniques on two such covariance matrices ob-
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Figure 2. Eigenvalue count plot for the numerically low rank matrix by Chebyshev filters (left) and the eigencount difference plot (right).
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Figure 3. The sprectra and the corresponding spectral densities obtained by LSM.

tained for a 1D and a 2D regular grids'. It is found that
such covariance matrices are numerically low rank and a
low rank approximations of the matrices suffices in many
applications.

First, we consider a 1D regular grid of dimension 1024 and
define its covariance matrix using a Matern scaling factor
¢ = 7 (Chen et al., 2013). The covariance matrix will be a
1024 x 1024 PSD matrix. The approximate rank estimated
for this matrix by the extended McWeeny filter method of
degree [2,42] and 30 samples was 16.74. The actual count
above the threshold selected is 17. The approximate rank
computed by Chebyshev filter method with degree 50 and
n, = 30 was 17.10.

Next, we consider a 2D regular grid with dimension 32 x
32. The corresponding Matern covariance matrix will be of
size 1024 x 1024. The approximate rank estimated by the
extended McWeeny filter method of degree [2, 48] and 30
samples was 64.21. The actual count above the threshold
is 65. The approximate rank estimated by Chebysheyv filter
method with degree 50 and 30 samples was 68.20.

5.3. Estimation of the number of signals

The second application we will consider here comes from
Signal Processing. The objective is to detect the number of
signals r embedded in the noisy signals received by a col-
lection of n sensors (equivalent to estimating the number
of transmitting antennas). This can be achieved by finding
the numerical rank of the corresponding sample covariance
matrix of the received signals. Here we demonstrate how

!These matrices were generated using the codes available at
http://press3.mcs.anl.gov/scala—-gauss/.

the rank estimation techniques discussed in the main paper
can be employed to estimate the number of signals r, by
computing the numerical rank of the sample output covari-
ance matrix.

We consider n = 1000 element sensor array receiv-
ing »r = 8 interference signals incident at angles
[—90°,90°, —45°,45° 60°, —30°,30°,0°].  The output
signal y(t) can be represented as

T

y(t) = si(t)a; +n(t) = As(t) +n(t), (3

i=1
where A = [a1(01), a2(02), ..., a-(0,)] is an n X r mixing
matrix, s(t) = [s1(¢), s2(t), ..., s-(t)] an r x 1 signal vec-

tor (signals sent from the transmitters) and 7(¢) is a white
noise vector, with the noise power set to —10D B. The co-
variance matrix C' = E[y(t)y(t) ] is a numerically rank
deficient matrix. That is, the matrix is a noisy version of a
low rank r matrix. Hence, we can employ the rank estima-
tion methods to estimate the numerical rank of this matrix,
in turn estimating the number of signals r in the received
signals.

Figure 4 (left) shows the spectral density obtained using
Chebyshev polynomial of degree m = 50 and number of
samples n, = 30. The threshold ¢ was estimated by the
method described in the main paper using this spectral den-
sity plot. Figure 4 (middle) shows the estimated numeri-
cal rank by the extended Mc-Weeny filter method with 30
samples. The degree of Hermite polynomial estimated was
[mo, m1] = [2,44]. The average of approximate ranks esti-
mated over 30 sample vectors was equal to 8.07. The actual
count in the interval is 8 (we know there are 8 signals).
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Figure 4. (Left): The spectral density found by KPM. (Middle) Approximate rank estimation by Mc-Weeny filter method for the adaptive
beamforming example. (Right) Approximate rank estimation by Chebyshev filtering.

Similarly, figure 4 (right) shows the estimated numerical
rank by the Chebyshev filtering method using degree m =
50 and n, = 30. The average of approximate ranks esti-
mated over 30 sample vectors was equal to 8.25. Clearly,
both the methods have accurately estimated the number of
interference signals embedded in the received signals.

It is observed that the accuracy of these rank estimation
techniques in the estimation of the number of signals de-
pends on the interference signal strength and noise power
used. There exists a gap between signal related eigenvalues
and eigenvalues due to noise in the covariance matrix only
when the signal strength is high and noise power is low.
In practice the rank estimation will be affected by factors
such as the angle of incidence, the number of arrays, the
surrounding noise and others.
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